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CHAPTER 1

INTRODUCTION

1.1 Motivation

Data types are one of the key components of every program. They allow to or-
ganize values according to their purpose and properties. Already the very first
programming languages had some concept of data types, containing at least a
fixed collection of base types, like integers, reals, characters, but also means to
form compound data types like records, arrays or lists. Soon it was realized (e.g.
by Hoare [Hoa72]) that the structure of a program is intimately related with to the
data structures it uses. Hence the ability to express and manipulate complex data
structures in a flexible and intuitive way is an important measure of the usability
and expressiveness of a programming language. Especially notable in this respect
are modern functional languages like Haskell [PJH99] and ML [MTHM97] which
possess rich type systems supporting algebraic data types, polymorphism, static
type checking, etc.

In this thesis we explore two particular kinds of data types, inductive and
coinductive types, and several programming constructs related to them. The char-
acteristic property of inductive types (like natural numbers or lists) is that they
provide very simple means forconstructionof data structures, but in order to use
these values one often needs recursion. Coinductive types (like streams, possibly
infinite lists) aredual to inductive ones. They come together with basic operations
to destructthe values, however, their construction often involves recursion. Gen-
eral recursion can be quite difficult to reason about, and it is sometimes called the
goto of functional programming.

In this thesis we use a categorical theory of initial algebras and terminal coal-
gebras as the abstract framework for inductive and coinductive types. This ap-
proach is attractive, as it equips (co)inductive types with generic (co)iteration op-
erations. As these operations capture a very simple form of recursion, namely
the structural (co)recursion, they are very easy to reason about. While the class
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of functions expressible easily in terms of (co)iteration is quite large, not all
useful functions fall under it. The main objective of this thesis is to find new
(co)recursive operations which capture some useful programming constructs, but
still possess nice reasoning properties.

Algebraic data types in Haskell

Algebraic data typesas provided by Haskell are intuitive yet powerful way to de-
scribe data structures. Essentially, new data types are defined by listing all possi-
ble canonical ways to construct its values. For instance, the following declaration
in Haskell defines a new data typeShape together with twodata constructors:

data Shape = Circle Float | Rectangle Float Float

Functions can manipulate such data types usingpattern matchingto “destruct”
the data structure into its components:

perimeter :: Shape -> Float
perimeter (Circle r) = 2 * pi * r
perimeter (Rectangle h w) = 2 * (h + w)

Data definitions can berecursiveallowing to describe data structures of varying
size. For instance, below are defined natural numbers and (polymorphic) lists as
recursive data types:

data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)

Functions which operate on recursive data types are often recursive too. For in-
stance, below is defined a function which finds the sum of the elements in the
argument list (here we use the standard notation for lists in Haskell, where[]
denotes the empty list, i.e. theNil constructor above, and(:) corresponds to
theCons constructor):

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

The definition can be read as follows: the sum of the empty list is0; in the case of
non-empty list, the sum of the whole list is obtained by adding the head of the list
to the sum of the tail of the list.

10



Folds

The same recursion pattern, occurs so often when defining list processing func-
tions, that Haskell provides a standard higher-order function which captures its
essence:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

For instance, thesum function can be defined usingfoldr as follows:

sum = foldr (+) 0

Below are some other useful functions defined as instances offoldr :

length = foldr (\x n -> 1+n) 0
xs ++ ys = foldr (:) ys xs
map f = foldr (\x xs -> f x : xs) []

The first function computes the the length of the argument list, the second concate-
nates two lists, and finally, the third maps the given function to the every element
of the argument list.

The functionfoldr has a very nice algebraic reading: it “replaces” the binary
list constructor(:) by a binary functionf , and the empty list[] by a constant
b; i.e. foldr f b is a homomorphism between the algebras formed by list con-
structors and byf andb. This observation leads naturally to the generalization
of foldr to other algebraic data types, and forms the basis of the categorical
treatment of the inductive data types. For instance, the function which “replaces”
constructors of natural numbers can be defined as follows:

foldNat :: (a -> a) -> a -> Nat -> a
foldNat f b Zero = b
foldNat f b (Succ n) = f (foldNat f b n)

Calculating with folds

The functionfoldr satisfies two important laws. The first law, known asidentity
law, is rather obvious. It states that “replacing” the constructor functions with
themselves gives the identity function:

foldr (:) [ ] = id

The second law, known asfusion law, gives conditions under which intermediate
values produced by folding can be eliminated:

h (f a b) = g a (h b) ⇒ h ◦ foldr f b = foldr g (h b)

11



To illustrate the use of these laws (and also the structured calculational proof
style [Gru96] we use throughout the thesis) we give a proof of the fact, thatmap
is a functor. First, the proof thatmappreserves identities:

map id
= – definition ofmap –

foldr(λxxs→ idx : xs) [ ]
= – definition ofid –

foldr(:) [ ]
= – identity law –

id

Next, we use fusion to show thatmappreserves compositions:

map f ◦ map g
= – definition ofmap –

map f ◦ foldr(λxxs→ g x : xs) [ ]
= – fusion law –

map f (g a : [ ])
= – definition ofmap –

foldr(λxxs→ f x : xs) [ ] (g a : [ ])
= – definition offoldr –

f(g a) : foldr(λxxs→ f x : xs) [ ] [ ]
= – definition ofmap –

f(g a) : map f [ ]
foldr(λxxs→ f(g x) : xs) [ ]

= – definition ofmap –
map (f ◦ g)

The identity and fusion law forfoldr can be proved by induction over lists.
However, in categorical treatment of the inductive data types as initial algebras,
these laws are simple corollaries of the initiality. Hence they are not specific to
foldr and folds for any inductive data type satisfy similar laws.

1.2 Overview of the thesis

In this thesis we develop new recursion combinators that capture more complex
recursion patterns than simple (co)iteration but still possess nice reasoning prop-
erties. In particular, we consider combinators for primitive (co)recursion and
course-of-value (co)iteration.

It is well known that the primitive recursion can be simulated by a simple it-
eration which computes a value paired together with the argument, and that this
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construction leads to the notion of paramorphism which captures the primitive re-
cursion directly. We will show, that the obvious dualization of this construction
leads to notion of apomorphism which captures the recursion pattern known as
primitive corecursion. More importantly, we will also show that a more involved
generic simulation of memoization by iteration leads to the notion of histomor-
phism, a direct formalization of course-of-value iteration, and describe the dual
notion of futumorphism, a formalization of course-of-value coiteration.

Inspired by type-theoretic work by N. P. Mendler [Men87, Men91], we will
introduce the concepts of Mendler-style algebra and homomorphism and treat in-
ductive types as initial Mendler-style algebras. From that basis, we will introduce
Mendler-style analogs for the cata, para and histo combinators. From the theory
developed, it appears that Mender-style recursion combinators are just as well-
suited for program calculation as the conventional ones, but support a program-
ming style more close to customary (general-)recursive programming.

The remainder of the thesis is organized as follows: Chapter 2 reviews the
conventional treatment of inductive and coinductive types as initial algebras and
terminal coalgebras of a functor. The calculational properties of basic iteration
and coiteration are studied.

Chapter 3 studies the properties of operators corresponding to primitive recur-
sion and corecursion. This is the first chapter which contains our original contri-
bution. Namely, we formalize primitive corecursive functions as apomorphisms,
and show their utility on several simple examples (the “standard” example being
the concatenation of two colists).

The next three chapters contain our main contribution to the theory of cate-
gorical data types.

Chapter 4 is devoted to course-of-value iteration and coiteration. They are
formalized respectively as histo- and futumorphisms, the latter being functions
which generate several elements of codata type at once.

Chapter 5 presents an alternative treatment of inductive types as initial Mend-
ler-style algebras. It shows that, in the case of covariant functor, the conventional
treatment coincides with the Mendler-style one. However, Mendler-style induc-
tive types can be defined also for mixed variant base functor. In this case, it is
shown, that if certain restricted existential types are available, then Mendler-style
inductive types are equivalent with the conventional ones, but for a different (co-
variant) functor.

Chapter 6 uses Mendler-style algebras to define recursion operators which
operate on conventional inductive types. Mendler-style versions of cata-, para-
and histomorphisms are formalized and their properties are studied.

The concluding chapter 7 outlines possible future work.
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1.3 Notation

Throughout the thesisC is the default category, in which we shall assume the
existence of finite products(×, 1) and coproducts(+, 0), as well as the distribu-
tivity of products over coproducts (i.e.C is distributive). The typical example of a
distributive category isSet — the category of sets and total functions.

We make use of the following quite standard notation. Given two objectsA,
B, we write fst : A × B → A andsnd : A × B → B to denote the left and
right projections for the productA × B. For f : C → A and g : C → B,
pairing (we also use namefork) is the unique arrow〈 f, g 〉 : C → A × B, such
that fst ◦〈 f, g 〉 = f andsnd ◦〈 f, g 〉 = g. The left and right injections for the
coproductA + B areinl : A → A + B andinr : B → A + B. Forf : A → C
andg : B → C, case analysis (we also use namejoin) is the unique morphism
[ f, g ] : A + B → C, such that[ f, g ] ◦ inl = f and[ f, g ] ◦ inr = g. Besides,
given an objectC, we have the unique morphism!C : C → 1. The inverse of the
canonical map[ inl× id, inr× id ] : (A×C)+(B×C)→ (A+B)×C is denoted
by distr : (A+B)×C → (A×C)+(B×C). Finally, given a predicatep : A→
1 + 1, the guardp? : A→ A+A is defined as(snd + snd) ◦ distr ◦〈 p, idA 〉.
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CHAPTER 2

INDUCTIVE AND COINDUCTIVE
TYPES

In this chapter we review the traditional treatment of inductive and coinductive
types as initial algebras and terminal coalgebras of a functor.

2.1 Initial algebras and catamorphisms

Definition 2.1 (algebra)
Let F : C → C be an endofunctor on categoryC. An F-algebra is a pair(C,ϕ),
whereC is an object andϕ : FC → C an arrow in the categoryC. The objectC
is thecarrier and the functorF is the signature of the algebra.

Definition 2.2 (algebra homomorphism)
Let (C,ϕ) and (D,ψ) be two F-algebras. Ahomomorphismfrom (C,ϕ) to
(D,ψ) is an arrowf : C → D in the categoryC, such that

f ◦ ϕ = ψ ◦ F f

i.e. makes the following diagram to commute:

FC
ϕ //

F f

��

C

f

��
FD

ψ // D

15



For anyF-algebra, the identity arrow on its carrier is a homomorphism from
it to itself and also the composition of two homomorphisms is always a homo-
morphism, so we can define a category where objects areF-algebras and arrows
are homomorphisms between them. However we have to be a little careful, as the
same arrow from the base category can be homomorphism between more than one
pair of F-algebras. For instance, the identity arrowidC is a homomorphism from
anyF-algebra with carrierC to itself.

Definition 2.3 (category of algebras)
Thecategory ofF-algebras overC — Alg(F) — is defined by:

• Objects:F-algebras; i.e. arrowsϕ of C such thatdomϕ = F(codϕ).

• Arrows: triples(f, ϕ, ψ) : ϕ → ψ whereϕ andψ are F-algebras and
f : codϕ→ codψ is a homomorphism fromϕ toψ.

• Identity: idϕ = (idcodϕ, ϕ, ϕ).

• Composition:(f, ϕ2, ϕ3) ◦ (g, ϕ1, ϕ2) = (f ◦ g, ϕ1, ϕ3).

Definition 2.4 (initial algebra)
A F-algebra(µF, in) is theinitial F-algebraif for any F-algebra(C,ϕ) there exists
a unique arrowLϕ M : µF→ C making the following diagram commute:

FµF
in //

F Lϕ M

��

µF

Lϕ M

��
FC

ϕ // C

i.e. satisfying the universal property:

f ◦ in = ϕ ◦ F f ≡ f = Lϕ M cata-CHARN

The arrows in formLϕ M are calledcatamorphisms(derived from the Greek prepo-
sitionκατα meaning ‘downwards’).

In other words, the initial algebra(µF, in) is an initial object in the category
Alg(F), and the catamorphismLϕ M is the mediating arrow out of it.

The initial F-algebra may or may not exist. It is guaranteed to exist ifF is
ω-cocontinuous (i.e. it preserves the colimits ofω-chains). All polynomial func-
tors (i.e. functors built up from products, sums, the identity functor, and constant
functors) areω-cocontinuous and, hence, the initial algebras for them exist.

16



Corollary 2.1 Let (µF, in) be an initialF-algebra.

• Cancellation: For anyF-algebraϕ : FC → C

Lϕ M ◦ in = ϕ ◦ F Lϕ M cata-SELF

• Reflection:

id = L in M cata-REFL

• Fusion: For any F-algebrasϕ : FC → C, ψ : FD → D and an arrow
f : C → D

f ◦ ϕ = ψ ◦ F f ⇒ f ◦ Lϕ M = Lψ M cata-FUSION

Intuitively, the initial algebrain : FµF → µF denotes the collection of con-
structor functions for inductive data typeµF, and the catamorphism is a simple
iteration. When read from left to right, the cancellation law can be viewed as the
reduction rule for terms where catamorphism is applied to a data constructor. The
reduction proceeds recursively by systematically replacing data constructors with
some algebra with same signature. If constructors are replaced by themselves
nothing is changed. This is exactly what the reflection law claims.

The formal justification on the identification of inductive types with initial al-
gebras is given by the following fundamental theorem, known as Lambek lemma.
Its proof, albeit simple, provides a nice example of using above mentioned laws
in action.

Theorem 2.2 (Lambek [Lam68]) The initial algebrainF : FµF → µF is an
isomorphism with the inverse defined as

in−1 = LF in M in-inv-DEF

Proof. Note thatin−1 has indeed the right typing; i.e.in−1 : µF → FµF. We
have to show that it is the pre- and post-inverse of thein. For the first we argue:

in ◦LF in M
= – cata-FUSION –

L in M
= – cata-REFL –

id
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To show that it is also the post-inverse, we make use of the just shown fact (in the
step marked “see above”):

LF in M ◦ in
= – cata-SELF –

F in ◦F LF in M)
= – F functor –

F (in ◦LF in M)
= – see above –

F id
= – F functor –

id

The theorem shows that the carrier of the initial algebra is (up to isomorphism)
a fixed point of the functor. In fact, initial algebras generalize the notion of the
least fixed point from lattice theory in the sense that if the base category is a
preorder and thus an endofunctor is a monotonic function then the carrier of the
initial algebra is the least fixed point of the given function.

Example 2.1 (empty type)
In the categorySet of sets and functions, the pair(∅, id∅) is the initial algebra of
the identity functor with the unique arrow out of∅ as the required unique homo-
morphism. More generally, in any category with initial object, the pair(0, id0) is
the initial Id-algebra.

Example 2.2 (naturals)
Consider the setNat = {0, 1, 2, . . . } of natural numbers with its zero and succes-
sor functionzero : 1→ Nat andsucc : Nat → Nat defined by:

zero () = 0
succ n = n+ 1.

Using join, these functions combine into a single function[ zero, succ ] : 1 +
Nat → Nat , forming an algebra of the functorN(X) = 1 + X. In fact, the pair
(Nat , [ zero, succ ]) is the initialN-algebra; i.e.µN = Nat andin = [ zero, succ ].
To show this, assume an arbitraryN-algebra(C,ϕ). We have to find a function
f : Nat → C which is homomorphism and it should be unique. Because of every
arrow out of sum is join,ϕ = [ c, h ] for some constantc : 1 → C and arrow
h : C → C. So, the homomorphism condition forN-algebras states thatf should

18



make the following diagram commute

1 zero //

c

''OOOOOOOOOOOOOOOOOOOOOOO Nat

f

��

Nat
succoo

f

��
C C

h
oo

i.e. satisfies two equations

f ◦ zero = c
f ◦ succ = h ◦ f.

But this equation system has exactly one solution, namely the function defined by
n 7→ hn(c()), which gives to us the required unique homomorphism.

For instance, the sum and product of two naturals can be defined as follows:

add(n,m) = L [λx.m, succ ] M(n)
mul(n,m) = L [λx.m, λx.add(m,x) ] M(n).

The predecessor functionpred : Nat → 1 + Nat which maps0 7→ inl() and
n+ 1 7→ inr n can be defined by

pred = L id +[ zero, succ ] M

i.e. it is the inverse of the initialN-algebra.

Parametric data types can be easily modeled by initial algebras using bifunc-
tors as their signatures. LetF : C × C → C be a bifunctor, then for any objectA
we have an endofunctorFA : C → C defined asFA(X) = F(A,X).

Example 2.3 (lists)
The data type of lists over a given setA can be represented as the initial algebra
(µLA, in) of the functorLA defined byLA(X) = 1 + (A ×X). DenoteµLA by
List(A). The constructor functionsnil : 1→ List(A) andcons : A×List(A)→
List(A) are defined by

nil = in ◦ inl
cons = in ◦ inr,

so in = [ nil , cons ]. Given any two functionsc : 1 → C andh : A × C → C,
the catamorphismf = L [ c, h ] M : List(A) → C is the unique solution of the
equation system

f ◦ nil = c
f ◦ cons = h ◦ (id×f),
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i.e., foldr(c, h) from functional programming. For instance, the functionlength :
List(A)→ Nat which finds the length of the list, can be defined as catamorphism

length = L [ zero, λ(a, n).succ(n) ] M.

As another example, the functionconcat : List(A)×List(A)→ List(A), which
concatenates two lists, can be defined as catamorphism

concat(xs, ys) = L [λx.ys, cons ] M(xs).

Finally, the functionmap(f) : List(A) → ListB, which applies the function
f : A→ B to every element of the argument list, can be defined as follows

map(f) = L [ nil , cons ◦ (f × id) ] M.

Lots of other examples about list catamorphisms (i.e. functionfoldr) can be found
in any functional programming textbook (e.g. [Bir98]).

Example 2.4 (binary trees)
Consider the bifunctorB(A,X) = A + X × X. The initial BA-algebra defines
the data type of binary (leaf) treesBtree(A) = µBA with a constructor functions

leaf = in ◦ inl : A→ Btree(A)
branch = in ◦ inr : Btree(A)× Btree(A)→ Btree(A)

For instance, a binary tree of naturals with three leafs can be constructed as

branch(branch(leaf (1), leaf (2)), leaf (3)).

Given any functionsl : A → C andb : C × C → C, the catamorphismf =
L [ l, b ] M : Btree(A)→ C is the unique solution of the equation system

f ◦ leaf = l
f ◦ branch = b ◦ (f × f).

For instance, the functionflatten : Btree(A) → List(A), which collects ele-
ments in leaves into list in left-to-right order, can be defined as

flatten = L [ unit , concat ] M,

whereunit(x) = cons(x,nil) : A → List(A) is a function which converts
an element into singleton list, andconcat the list concatenation function from
Example 2.3.
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It is well known from functional programming that the type constructorList
together with the functionmap form a functor. The next theorem shows that lists
are not exceptional in this respect and every similarly defined parametric data type
can be extended to a functor.

Theorem 2.3 Let F : C × C → C be a bifunctor, such that and for any objectA
there exists initialFA-algebra(µFA, in). Then, the mappingT(A) = µFA can
extended to the endofunctor onC by defining

T(f) = L in ◦F(f, id) M data-map-DEF

The functorT : C → C is called adata functorof F.

Proof. Note that definition above has the right typing. We have to show thatT
preserves identities and composition. First, identities:

T id
= – data-map-DEF –

L in ◦F(id, id) M
= – F bifunctor –

L in M
= – cata-REFL –

id

For the composition, we show thatT(f) is a homomorphism fromin ◦F(g, id) to
in ◦F(f ◦ g, id) and then use cata-FUSION:

Tf ◦ Tg
= – data-map-DEF –

Tf ◦ L in ◦F(g, id) M
= – cata-FUSION –

Tf ◦ in ◦F(g, id)
= – data-map-DEF –

L in ◦F(f, id) M ◦ in ◦F(g, id)
= – cata-SELF –

in ◦F(f, id) ◦ F(id, L in ◦F(f, id) M) ◦ F(g, id)
= – F bifunctor –

in ◦F(f ◦ g, id) ◦ F(id, L in ◦F(f, id) M)
= – data-map-DEF –

in ◦F(f ◦ g, id) ◦ F(id,Tf)
L in ◦F(f ◦ g, id) M

= – data-map-DEF –
T(f ◦ g)
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Example 2.5 (bushes)
Consider the bifunctorB(A,X) = A × List(B(A,X)). The initial BA-algebra
defines the data type of bushes (finitely branching trees)Bush(A) = µBA with a
constructor functionnode = in : A × List(Bush(A)) → Bush(A). Given any
functionh : A × List(C) → C, the catamorphismf = Lh M : Bush(A) → C is
the unique solution of the equation

f ◦ node = h ◦ (id×map(f)),

wheremap(f) : List(Bush(A)) → List(C) is the map function on lists defined
in Example 2.3.

2.2 Terminal coalgebras and anamorphisms

We now dualize the material about initial algebras and catamorphisms.

Definition 2.5 (coalgebra)
Let F : C → C be an endofunctor on categoryC. A F-coalgebrais a pair(C,ϕ),
whereC is an object andϕ : C → FC an arrow in the categoryC. The objectC
is thecarrier and the functorF is the signature of the coalgebra.

Definition 2.6 (coalgebra homomorphism)
Let (C,ϕ) and (D,ψ) be two F-coalgebras. Ahomomorphismfrom (C,ϕ) to
(D,ψ) is an arrowf : C → D in the categoryC, such that

ψ ◦ f = F f ◦ ϕ

i.e. makes the following diagram to commute:

C
ϕ //

f

��

FC

F f

��
D

ψ // FD

Similarly to homomorphisms between algebras, homomorphisms between co-
algebras compose with identity arrow as the identity homomorphism.

Definition 2.7 (category of coalgebras)
Thecategory ofF-coalgebras overC — CoAlg(F) — is defined by:

• Objects:F-coalgebras; i.e. arrowsϕ of C such thatcodϕ = F(domϕ).
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• Arrows: triples(f, ϕ, ψ) : ϕ → ψ whereϕ andψ areF-coalgebras and
f : domϕ→ domψ is a homomorphism fromϕ toψ.

• Identity: idϕ = (iddomϕ, ϕ, ϕ).

• Composition:(f, ϕ2, ϕ3) ◦ (g, ϕ1, ϕ2) = (f ◦ g, ϕ1, ϕ3).

Definition 2.8 (terminal coalgebra)
A F-coalgebra(νF, out) is theterminalF-coalgebraif for any F-coalgebra(C,ϕ)
there exists unique arrow[(ϕ )] : C → νF making the following diagram com-
mute:

C
ϕ //

[(ϕ )]

��

FC

F [(ϕ )]

��
νF

out // F νF

i.e. satisfying the universal property:

out ◦f = F f ◦ ϕ ≡ f = [(ϕ )] ana-CHARN

The arrows in form[(ϕ )] are calledanamorphisms(derived from the Greek prepo-
sitionανα meaning ‘upwards’; the name is due to Meijer).

In other words, the terminal coalgebra(νF, out) is the terminal object in the
categoryCoAlg(F), and the anamorphism[(ϕ )] is the mediating arrow out of it.

Corollary 2.4 Let (νF, out) be a terminalF-coalgebra.

• Cancellation: For anyF-coalgebraϕ : C → FC

out ◦[(ϕ )] = F [(ϕ )] ◦ ϕ ana-SELF

• Reflection:

id = [( out )] ana-REFL

• Fusion: For anyF-coalgebrasϕ : C → FC, ψ : D → FD and an arrow
f : C → D

ψ ◦ f = F f ◦ ϕ ⇒ [(ψ )] ◦ f = [(ϕ )] ana-FUSION
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Terminal coalgebras satisfy the dual version of the Lambek lemma stating that
their carriers are fixed points ofF.

Corollary 2.5 The terminal coalgebraout : νF → F νF is an isomorphism with
the inverseout−1 : FνF→ νF defined as follows

out−1 = [( F out )] out-inv-DEF

Dually to initial algebras, terminal coalgebras generalize the notion of the
greatest fixed point, as the carrier of the terminal coalgebra for a monotonic end-
ofunction over preorder is the the greatest fixed point of the given function.

Example 2.6 (unit type)
In the categorySet , the pair({?}, id{?}) is the terminal coalgebra of the identity
functor, where{?} is a one element set. The unique arrow into{?} is the required
unique homomorphism. More generally, in any category with terminal object, the
pair (1, id1) is the terminalId-coalgebra.

Example 2.7 (conaturals)
Consider the endofunctorN(X) = 1 + X from Example 2.2. Recall that its
initial algebra is given by the setNat = {0, 1, 2, . . . } of natural numbers together
with the join of zero and successor function as algebra structure[ zero, succ ] :
1 + Nat → Nat . The inverse of the initial algebrapred : Nat → 1 + Nat is a
N-coalgebra, but it is not terminal.

The terminalN-coalgebra is given by the pair(CoNat , pred), whereCoNat =
{0, 1, 2, . . . }∪{∞} is the set of natural numbers augmented with an extra element
∞, andpred : CoNat → 1 + CoNat is the predecessor function

pred 0 = inl ()
pred (n+ 1) = inr n
pred ∞ = inr ∞.

Given an arbitraryN-coalgebra(C, f), there exists a unique functiong = [( f )] :
C → CoNat satisfying

pred(g(x)) =
{

inl () if f(x) = inl ()
inr(g(y)) if f(x) = inr y

For instance, consider the functionf : CoNat×CoNat → 1+(CoNat×CoNat)
defined by

f(x, y) =


inl () if pred(x) = pred(y) = inl ()
inr(x′, y) if pred(x) = inr x′

inr(x, y′) if pred(x) = inl (), pred(y) = inr y′,
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i.e. anN-coalgebra with carrierCoNat×CoNat . The anamorphismadd = [( f )] :
CoNat × CoNat → CoNat defines the addition function on conaturals.

Because the sum appears in the target, we cannot decompose anN-coalgebra
into simpler components in general. Often, however, theN-coalgebra is in the
form f = (!C+h)◦p? for some predicatep : C → Bool and functionh : C → C.
In this case, the homomorphism condition translates to

pred(g(x)) =
{

inl () if p(x)
inr(g(h(x))) otherwise.

Parametric coinductive types can be modeled by terminal coalgebras using
bifunctors as their signatures. Also, the resulting type constructor can be extended
to a functor.

Corollary 2.6 Let F : C × C → C be a bifunctor, such that and for any objectA
there exists terminalFA-coalgebra(νFA, out). Then, the mappingT(A) = νFA
can extended to the endofunctor onC by defining

T(f) = [( F(f, id) ◦ out )] codata-map-DEF

The functorT : C → C is called acodata functorof F.

Example 2.8 (streams)
The codata type of streams over a given setA is nicely represented by the terminal
coalgebra(νSA, out) of the bifunctorS(A,X) = A × X. Write Stream(A)
for νSA. The functionshead : Stream(A) → A and tail : Stream(A) →
Stream(A) equalfst ◦ out andsnd ◦ out, respectively. Given any two functions
c : C → A andh : C → C, the anamorphism[( 〈 c, h 〉 )] is the unique solution
f : C → StreamA of the equation system

head ◦ f = c
tail ◦ f = f ◦ h.

The functionnats : Nat → Stream(Nat), which returns the stream of all natural
numbers starting with the natural number given as the argument, is the unique
solution of the equation system

head ◦ nats = id
tail ◦ nats = nats ◦ succ,

and is thus definable as the anamorphism[( 〈 id, succ 〉 )].

25



The functionzip : Stream(A)×Stream(B)→ Stream(A×B) that zips the
argument streams together is characterized as follows:

head ◦ zip = (fst× fst) ◦ (out× out)
tail ◦ zip = zip ◦ (snd× snd) ◦ (out× out)

This function can, therefore, be defined as[( 〈 fst× fst, snd× snd 〉 ◦ (out× out) )].
The functioniterate(f) : A → Stream(A) builds the stream of all repeated

applications of functionf : A→ A to the argument

iterate(f) = [( 〈 id, f 〉 )]

Example 2.9 (colists)
The codata type of colists over a given setA can be represented as the termi-
nal coalgebra(νLA, out) of the functorLA. Write List ′A for νLA. Given any
function g : C → 1 + (A × C), the anamorphism[( g )] is the unique solution
f : C → List ′A of the equationout ◦f = (id +(id×f)) ◦ g, i.e. the function
unfold(g) from functional programming.

2.3 Implementation in Haskell

In Haskell, like in type theory, functors arise from the association of a morphism
mapping to an object mapping. A functor in Haskell is a type constructor from
the classFunctor defined in the Haskell Prelude as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The type constructorf , in itself, is the object mapping part of a functor. The
morphism mapping is the functionfmap . The class definition forcesfmap to
have the correct typing, but cannot force it to preserve identities and composition,
so at each time the programmer defines thefmap function for a particular type
constructorf , it is his responsibility to ensure that these conditions are met.

Given some type constructor, it can be declared to be a functor by defining the
fmap function for it using instance declaration. For example, thefmap function
for the list type constructor is defined in the Haskell Prelude as follows:

instance Functor [] where
fmap = map
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The definition tells, that thefmap for lists is “ordinary” map function.
Inductive types, being carriers of initial algebras, are least fixed points of the

corresponding functors. In Haskell, this can be modeled by the following decla-
ration:

> newtype Mu f = In (f (Mu f))

Given a type constructorf , this defines a new typeMu f which has the same
representation as the typef(Mu f) ; i.e. it definesMu f as the least fixed point of
f . In addition, it defines a data constructorIn :: f (Mu f) -> Mu f for the
explicit one-way coercion between the types. The coercion in the other way (i.e.
the inverse ofIn ) can be defined by pattern matching:

> unIn :: Mu f -> f (Mu f)
> unIn (In x) = x

Coinductive types are carriers of terminal coalgebras, thus greatest fixed points
of the corresponding functors. Because Haskell allows to use a general recursion,
coinductive types are necessarily isomorphic to the inductive types with the same
base functor. Hence we could useMu f also for coinductive types. However,
in order to make intended meaning of different usages explicit, we define them
separately:

> newtype Nu f = Wrap (f (Nu f))

> out :: Nu f -> f (Nu f)
> out (Wrap x) = x

In order to implement cata- and anamorphisms, we make use the correspond-
ing cancellation laws, but in a slightly modified form1. Namely, we eliminate the
occurrences of the initial algebrain or terminal coalgebraout from the left-hand
side of the equation, by pre- or postcomposing both sides with the corresponding
inverse.

> cata :: Functor f => (f c -> c) -> Mu f -> c
> cata phi = phi . fmap (cata phi) . unIn

> ana :: Functor f => (c -> f c) -> c -> Nu f
> ana phi = Wrap . fmap (ana phi) . phi

1In fact, this is not necessary for catamorphisms, as we could use pattern matching to implement
the cancellation law directly. However, this does not work in the case of anamorphisms, as Haskell
requires that the name of the defined function has to be the outermost in the left-hand side of the
defining equation.
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The combinatorcata takes a function of typef c -> c (i.e. algebra) into func-
tion of typeMu f -> c . Dually, ana takes a function of typec -> f c (i.e.
coalgebra) into function of typec -> Nu f . In both cases, the type constructor
f has to belong into classFunctor . The restriction onf is necessary, as the
right-hand sides of the defining equations makes use of the functionfmap . Note
that there was no such restriction in the definitions ofMuor Nu.

Example 2.10 (naturals)
The data type of natural numbers, as given in example 2.2, is an initial algebra for
the functorN(X) = 1 +X. In Haskell, this can be implemented as follows:

> data N x = Z | S x

> instance Functor N where
> fmap f Z = Z
> fmap f (S x) = S (f x)

> type Nat = Mu N

The first line defines a new type constructorN, which corresponds to the object
mapping part of the functorN. Then, the instance declaration defines the function
fmap for it; i.e. makes it a functor. Finally, the last line defines data typeNat as
the least fixed point ofN.

The constructor functions for naturals (the constant zero and successor func-
tion) can be defined as follows:

> zeroN :: Nat
> zeroN = In Z

> succN :: Nat -> Nat
> succN n = In (S n)

Below are listed some illustrative values of typeNat (naturals1, 2 and4):

In (S (In Z))
In (S (In (S (In Z))))
In (S (In (S (In (S (In (S (In Z))))))))

The sum of two naturals can be implemented as following catamorphism:

> addN :: Nat -> Nat -> Nat
> addN x y = cata phi x
> where phi Z = y
> phi (S n) = succN n
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Note that the algebraphi is defined by the case analysis over the structure of type
constructorN, specifying the result separately depending whether the inductive
argument (i.e.x ) is zero or not. In the case of non-zero inductive argument, the
result is specified in terms of the value on its predecessor.

Analogously, the product of two naturals can be implemented by a catamor-
phism:

> mulN :: Nat -> Nat -> Nat
> mulN x y = cata phi x
> where phi Z = y
> phi (S n) = addN y n

Example 2.11 (lists)
The data type of lists can be implemented as follows:

> data L a x = N | C a x

> instance Functor (L a) where
> fmap f N = N
> fmap f (C x xs) = C x (f xs)

> type List a = Mu (L a)

> nilL :: List a
> nilL = In N

> consL :: a -> List a -> List a
> consL x xs = In (C x xs)

The functionsnilL andconsL are constructor functions for lists. The first cor-
responds to an empty list, and the second to the “ordinary” list constructor.

The functionslength, concat andmap from the example 2.3 can be imple-
mented as follows:

> lengthL :: List a -> Nat
> lengthL = cata phi
> where phi N = zeroN
> phi (C _ n) = succN n
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> concatL :: List a -> List a -> List a
> concatL xs ys = cata phi xs
> where phi N = ys
> phi (C x xs’) = consL x xs’

> mapList :: (a -> b) -> List a -> List b
> mapList f = cata phi
> where phi N = nilL
> phi (C a bs) = consL (f a) bs

Example 2.12 (streams)
The codata type of streams can be implemented as follows:

> data S a x = St a x

> instance Functor (S a) where
> fmap f (St x xs) = St x (f xs)

> type Stream a = Nu (S a)

> headS :: Stream a -> a
> headS xs = case out xs of
> St x _ -> x

> tailS :: Stream a -> Stream a
> tailS xs = case out xs of
> St _ xs’ -> xs’

FunctionsheadS andtailS are stream destructors, returning the head and the
tail of the given stream respectively.

> zipS :: (Stream a, Stream a) -> Stream (a,a)
> zipS = ana phi
> where phi (xs, ys) = St (headS xs, headS ys)
> (tailS xs, tailS ys)
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> iterateS :: (a -> a) -> a -> Stream a
> iterateS f = ana phi
> where phi x = St x (f x)

Example 2.13 (colists)
Colists have the same base functor as lists, hence we can implement them as
follows:

> type CoList a = Nu (L a)

The destructor function for conaturals, can not be decomposed in general. How-
ever, as Haskell allows to use partial functions, we define more intuitive “destruc-
tors” as follows:

> nullCL :: CoList a -> Bool
> nullCL xs = case out xs of
> N -> True
> C _ _ -> False

> headCL :: CoList a -> a
> headCL xs = case out xs of
> C x _ -> x

> tailCL :: CoList a -> CoList a
> tailCL xs = case out xs of
> C _ xs’ -> xs’

The functionnullCL tests whether the colist is empty or not. Partial functions
headCL andtailCL extract respectively the head and the tail of the given non-
empty colist.

2.4 Related work

The categorical treatment of inductive and coinductive types as initial algebras
and terminal coalgebras for covariant functors comes from Hagino [Hag87], who
designed a typed functional language CPL based on distributive categories and
initial algebras and terminal coalgebras for strong covariant functors. The Charity
language by Cockett et al. [CF92] is a similar programming language.

The program calculation community is rooted in the Bird-Meertens formalism
or Squiggol [Bir87], which, originally, was an equational theory of programming
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with the parametric data type of lists. Malcolm [Mal90b, Mal90a] made the com-
munity aware of Hagino’s work and much of the subsequent development fol-
lowed the path he set. A classic reference in the area of theory is Fokkinga’s
[Fok92]. The excellent introduction into program calculation is the textbook
[BdM97].
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CHAPTER 3

PRIMITIVE (CO)RECURSION

This chapter, based on [VU98], is devoted to primitive recursion and primitive
corecursion. Primitive recursion is a well known recursion scheme, where the
value on the current argument is constructed using the value on the previous ar-
gument together with the previous argument itself. Its dualization, primitive core-
cursion, is not so well known, but provides an equally useful corecursive defini-
tion mechanism where a codata structure is generated either step by step (like in
the case of coiteration) or in one big step. Both schemes are generalizations of
the simple (co)iteration and can be embedded in a nice way into the categorical
framework presented in the previous chapter.

3.1 Primitive recursion via tupling

Not every function with inductive type as source can be represented by a single
catamorphism alone. For instance, the factorial functionfact : Nat → Nat is
neatly characterized as the unique solution of the equation system

fact(0) = 1
fact(n+ 1) = (n+ 1) ∗ fact(n)

However, the recursion pattern of the equations above does not follow that of cata-
morphisms but primitive recursion, i.e. the factorial of a given natural, depends not
only on the factorial of its predecessor, but also on the predecessor itself. So, the
catamorphic definition of factorial has to compute both in parallel as a pair and
then project the factorial component out:

fact = fst ◦L [λx.(1, 0), λ(f, n).((n+ 1) ∗ f, n+ 1) ] M.

Meertens [Mee92] showed that the same trick of tupling can be also used for other
inductive types. The relevant result is the following:

33



Lemma 3.1 For any two arrowsf : µF→ C andϕ : F (C × µF)→ C, we have

f ◦ in = ϕ ◦ F 〈 f, id 〉 ≡ f = fst ◦L 〈ϕ, in ◦F(snd) 〉 M

Proof. The left-hand equation essentially says thatf follows the primitive re-
cursion pattern forµF , while the right one gives its definition in terms of the
composition of the left projection and a catamorphism.

The equivalence is proved by the following two calculations. First, from left
to right:



B f ◦ in = ϕ ◦ F 〈 f, id 〉
f

= – pairing –
fst ◦〈 f, id 〉

= – cata-CHARN –

〈 f, id 〉 ◦ in
= – pairing –
〈 f ◦ in, in 〉

= – F functor –
〈 f ◦ in, in ◦F id 〉

= – pairing –
〈 f ◦ in, in ◦F (snd ◦〈 f, id 〉) 〉

= –C, F functor –
〈ϕ ◦ F 〈 f, id 〉, in ◦F snd ◦F 〈 f, id 〉 〉

= – pairing –
〈ϕ, in ◦F snd 〉 ◦ F 〈 f, id 〉

fst ◦L 〈ϕ, in ◦F snd 〉 M

Second, from right to left:

34





B f = fst ◦L 〈ϕ, in ◦F snd 〉 M
f ◦ in

= –C –
fst ◦L 〈ϕ, in ◦F snd 〉 M ◦ in

= – cata-CHARN –
fst ◦〈ϕ, in ◦F snd 〉 ◦ F L 〈ϕ, in ◦F snd 〉 M

= – pairing, 2x –
ϕ ◦ F 〈 fst ◦L 〈ϕ, in ◦F snd 〉 M, snd ◦L 〈ϕ, in ◦F snd 〉 M 〉

= –C, cata-FUSION – snd ◦〈ϕ, in ◦F snd 〉
= – pairing –

in ◦F snd
ϕ ◦ F 〈 f, L in M 〉

= – cata-REFL –
ϕ ◦ F 〈 f, id 〉

From the lemma above, it follows that at least every primitive recursive func-
tion can be represented using catamorphism as the only recursive construction.
In the presence of exponentials, one can even define Ackermann’s function as a
(higher-order) catamorphism, so the expressive power of the “language of cata-
morphisms” is bigger than the class of primitively recursive functions. In fact,
Howard [How96] has shown that the functions expressible in simply typedλ-
calculus extended with inductive and coinductive types are precisely those prov-
ably total in the logicID<ω (the first order arithmetic augmented by finitely-
iterated inductive definitions).

However, from the practical point of view, the situation is not very satisfac-
tory. First, using tupling is clearly not the most natural way to program primitive
recursive functions. Second, algorithms corresponding to the definitions obtained
by the lemma above have additional penalty in terms of complexity, as they have
to reconstruct the argument which is already there.

3.2 Paramorphisms

To make programming and program reasoning easier, let us introduce a new con-
struction and study its properties.
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Definition 3.1 (paramorphism)
Let (µF, in) be an initialF-algebra. For any arrowϕ : F (C×µF)→ C, the arrow
〈|ϕ |〉 : µF→ C is defined by

〈|ϕ |〉 = fst ◦ L 〈ϕ, in ◦F(snd) 〉 M para-DEF

The arrows in form〈|ϕ |〉 are calledparamorphisms(derived from the Greek
prepositionπαρα meaning ‘near to’, ‘at the side of’, ‘towards’; the name is due
to Meertens [Mee92]).

The definition made use of the right-hand side of the equivalence in Lemma 3.1.
Exploiting the left-hand side, we get the characterization of paramorphisms in
terms of universal property.

Corollary 3.2 For any arrowϕ : F (C × µF) → C, the paramorphismf =
〈|ϕ |〉 : µF→ C is the unique arrow making the following diagram commute:

FµF
in //

F 〈 f,id 〉

��

µF

f

��
F (C × µF)

ϕ // C

i.e. satisfying the universal property:

f ◦ in = ϕ ◦ F 〈 f, id 〉 ≡ f = 〈|ϕ |〉 para-CHARN

Example 3.1 (primitive recursion for naturals)
Consider the data type of natural numbers. Given any two functionsc : 1 → C
andh : C×Nat → C, the paramorphismf = 〈| [ c, h ] |〉 : Nat → C is the unique
solution of the equation system

f ◦ zero = c
f ◦ succ = h ◦ 〈 f, id 〉,

i.e. it captures the classical primitive recursion scheme. For instance, the factorial
functionfact : Nat → Nat can be defined as paramorphism

fact = 〈| [ one, λ(f, n).mul(succ(n), f) ] |〉,

whereone = succ ◦ zero : 1 → Nat and mul : Nat × Nat → Nat is the
multiplication of naturals defined in Example 2.2.
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Example 3.2 (primitive recursion for lists)
Consider the data type of listsList(A). Given any two functionsc : 1 → C and
h : A × C × List(A) → C, the paramorphismf = 〈| [ c, h ] |〉 : List(A) → C is
the unique solution of the equation system

f(nil) = c()
f(cons(x, xs)) = h(x, f(xs), xs).

For instance, the functiontails : List(A) → List(List(A)), which returns the
list of all tail segments of argument list, can be defined as paramorphism

tails = 〈| [ cons(nil ,nil), λ(x, r, xs).cons(cons(x, xs), ys) ] |〉.

Another example of list paramorphism is the functiondropWhile(p) : List(A)→
List(A), which for given predicatep : A → Bool drops the longest initial seg-
ment of the argument list such that all elements in this segment satisfyp

dropWhile(p) = 〈| [ nil , λ(x, r, xs).if p(x) then r else cons(x, xs) ] |〉.

The calculational properties of paramorphisms are similar to those of catamor-
phisms. In particular, we have “paramorphic” versions of cancellation, reflection
and fusion laws.

Proposition 3.3 Let (µF, in) be an initialF-algebra.

• Cancellation: For any arrowϕ : F (C × µF)→ C

〈|ϕ |〉 ◦ in = ϕ ◦ F 〈 〈|ϕ |〉, id 〉 para-SELF

• Reflection:

id = 〈| in ◦F(fst) |〉 para-REFL

• Fusion: For any arrowsϕ : F (C × µF) → C, ψ : F (D × µF) → D and
f : C → D

f ◦ ϕ = ψ ◦ F(f × id) ⇒ f ◦ 〈|ϕ |〉 = 〈|ψ |〉 para-FUSION

Proof. The cancellation law is directly obtained form the universal property of
paramorphisms by substitutingf := 〈|ϕ |〉 thus making the right-hand equation in
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para-CHARN trivially true. For the reflection law we argue:

id
= – para-CHARN –

id ◦ in
= – identity,F functor –

in ◦F(id)
= – pairing –

in ◦F(fst ◦〈 id, id 〉)
= – F functor –

in ◦F(fst) ◦ F〈 id, id 〉
〈| in ◦F(fst) |〉

Finally, the fusion law is proved as follows:

B f ◦ ϕ = ψ ◦ F(f × id)
f ◦ 〈|ϕ |〉

= – para-CHARN –

f ◦ 〈|ϕ |〉 ◦ in
= – para-SELF –

f ◦ ϕ ◦ F〈 〈|ϕ |〉, id 〉
= –C –

ψ ◦ F(f × id) ◦ F〈 〈|ϕ |〉, id 〉
= – F functor –

ψ ◦ F((f × id) ◦ 〈 〈|ϕ |〉, id 〉)
= – pairing –

ψ ◦ F〈 f ◦ 〈|ϕ |〉, id 〉
〈|ψ |〉

In addition to the laws above, paramorphisms satisfy several other useful prop-
erties some of which are listed below.

Proposition 3.4

1. Every catamorphismLϕ M can be defined as a paramorphism which does
not use the preceding value of the argument directly:

Lϕ M = 〈|ϕ ◦ F(fst) |〉 para-CATA

2. Every arrow whose source is the carrier of an initial algebra is a paramor-
phism:

f = 〈| f ◦ in ◦F(snd) |〉 para-FROM-INIT
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3. The inverse of an initial algebra is a paramorphism:

in−1 = 〈|F(snd) |〉 para-IN-INV

Proof. The first equality is proven as follows:

Lϕ M
= – para-CHARN –

Lϕ M ◦ in
= – cata-SELF –

ϕ ◦ FLϕ M
= – pairing –

ϕ ◦ F(fst ◦〈 Lϕ M, id 〉)
= – F functor –

ϕ ◦ F(fst) ◦ F〈 Lϕ M, id 〉
〈|ϕ ◦ F(fst) |〉

Similarly, the validity of para-FROM-INIT is shown by:

f
= – para-CHARN –

f ◦ in
= – F functor –

f ◦ in ◦F(id)
= – pairing –

f ◦ in ◦F(snd ◦〈 f, id 〉)
= – F functor –

f ◦ in ◦F(snd) ◦ F〈 f, id 〉
〈| f ◦ in ◦F(snd) |〉

Finally, para-IN-INV comes directly from the previous law:
in−1

= – para-FROM-INIT –
〈| in−1 ◦ in ◦F(snd) |〉

= – in-inv-CHARN –
〈|F(snd) |〉
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3.3 Apomorphisms

Let us now dualize everything we know about paramorphisms.

Definition 3.2 (apomorphism)
Let (νF, out) be a terminalF-coalgebra. For any arrowϕ : C → F(C + νF),
define the arrow[〈ϕ 〉] : C → νF as a composition of a certain anamorphism with
the left injection:

[〈ϕ 〉] = [( [ϕ,F(inr) ◦ out ] )] ◦ inl apo-DEF

The arrows in form[〈ϕ 〉] are calledapomorphisms(derived from the Greek prepo-
sitionαπomeaning ‘apart from’, ‘far from’, ‘away from’; the name was first used
by Vos [Vos95]1).

Corollary 3.5 For any arrowϕ : C → F(C + νF), the apomorphismf = [〈ϕ 〉] :
C → νF is the unique arrow making the following diagram commute:

C
ϕ //

f

��

F (C + νF)

F [ f,id ]

��
νF

out // F νF

i.e. satisfying the universal property:

out ◦f = F [ f, id ] ◦ ϕ ≡ f = [〈ϕ 〉] apo-CHARN

The laws for apomorphisms are just dual to those for paramorphisms.

Corollary 3.6 Let (νF, out) be a terminalF-coalgebra.

• Cancellation: For any arrowϕ : C → F(C + νF)

out ◦[〈ϕ 〉] = F[ [〈ϕ 〉], id ] ◦ ϕ apo-SELF

• Reflection:

id = [〈F(inl) ◦ out 〉] apo-REFL

1It is interesting to note that Vene and Uustalu [VU98] unaware of the work by Vos happened to
come up with exactly the same new name.
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• Fusion: For any arrowsϕ : C → F(C + νF), ψ : D → F(D + νF) and
f : C → D

ψ ◦ f = F(f + id) ◦ ϕ ⇒ [〈ψ 〉] ◦ f = [〈ϕ 〉] apo-FUSION

Corollary 3.7

1. Every anamorphism[(ϕ )] is an apomorphism:

[(ϕ )] = [〈F(inl) ◦ ϕ 〉] apo-ANA

2. Every arrow whose target is the carrier of a terminal coalgebra is an apo-
morphism:

f = [〈F(inr) ◦ out ◦f 〉] apo-TO-TERM

3. The inverse of a terminal coalgebra is an apomorphism:

out−1 = [〈F(inr) 〉] apo-OUT-INV

Example 3.3 (primitive corecursion for streams)
Consider the codata type of streamsStream(A). Given any two functionsh :
C → A andt : C → C + Stream(A), the apomorphismf = [〈 〈h, t 〉 〉] : C →
Stream(A) is the unique solution of the equation system

head ◦ f = h
tail ◦ f = [ f, id ] ◦ t.

Like in the case of anamorphisms, the head of the stream is computed from the
current seed value using the functionh. However, the tail of the stream can be
generated two different ways depending whether the functiont computes the
new seed value (in which case the generation process proceeds recursively) or
the rest of stream as whole. For instance, the functionmaphd(h) : Stream(A)→
Stream(A), which modifies any input stream by applying a functionh : A → A
to its head while leaving the tail unchanged, can be defined as following apomor-
phism:

maphd(h) = [〈 〈h ◦ head , inr ◦tail 〉 〉].
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The role of the functiont is more explicit when it is in the formt = [n, r ] ◦ p?,
wherep → Bool is a predicate andn : C → C andr : C → Stream(A) are
functions for computing next seed or rest of the stream respectively. Then the
apomorphismf = [〈 〈h, [n, r ] ◦ p? 〉 〉] is characterized by equations:

head(f(x)) = h(x)
tail(f(x)) = f(n(x)) if p(x)

= r(x) otherwise.

For an example, assume that a given setA is ordered. The functioninsert(a) :
Stream(A) → Stream(A) inserts the elementa : 1 → A into a given stream
immediately before the first element that is greater than or equal toa (so that the
returned stream will be a sorted, if the argument was). It can be defined as an
apomorphism:

insert(a) = [〈 〈h, [ tail , id ] ◦ p? 〉 〉],

where

p(xs) = head(xs) ≤ a()
h(xs) = head(xs) if p(xs)

= a() otherwise.

Example 3.4 (primitive corecursion for conaturals)
Given a functionh : C → 1 + (C + CoNat), the apomorphismf = [〈h 〉] : C →
CoNat is the unique solution of the equation system

pred(f(x)) =


inl () if h(x) = inl ()
inr(f(x′)) if h(x) = inr(inl(x′))
inr(y) if h(x) = inr(inr(y)).

For instance, the addition function on conaturalsadd = CoNat × CoNat →
CoNat , which was defined as an anamorphism in the Example 2.7, can be more
succinctly defined asadd = [〈 f 〉], where

f(x, y) =


inl () if pred(x) = pred(y) = inl ()
inr(inl(x′, y)) if pred(x) = inr x′

inr(inr(y′)) if pred(x) = inl (), pred(y) = inr y′.

The “structured” corecursion operator can be defined if the functionh is in the
form h = [ !C , [n, r ] ◦ p2? ] ◦ p1?, wherep1 : C → Bool andp2 : C → Bool are
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predicates,n : C → C gives the next seed andr : C → CoNat gives the remain-
der of the conatural under construction. Thenf = [〈 [ !C , [n, r ] ◦ p2? ] ◦ p1? 〉] :
C → CoNat is characterized by the equations:

pred(f(x)) =


inl () if p1(x)
inr(f(n(x))) if ¬p1(x) ∧ p2(x)
inr(r(y)) otherwise.

Example 3.5 (primitive corecursion for colists)
For instance, the function the functionappend : CoList(A) × CoList(A) →
CoList(A), which appends two colists is naturally definable as an apomorphism
append = [〈 f 〉], where

f(x, y) = inl() if null(x) ∧ null(y)
= inr(head(y), inr(tail(y))) if null(x) ∧ ¬(null(y))
= inr(head(x), inl(tail(x), y)) otherwise.

Here,null : CoList(A) → Bool is a predicate which tests whether the colist is
empty or not, i.e.null = [ id, !A ] ◦ out.

3.4 Para- and apomorphisms in Haskell

Paramorphisms map arrows of typeF (C × µF)→ C to the arrows of typeµF→
C. Thus, the type of paramorphism combinator can be expressed in Haskell as
follows:

> para :: Functor f => (f (c, Mu f) -> c) -> Mu f -> c

For the defining equation of paramorphism combinator we have two possibilities.
First, we can use the definition of paramorphism in terms of catamorphism:

para phi = fst . cata (fork phi (In . fmap snd))

wherefork is pair forming function defined as follows:

> fork :: (a -> b) -> (a -> c) -> a -> (b,c)
> fork f g x = (f x, g x)

However, this definition is inefficent, as it recursively reconstructs the argument.
The second possibility is to use the cancellation law to obtain the directly recursive
definition:

> para phi = phi . fmap (fork (para phi) id) . unIn
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This definition is more efficent, as the (previous) argument is used directly by
phi .

Example 3.6 (factorial)
The factorial function can be implemented as paramorphism:

> fact :: Nat -> Nat
> fact = para phi
> where phi Z = succN zeroN
> phi (S (r,x)) = mulN (succN x) r

In the second equation ofphi , the result (i.e. factorial) on the previous argument
is denoted byr , and the argument itself byx .

Example 3.7 (dropwhile)
The functiondropWhile from the example 3.2 can be implemented as follows:

> dropWhileL :: (a -> Bool) -> List a -> List a
> dropWhileL p = para phi
> where phi N = nilL
> phi (C x (r,xs)) | p x = r
> | otherwise = consL x xs

Here, again,r denotes the value on the previous argument (i.e. value on the tail
of the list), whilex andxs denote the head and tail of the original list.

Dually to paramorphisms, apomorphisms map arrows of typeC → F(C +
νF) to arrows of typeC → νF. As Haskell does not provide a primitive type
constructor for sums, we have to define it first:

> data Sum a b = InL a | InR b

We also define a combinator which does the case analysis on the sum:

> join :: (a -> c) -> (b -> c) -> Sum a b -> c
> join f g (InL x) = f x
> join f g (InR y) = g y

Now, the type of the apomorphism combinator can be expressed as follows:

> apo :: Functor f => (c -> f (Sum c (Nu f)))
> -> c -> Nu f

Like in the case of paramorphisms, we have a choise between two possibilities
to define the apomorphism combinator. First, the definition in terms of anamor-
phism:
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apo phi = ana (join phi (fmap InR . out)) . InL

This definition is not very efficent, as it constructs the codata structure in a step-
wise fashion even if the whole remaining structure is available (i.e.phi returns
the right summand). The second possibility is to use directly recursive definition
obtained from the cancellation law:

> apo phi = Wrap . fmap (join (apo phi) id) . phi

In the case ofphi returns the right summand, this definition is more efficient, as
the rest of the structure is returned by one step.

Example 3.8 (insert)
The functioninsert from the example 3.3 is defined as follows:

> insertS :: Ord a => a -> Stream a -> Stream a
> insertS a = apo phi
> where phi xs | x < a = St x (InL (tailS xs))
> | otherwise = St a (InR xs)
> where x = headS xs

Example 3.9 (append)
The concatenation of two colists can be implemented as apomorphism:

> appendCL :: (CoList a, CoList a) -> CoList a
> appendCL = apo phi
> where phi (xs, ys)
> | nullCL xs && nullCL ys = N
> | nullCL xs = C (headCL ys)
> (InR (tailCL ys))
> | otherwise = C (headCL xs)
> (InL (tailCL xs, ys))

3.5 Related work

Primitive recursion is universally recognized as an important generalization of it-
eration. Paramorphisms were introduced by Meertens [Mee92]. Geuvers [Geu92]
contains a thorough category-theoretic analysis of primitive recursion versus it-
eration and a demonstration that this readily dualizes into an analysis of primi-
tive corecursion versus coiteration. In general, however, it appears that primitive
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corecursion has largely been overlooked in the theoretical literature, e.g. [Fok92]
ignores it. The sole discussion of primitive corecursion in a programming con-
text that we knew about when writing [VU98] was the laconic report in [Ves97]
on a not very clean extension to the categorical functional language Charity in
which it is possible to define functions by primitive recursion and primitive core-
cursion. Soon after we got to know of [Vos95]. Citations of [VU98] appear in
[GH99, BBA00].
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CHAPTER 4

COURSE-OF-VALUE
(CO)ITERATION

In this chapter, which is based on [UV99b], we introduce categorical combina-
tors for course-of-value iteration and coiteration. Course-of-value iteration is a
recursion scheme, where the value on the current argument is constructed using
the values for the subparts of the argument on arbitrary (but fixed) depth. Du-
ally, course-of-value coiteration allows to generate several “levels” of a resulting
codata structure in one step.

4.1 Course-of-value iteration via memoization

The famous Fibonacci functionfibo : Nat → Nat is most smoothly characterized
as the unique solution of the equation system

fibo(0) = 1
fibo(1) = 1

fibo(n+ 2) = fibo(n+ 1) + fibo(n).

This very nice characterization does not give us any definition offibo in terms
of catamorphisms. The problem is that the value offibo for a given argument is
defined not via the values for the immediate subparts of the argument, but via the
values for its subparts of depth 2. But the characterization offibo together with
the functionfibo ′ : Nat → Nat × Nat (which, for any argumentn, returns the
pair formed of the value offibo for n and either zero or the value offibo for the
predecessor ofn) by a much trickier equation system, viz.,

fibo = fst ◦fibo ′

fibo ′(0) = (1, 0)
fibo ′(n+ 1) = 〈 add , fst 〉(fibo ′(n)),
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leads to a definition offibo as the composition of the left projection and a cata-
morphism:

fibo = fst ◦ L 〈 [λx.1, add ], [λx.0, fst ] 〉 M.

Now, we could introduce a new construction that would capture the natural
definition scheme of the Fibonacci function and closely similar functions, and
start studying its properties. But this would only provide us with a partial so-
lution to the problem manifested by the Fibonacci example, as one can imagine
functions whose value for a given argument is naturally defined via the values for
its subparts of depth three, four, etc. Instead of this, we introduce a construction
that captures a general course-of-value iteration by collecting the values on all
subparts into a certain codata structure.

Definition 4.1 (cv-algebra)
Let F : C → C be an endofunctor for which there exists an initial algebra(µF, in).
Define a bifunctorF× : C × C → C as follows:

F×(A,X) = A× F(X).

Assume that for any objectA there exists a terminalF×A-coalgebra(νF×A, out),
i.e. F× induces a codata functorFν(X) = νF×X . A F-cv-algebrais a pair(C,ϕ),
whereC is an object andϕ : F(Fν(C))→ C is an arrow.

Definition 4.2 (cv-algebra homomorphism)
Let (C,ϕ) and(D,ψ) be twoF-cv-algebras. Ahomomorphismfrom (C,ϕ) to
(D,ψ) is an arrowf : C → D in the categoryC, such that

f ◦ ϕ = ψ ◦ F[( (f × id) ◦ out )]

i.e. makes the following diagram to commute:

F(Fν(C))
ϕ //

F[( (f×id)◦out )]

��

C

f

��
F(Fν(D))

ψ // D

Note that anyF-cv-algebra is an ordinary algebra for a functorG(X) =
F(Fν(X)), and homomorphisms betweenF-cv-algebras are ordinary homomor-
phisms betweenG-algebras.
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The next result, analogous to Lemma 3.1 for primitive recursion, states that
every function which can be specified using course-of-value iteration, can be de-
fined in terms of catamorphism which builds a codata structure of values of the
function on the all substructures of its argument (essentially, the catamorphism
builds a memo-table [Mic68] for the function).

Lemma 4.1 For any arrowf : µF → C andF-cv-algebraϕ : F(Fν(C)) → C,
we have

f ◦ in = ϕ ◦ F [( 〈 f, in−1 〉 )] ≡ f = fst ◦ out ◦L out−1 ◦ 〈ϕ, id 〉 M

Proof. Proving it is quite tricky. From left to right we calculate:

B f ◦ in = ϕ ◦ F [( 〈 f, in−1 〉 )]
f

= – pairing –
fst ◦〈 f, in−1 〉

= – pairing –
fst ◦(id×F [( 〈 f, in−1 〉 )]) ◦ 〈 f, in−1 〉

= – ana-SELF –
fst ◦ out ◦[( 〈 f, in−1 〉 )]

= – cata-CHARN –

[( 〈 f, in−1 〉 )] ◦ in
= – out-inv-CHARN –

out−1◦ out ◦[( 〈 f, in−1 〉 )] ◦ in
= – ana-SELF –

out−1◦ (id×F [( 〈 f, in−1 〉 )]) ◦ 〈 f, in−1 〉 ◦ in
= – pairing –

out−1◦ 〈 f,F [( 〈 f, in−1 〉 )] ◦ in−1 〉 ◦ in
= – pairing –

out−1◦ 〈 f ◦ in,F [( 〈 f, in−1 〉 )] ◦ in−1 ◦ in 〉
= –C, in-inv-CHARN –

out−1◦ 〈ϕ ◦ F [( 〈 f, in−1 〉 )],F [( 〈 f, in−1 〉 )] 〉
= – pairing –

out−1◦ 〈ϕ, id 〉 ◦ F [( 〈 f, in−1 〉 )]
fst ◦ out ◦L out−1 ◦〈ϕ, id 〉 M
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From right to left we argue:

B f = fst ◦ out ◦ L out−1 ◦〈ϕ, id 〉 M
f ◦ in

= –C –
fst ◦ out ◦L out−1 ◦〈ϕ, id 〉 M ◦ in

= – cata-SELF –
fst ◦ out ◦ out−1 ◦〈ϕ, id 〉 ◦ F L out−1 ◦〈ϕ, id 〉 M

= – out-inv-CHARN –
fst ◦〈ϕ, id 〉 ◦ F L out−1 ◦〈ϕ, id 〉 M

= – pairing –
ϕ ◦ F L out−1 ◦〈ϕ, id 〉 M

= – ana-CHARN –

out ◦L out−1 ◦〈ϕ, id 〉 M
= – pairing –
〈 fst ◦ out ◦L out−1◦〈ϕ, id 〉 M, snd ◦ out ◦L out−1◦〈ϕ, id 〉 M 〉

= –C, in-inv-CHARN –
〈 f, snd ◦ out ◦L out−1 ◦〈ϕ, id 〉 M ◦ in ◦ in−1 〉

= – cata-SELF –
〈 f, snd ◦ out ◦ out−1◦〈ϕ, id 〉 ◦ F L out−1◦〈ϕ, id 〉 M ◦ in−1 〉

= – out-inv-CHARN –
〈 f, snd ◦〈ϕ, id 〉 ◦ F L out−1 ◦〈ϕ, id 〉 M ◦ in−1 〉

= – pairing –
〈 f,F L out−1 ◦〈ϕ, id 〉 M ◦ in−1 〉

= – pairing –
(id×F L out−1 ◦〈ϕ, id 〉 M) ◦ 〈 f, in−1 〉

ϕ ◦ F [( 〈 f, in−1 〉 )]

4.2 Histomorphisms

To make programming and program reasoning easier, let us introduce a new con-
struction and study its properties.

Definition 4.3 (histomorphism)
Let (µF, in) be an initialF-algebra. For anyF-cv-algebraϕ : F(Fν(C))→ C, the
arrow{|ϕ |} : µF→ C is defined by

{|ϕ |} = fst ◦ out ◦L out−1 ◦ 〈ϕ, id 〉 M histo-DEF

The arrows in form{|ϕ |} are calledhistomorphisms.
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By Lemma 4.1, we get the characterization of histomorphisms in terms of
universal property.

Corollary 4.2 For anyF-cv-algebraϕ : F(Fν(C))→ C, the histomorphismf =
{|ϕ |} : µF→ C is the unique arrow making the following diagram commute:

F(µF) in //

F [( 〈 f,in−1 〉 )]

��

µF

f

��
F(Fν(C))

ϕ // C

i.e. satisfying the universal property:

f ◦ in = ϕ ◦ F [( 〈 f, in−1 〉 )] ≡ f = {|ϕ |} histo-CHARN

From the universal property, we also get the cancellation, reflection and fusion
laws for histomorphisms:

Proposition 4.3 Let (µF, in) be an initialF-algebra.

• Cancellation: For anyF-cv-algebraϕ : F(Fν(C))→ C

{|ϕ |} ◦ in = ϕ ◦ F [( 〈 {|ϕ |}, in−1 〉 )] histo-SELF

• Reflection:

id = {| in ◦F (fst ◦ out) |} histo-REFL

• Fusion: For any F-cv-algebraϕ : F(Fν(C)) → C, ψ : F(Fν(D)) → D
and an arrowf : C → D

f ◦ ϕ = ψ ◦ F [( (f × id) ◦ out )] ⇒ f ◦ {|ϕ |} = {|ψ |}
histo-FUSION

Proof. The cancellation law is directly obtained from the universal property of
histomorphisms by substitutingf := {|ϕ |} thus making the right-hand equation
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in histo-CHARN trivially true. For the reflection law we argue:

id
= – histo-CHARN –

id ◦ in
= – identity,F functor –

in ◦F(id)
= – pairing –

in ◦F (fst ◦〈 id, in−1 〉)
= – pairing –

in ◦F (fst ◦(id×F [( 〈 id, in−1 〉 )]) ◦ 〈 id, in−1 〉)
= – ana-SELF –

in ◦F (fst ◦ out ◦[( 〈 id, in−1 〉 )])
= – F functor –

in ◦F (fst ◦ out) ◦ F [( 〈 id, in−1 〉 )]
{| in ◦F(fst ◦ out) |}

Finally, the fusion law is proved as follows:

B f ◦ ϕ = ψ ◦ F [( (f × id) ◦ out )]
f ◦ {|ϕ |}

= – histo-CHARN –

f ◦ {|ϕ |} ◦ in
= – histo-SELF –

f ◦ ϕ ◦ F [( 〈 {|ϕ |}, in−1 〉 )]
= –C –

ψ ◦ F [( (f × id) ◦ out )] ◦ F [( 〈 {|ϕ |}, in−1 〉 )]
= – F functor –

ψ ◦ F ([( (f × id) ◦ out )] ◦ [( 〈 {|ϕ |}, in−1 〉 )])
= – ana-FUSION –

(f × id) ◦ out ◦[( 〈 {|ϕ |}, in−1 〉 )]
= – ana-SELF –

(f × id) ◦ (id×F [( 〈 {|ϕ |}, in−1 〉 )]) ◦ 〈 {|ϕ |}, in−1 〉
= – pairing –

(f × F [( 〈 {|ϕ |}, in−1 〉 )]) ◦ 〈 {|ϕ |}, in−1 〉
= – pairing –
〈 f ◦ {|ϕ |},F [( 〈 {|ϕ |}, in−1 〉 )] ◦ in−1 〉

= – pairing –
(id×F [( 〈 {|ϕ |}, in−1 〉 )]) ◦ 〈 f ◦ {|ϕ |}, in−1 〉

ψ ◦ F [( 〈 f ◦ {|φ |}, in−1 〉 )]
{|ψ |}
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Read from left to right, the cancellation law can be treated as the reduction
rule for histomorphisms. Informally it tells that, the value of the histomorphism
on the given argument is computed by first building a certain “colist” and then
using a cv-algebra to give the final result. The “colist” is generated using an
anamorphism which gets the previous argument as the initial seed. On every step,
the anamorphism computes (recursively) the value of the histomorphism on the
current seed, and also a new seed by taking a “predecessor” of the current one.

The left-hand side of the fusion law states thatf is a homomorphism between
cv-algebrasϕ andψ. Hence every cv-algebra homomorphism can be fused with
a histomorphism.

Similarly to paramorphisms, histomorphisms can be viewed as a generaliza-
tion of catamorphisms. Namely, every catamorphism is a histomorphism which
uses only the value on the “predecessor” of the current argument (i.e. the “head”
of the “colist”).

Proposition 4.4 For anyF-algebraϕ : F(C)→ C,

Lϕ M = {|ϕ ◦ F (fst ◦ out) |} histo-CATA

Proof. It is verified by the following calculation:

Lϕ M
= – histo-CHARN –

Lϕ M ◦ in
= – cata-SELF –

ϕ ◦ F Lϕ M
= – pairing –

ϕ ◦ F (fst ◦〈 Lϕ M, in−1 〉)
= – pairing –

ϕ ◦ F (fst ◦(id×F [( 〈 Lϕ M, in−1 〉 )]) ◦ 〈 Lϕ M, in−1 〉)
= – ana-SELF –

ϕ ◦ F (fst ◦ out ◦[( 〈 Lϕ M, in−1 〉 )])
= – F functor –

ϕ ◦ F (fst ◦ out) ◦ F [( 〈 Lϕ M, in−1 〉 )]
{|ϕ ◦ F (fst ◦ out) |}

Example 4.1 (course-of-value iteration for naturals)
Consider the data type of natural numbers; i.e. the initialN-algebra
(Nat , [ zero, succ ]). The codata typeNν(C) consists of nonempty colists over
C, and the terminal coalgebra structure is provided byout = 〈 cur , prev 〉 :

53



Nν(C) → C × (1 + Nν(C)), wherecur : Nν(C) → C gives the head and
prev : Nν(C)→ 1 + Nν(C) the (possible) tail of a colist.

Any N-cv-algebraϕ : 1 + Nν(C) → C can be decomposed using joinϕ =
[ z0, s0 ], wherez0 : 1 → C ands0 : Nν(C) → C. The histomorphismf =
{| [ z0, s0 ] |} : Nat → C is the unique solution of the equation system:

f(zero()) = z0()
f(succ(x)) = s0([( 〈 f, pred 〉 )](x)),

wherepred : Nat → 1 + Nat is the predecessor function from the Example 2.2.
In order to get more illuminating version of the course-of-value iteration oper-

ator, assume that the functions0 is in forms0 = [ z1◦ !, s1 ] ◦ distr ◦ out for some
constant1 z1 : 1 → C and functions1 : C × Nν(C) → C. Then the correspond-
ing histomorphismf = {| [ z0, [ z1◦ !, s1 ] ◦ distr ◦ out ] |} is characterized by the
equations:

f(zero()) = z0()
f(succ(zero())) = z1()

f(succ(x)) = s1(f(x), [( 〈 f, pred 〉 )](x)).

Now, the use of the value on the previous argument is explicit. Particularly, by
takingz0 = one, z1 = one ands1(x, y) = add(x, cur(y)), we get the definition
of the Fibonacci function; i.e.

fibo = {| [ one, [ one◦ !, add ◦ (id×cur) ] ◦ distr ◦ out ] |}.

The general form of course-of-value iteration operator involvesn+1 constants
z0, . . . , zn : 1 → C and a functionsn : C × (. . . (C × Nν(C)) . . . ) → C (here
the product hasn+ 1 components). The corresponding histomorphism is

f = {| [ z0, [ z1◦ !, [ z2◦ !, . . . [ zn◦ !, sn ] ◦ dout . . . ] ◦ dout ] ◦ dout ] |},

wheredout = distr ◦ out. It is characterized by the system ofn+ 2 equations:

f(zero()) = z0()
f(succ(zero())) = z1()

. . .
f(succn(zero())) = zn()

f(succn(x)) = sn(fn(x), . . . , f(x), [( 〈 f, pred 〉 )](x)).
1Instead of the constant, the left branch of the join could be a functionh : C → C which makes

use of the value on the previous argument. However, the previous argument is known to bezero
and the value on it isz0, thus result on the argumentsucc ◦zero is already known to bez1 = h(z0).
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Note that in such way we can characterize functions which make use of arbitrary
but fixed number of preceding values. Of course, we can imagine functions which
make use of all preceding values (such recursion scheme is calledcourse-of-value
recursion). The classical example of such function isf(n) = 2n, which can be
characterized as:

f(n) = 1 + f(n− 1) + · · ·+ f(1) + f(0).

If we rewrite the equation in a more explicit form

f(n) = 1 +
n−1∑
i=0

f(i),

we see that the use of all preceding values can be achieved by using primitive
recursion and course-of-value iteration at the same time.

4.3 Futumorphisms

We now introduce a construction dual to cv-algebras and histomorphisms.

Definition 4.4 (cv-coalgebra)
Let F : C → C be an endofunctor for which there exists a terminal coalgebra
(νF, out). Define a bifunctorF+ : C × C → C as follows:

F+(A,X) = A+ F(X).

Assume that for any objectA there exists an initialF+
A-algebra(µF+

A, in), i.e.F+

induces a data functorFµ(X) = µF+
X . A F-cv-coalgebrais a pair(C,ϕ), where

C is an object andϕ : C → F(F+(C)) is an arrow.

Definition 4.5 (cv-coalgebra homomorphism)
Let (C,ϕ) and(D,ψ) be twoF-cv-algebras. Ahomomorphismfrom (C,ϕ) to
(D,ψ) is an arrowf : C → D in the categoryC, such that

ψ ◦ f = F L in ◦(f + id) M ◦ ϕ

i.e. makes the following diagram to commute:

C
ϕ //

f

��

F(Fµ(C))

F L in ◦(f+id) M

��
D

ψ // F(Fµ(D))

55



Note that anyF-cv-coalgebra is an ordinary coalgebra for a functorG(X) =
F(Fµ(X)), and homomorphisms betweenF-cv-coalgebras are ordinary homomor-
phisms betweenG-coalgebras.

Definition 4.6 (futumorphism)
Let (νF, out) be a terminalF-coalgebra. For anyF-cv-coalgebraϕ : C →
F(Fµ(C)), the arrow[{ϕ }] : C → νF is defined by

[{ϕ }] = [( [ϕ, id ] ◦ in−1 )] ◦ in ◦ inl futu-DEF

The arrows in form[{ϕ }] are calledfutumorphisms.

Corollary 4.5 For any F-cv-coalgebraϕ : C → F(F+(C)), the futumorphism
f = [{ϕ }] : C → νF is the unique arrow making the following diagram commute:

C
ϕ //

f

��

F(Fµ(C))

F L [ f,out−1 ] M

��
νF

out // F(νF)

i.e. satisfying the universal property:

out ◦f = F L [ f, out−1 ] M ◦ ϕ ≡ f = [{ϕ }] futu-CHARN

By a straightforward dualization of the laws for histomorphisms, we get the
corresponding laws for futumorphisms.

Corollary 4.6 Let (µF, in) be an initialF-algebra.

• Cancellation: For anyF-cv-coalgebraϕ : C → F(F+(C))

out ◦[{ϕ }] = F L [ [{ϕ }], out−1 ] M ◦ ϕ futu-SELF

• Reflection:

id = [{F (in ◦ inl) ◦ out }] futu-REFL

• Fusion: For anyF-cv-coalgebraϕ : C → F(F+(C)), ψ : D → F(F+(D))
and an arrowf : C → D

ψ ◦ f = F L in ◦(f + id) M ◦ ϕ ⇒ [{ψ }] ◦ f = [{ϕ }] futu-FUSION
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• Ana from futu: For anyF-coalgebraϕ : C → F(C)

[(ϕ )] = [{F (in ◦ inl) ◦ ϕ }] futu-ANA

Example 4.2 (course-of-value coiteration for streams)
Recall, that the terminal coalgebra for a bifunctorS(A,X) = A × X was given
by Stream(A), the codata type of streams overA, with the coalgebra structure
〈 head , tail 〉 : Stream(A)→ A× Stream(A). The inductive data type manifest-
ing in stream futumorphisms is given by the induced data bifunctorSµ(C,A) =
µS+

C,A, whereS+(C,A,X) = C +A×X; i.e. data type of nonempty lists where
all elements except the last one are from typeA, and the last element is of typeC.
The initial algebra structure is given by[ l, c ] : C + A × Sµ(C,A) → Sµ(C,A),
wherel : C → Sµ(C,A) constructs the singleton list andc : A × Sµ(C,A) →
Sµ(C,A) inserts the new element of typeA into first position.

Every SA-cv-coalgebraϕ : C → A × Sµ(C,A) can be decomposed using
fork ϕ = 〈h0, t 〉, whereh0 : C → A andt : C → Sµ(C,A). The futumorphism
f = [{ 〈h0, t 〉 }] : C → Stream(A) is the unique solution of the equation system:

head(f(x)) = h0(x)
tail(f(x)) = L [ f, cons ] M(t(x)),

wherecons = out−1 : A × Stream(A) → Stream(A). Intuitively, the function
t in produces a list of stream elements going to follow just next after the current
head, and also a new seed as the last element of the list. Then the catamorphism
replaces the list constructorsc with the “stream constructor”cons, thus forming
an initial prefix of the tail stream. Finally, the last constructorl, which contains
the new seed, is replaced byf , which continues recursively to produce the rest of
the stream.

Assume that the functiont explicitly constructs the list ofn+ 1 elements; i.e.
it is in form

t(x) = c(h1(x), (c(h2(x), . . . c(hn(x), l(s(x))) . . . ))),

whereh1, . . . , hn : C → A and s : C → C. Then the futumorphismf =
[{ 〈h0, c ◦ 〈h1, . . . c ◦ 〈hn, l ◦ s 〉 . . . 〉 〉 }] : C → Stream(A) is characterized by a
system ofn+ 2 equations:

head(f(x)) = h0(x)
head(tail(f(x))) = h1(x)

. . .
head(tailn(f(x))) = hn(x)

tail(tailn(f(x))) = f(s(x)).
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For instance, the functionexch : Stream(A) → Stream(A), which pairwise
exchanges the elements of any given argument, is characterized by the equation
system

head(exch(x)) = head(tail(x))
head(tail(exch(x))) = head(x)

tail(tail(exch(x))) = exch(tail(tail(x))).

Thus it is definable as a futumorphism:

exch = [{ 〈 head ◦ tail , c ◦ 〈 head , l ◦ tail ◦ tail 〉 〉 }].

4.4 Histo- and futumorphisms in Haskell

Histomorphisms map arrowsF(Fν(C))→ C to arrowsµF→ C. Hence, in order
to implement histomorphisms in Haskell, we first have to define the base functor
for the “course-of-values” codata structure:

> newtype ProdF f a x = ProdF (a, f x)

> instance Functor f => Functor (ProdF f a) where
> fmap f (ProdF (a, fx)) = ProdF (a, fmap f fx)

We also define the pairing function forProdF :

> forkF :: (a -> b) -> (a -> f c) -> a
> -> ProdF f b c
> forkF f g = ProdF . fork f g

In order to ease the navigation on the “course-of-values” codata structure, we
define destructor functions out of it:

> hdCV :: Nu (ProdF f c) -> c
> hdCV xs = case out xs of
> ProdF (c, _) -> c

> tlCV :: Nu (ProdF f c) -> f (Nu (ProdF f c))
> tlCV xs = case out xs of
> ProdF (_, fx) -> fx

Now, the type of histomorphism combinator can be expressed in Haskell as fol-
lows:
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> histo :: Functor f => (f (Nu (ProdF f c)) -> c)
> -> Mu f -> c

Like in the case of paramorphisms, we have two possibilities for the defining
equation of histo combinator. First, we can define it in terms of catamorphism:

> histo phi = hdCV . cata (Wrap . forkF phi id)

The second possibility is to use the directly recursive definition:

histo phi = phi
. fmap (ana (forkF (histo phi) unIn))
. unIn

This time, however, the first definition is more efficient. In the case of directly re-
cursive definition, “course-of-value” codata structure is recomputed in every step
of iteration. On the other hand, the catamorphic definition computes the “course-
of-value” codata structure incrementally in a bottom-up fashion, thus effectively
implementing the memoization of the values on previous arguments.

Example 4.3 (Fibonacci)
The Fibonacci function can be implemented as histomorphism (for greater clarity
we use Haskell integersInt as the result type):

> fibo :: Nat -> Int
> fibo = histo phi
> where phi Z = 1
> phi (S x) = case tlCV x of
> Z -> 1
> S y -> hdCV x + hdCV y

Example 4.4 (evens)
The functionevens takes from the given list every second element. It can be
defined as histomorphism:

> evens :: List a -> List a
> evens = histo phi
> where phi N = nilL
> phi (C _ x) = case tlCV x of
> N -> nilL
> C a y -> consL a (hdCV y)
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Futumorphisms map arrowsC → F(Fµ(C)) to arrowsC → νF. Hence, in
order to implement futumorphisms in Haskell, we first have to define the base
functor for the inductive data structureFµ(C):

> newtype SumF f a x = SumF (Sum a (f x))

> instance Functor f => Functor (SumF f a) where
> fmap f (SumF (InL a)) = SumF (InL a)
> fmap f (SumF (InR x)) = SumF (InR (fmap f x))

> joinF :: (a -> c) -> (f b -> c) -> SumF f a b -> c
> joinF f g (SumF s) = join f g s

We also define constructor functions for the inductive data structure:

> lastF :: c -> Mu (SumF f c)
> lastF x = In (SumF (InL x))

> consF :: f (Mu (SumF f c)) -> Mu (SumF f c)
> consF x = In (SumF (InR x))

Now, the type of futumorphism combinator can be expressed in Haskell as fol-
lows:

> futu :: Functor f => (c -> f (Mu (SumF f c)))
> -> c -> Nu f

Like in the case of histomorphisms, we have two possibilities for the defining
equation of futumorphisms combinator. First, we can define it in terms of anamor-
phism:

futu phi = ana (joinF phi id . unIn) . lastF

The second possibility is to use the directly recursive definition obtained from the
cancellation law:

> futu phi = Wrap
> . fmap (cata (joinF (futu phi) Wrap))
> . phi

There is no difference between two definitions in terms of efficiency except some
small constant factor.
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Example 4.5 (exchange)
The functionexch from the example 4.2 can be implemented as follows:

> exch :: Stream a -> Stream a
> exch = futu phi
> where phi xs = St (headS (tailS xs))
> (consF (St (headS xs)
> (lastF (tailS xs))))

4.5 Related work

We do not know any other directly comparable work on course-of-value iteration
or coiteration (except our own work in a type-theoretic setting [UV97, UV00b,
Uus98]). The closest is work by Hu, Iwasaki and others [HITT96] about the tu-
pling transformation. They develop calculational rules to eliminate multiple data
traversals on functions defined by course-of-value iteration (and also by mutual
recursion). Instead of using coinductive data structure to represent the course-
of-values, they are using finite products which essentially are the unfolded finite
prefixes of the course-of-values the function actually uses. This makes the rules
quite hard to follow, but their aim is to use these rules in some automatic program
transformation system, and not in programming itself.
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CHAPTER 5

MENDLER-STYLE INDUCTIVE
TYPES

This chapter is based on [UV99a] and here we consider a novel alternative ap-
proach to inductive types in the categorical setting, inspired from the work by
N. P. Mendler [Men91] in type theory. The basic motivation for this another for-
malization lies in the difficulties of extending the traditional approach to inductive
types (and coinductive types) for non-covariant base functors. Freyd’s dialgebras
[Fre90, Fre91] solve the problem for mixed-variant functors, but at the cost that
the distinction between inductive and coinductive types vanishes.

One reason for the difficulties in the conventional approach is that the defi-
nition of homomorphism betweenF-algebras explicitly mentions the arrow map-
ping part of the functor. As a result, ifF is not a covariant functor, the definition
of homomorphisms has to be changed accordingly, otherwise the distributivity
equation the homomorphism must satisfy is incorrectly typed.

The basic idea of so called Mendler-style inductive types is to modify the def-
inition of algebra and their homomorphisms in such a way that the arrow mapping
part of the functor does not manifest itself in the distributivity equation. Instead,
there is an additional condition that the algebra itself has to satisfy, and functor
appears only in the typing. Then the concept can be extended to apply to non-
covariant bases by modifying the condition in the definition of algebra, but leav-
ing the definition of algebra homomorphism (and so also the calculational laws)
intact.

5.1 Mendler-style inductive types: covariant case

Recall, that for a given objectC of the categoryC, we can form a contravari-
ant homfunctorC(−, C) : Cop → Set which takes an objectA to the hom-set
C(A,C), and an arrowg : A→ B to the functionC(g, C) : C(B,C)→ C(A,C)
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defined byλβ : B → C. β ◦ g. Similarly, if F : C → C is an endofunctor,
we can define a contravariant functorC(F(−), C) : Cop → Set which takes any
objectA to the hom-setC(F(A), C), and any arrowg : A → B to the function
C(F(g), C) : C(F(B), C) → C(F(A), C) defined byλβ : B → C. β ◦ F(g). In
the following we denote the functorC(F(−), C) by F/C.

Definition 5.1 (Mendler-style algebra for a functor)
Let F : C → C be an endofunctor. AMendler-styleF-algebraor F-malgebra
is a pair(C,Φ), whereC is an object ofC andΦ : Id/C .→ F/C is a natural
transformation; i.e. for any arrowg : A→ B the following diagram commutes:

C(B,C)
ΦB //

C(g,C)

��

C(F(B), C)

C(F(g),C)

��
C(A,C)

ΦA
// C(F(A), C)

In other words,Φ is an operation on arrows with targetC which “lifts” the
source of the arrow under the functorF, by taking any arrowα : A → C to the
arrowΦA(α) : F(A) → C. If the lifted arrowα : C → C is an automorphism
(i.e. an arrow with the same source and target object), thenΦC(α) : F(C) → C
is a conventionalF-algebra. In particular,Φ takes the identity arrow onC to a
conventionalF-algebraΦC(id).

The naturality condition says, that the lifting preserves compositions in the
following sense: ifα = β ◦ g for some objectB and arrowsβ : B → C,
g : A→ B, then

ΦA(β ◦ g) = ΦB(β) ◦ F(g) (5.1)

or diagrammatically

A

α
��@@@@@@@
g // B

β~~~~~~~~~

C

⇒
F(A)

ΦA(α) !!DDDDDDDD

F(g) // F(B)

ΦB(β)}}zzzzzzzz

C

In particular, by takingB = C andβ = idC , we have that

ΦA(α) = ΦC(id) ◦ F(α) (5.2)

So, the lifting on the arrows is determined by the composition the functor with
someF-algebra.
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Definition 5.2 (malgebra homomorphism)
Let (C,Φ) and(D,Ψ) beF-malgebras. A homomorphism from(C,Φ) to (D,Ψ)
is an arrowh : C → D such that for any objectA the following diagram com-
mutes inSet :

C(A,C)
C(A,h) //

ΦA

��

C(A,D)

ΨA

��
C(F(A), C)

C(F(A),h)
// C(F(A), D)

In terms of base categoryC, the square above tells that for any objectA and
arrowγ : A→ C, the following equation holds:

h ◦ ΦA(γ) = ΨA(h ◦ γ) (5.3)

or diagrammatically:

A
γ

��~~~~~~~
δ

  @@@@@@@

C
h

// D

⇒

F(A)
ΦA(γ)

}}zzzzzzzz ΨA(δ)

!!DDDDDDDD

C
h

// D

In particular, if we takeA = C andα = idC , then

h ◦ ΦC(id) = ΨC(h). (5.4)

Now, using the equality 5.2 about malgebras we get

h ◦ ΦC(id) = ΨC(id) ◦ F(h). (5.5)

Thus, homomorphismh is also homomorphism between conventionalF-algebras
ΦC(id) andΨC(id).

Obviously, homomorphisms between malgebras compose, and the identity ar-
row on the carrier object gives the identity homomorphism. So, we can form a
categoryAlg(F)m of Mendler-styleF-algebras and their homomorphisms.

Definition 5.3 (initial malgebra for a functor)
A Mendler-styleF-algebra(µmF, inm) is aninitial F-malgebraif for any Mend-
ler-styleF-algebra(C,Φ) there exists an arrowLΦ Mm : µmF → C satisfying the
universal property:

f ◦ inm
µmF(id) = ΦµmF(f) ≡ f = LΦ Mm cataM-CHARN
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In other words, the initial malgebra(µmF, inm) is the initial object in the
categoryAlg(F)m. The cancellation, reflection and fusion laws for Mendler-style
catamorphisms specialize as follows:

Corollary 5.1 Let (µmF, inm) be an initialF-malgebra.

• Cancellation: For anyF-malgebra(C,Φ)

LΦ Mm ◦ inm
µmF(id) = ΦµmF(LΦ Mm) cataM-SELF

• Reflection:

id = L inm Mm cataM-REFL

• Fusion: For anyF-malgebras(C,Φ) and(D,Ψ) and an arrowf : C → D

f ◦ ΦC(id) = ΨC(f) ⇒ f ◦ LΦ Mm = LΨ Mm cataM-FUSION

Note that neither the universal property nor the laws derived from it contain
any direct references to the functorF. The functor only appears implicitly on the
typing, and as the naturality condition for Mendler-style algebras involved.

Example 5.1 (naturals)
Consider the data type of natural numbersNat . Recall, that it forms the initial
algebra(Nat , [ zero, succ ]) for the functorN(X) = 1 + X. For any objectA
and arrowγ : A → Nat , define a mappinginm

A(γ) = [ zero, succ ◦ γ ]. Then
(Nat , inm) forms an initialN-malgebra.

For instance, the sum of two naturals can be defined in terms of Mendler-style
catamorphism as follows:

add(n,m) = LλA, γ : A→ Nat . [λx.m, succ ◦ γ ] Mm(n).

5.2 Conventional inductive types reduced to
Mendler-style inductive types

The project of this section is to show that conventional inductive types reduce to
Mendler-style inductive types. To this end, we prove that, for any endofunctor
F : C → C, the categoriesAlg(F)m andAlg(F) are isomorphic. The proof we
present is a proof from scratch. For a reader versed in category theory, the result
is a consequence from the Yoneda lemma.
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Definition 5.4 (malgebra to algebra mapping)
For anyF-malgebra(C,Φ), define

xΦy = ΦC(id)

Definition 5.5 (algebra to malgebra mapping)
For any conventionalF-algebra(C,ϕ), define

pϕq = λA, γ : A→ C.ϕ ◦ F(γ)

Proposition 5.2 If (C,Φ) is a F-malgebra, then(C, xΦy) is a F-algebra.

Proof. Trivial.

Proposition 5.3 If (C,ϕ) is a F-algebra, then(C, pϕq) is a F-malgebra.

Proof. We have to check thatpϕq is a natural transformation.

B pickA,B, g : A→ B, β : B → C

pϕqA(β ◦ g)
= – p−q-def –

ϕ ◦ F(β ◦ g)
= – F functor –

ϕ ◦ F(β) ◦ F(g)
= – p−q-def –
pϕqB(β) ◦ F(g)

Proposition 5.4 If (C,Φ) is a Mendler-styleF-algebra, then

pxΦyq = Φ.

Proof. 

B pickA, γ : A→ C

pxΦyqA(γ)
= – p−q-def –
xΦy ◦ F (γ)

= – x−y-def –
ΦC(id) ◦ F (γ)

= – Φ natural –
ΦA(γ)
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Proposition 5.5 If (C,ϕ) is a conventionalF -algebra, then

xpϕqy = ϕ.

Proof. 

xpϕqy
= – x−y-def –
pϕqC(id)

= – p−q-def –
ϕ ◦ F (id)

= – F functorial –
ϕ

Proposition 5.6 If h is a Mendler-styleF-algebra homomorphism between
(C,Φ) and (D,Ψ), thenh is also a conventionalF-algebra homomorphism be-
tween(C, xΦy) and(D, xΨy).

Proof. Already shown, see the equation 5.5 and the discussion before it.

Proposition 5.7 If h is a conventionalF-algebra homomorphism between(C,ϕ)
and (D,ψ), thenh is also a Mendler-styleF-algebra homomorphism between
(C, pϕq) and(D, pψq).

Proof. 

B h ◦ ϕ = ψ ◦ F(h)
B pickA, γ : A→ C

h ◦ pϕqA(γ)
= – p−q-def –

h ◦ ϕ ◦ F(γ)
= –C –

ψ ◦ F(h) ◦ F(γ)
= – F functorial –

ψ ◦ F(h ◦ γ)
= – p−q-def –
pψqA(h ◦ γ)

These propositions tell us that there exists a functor between the categories
Alg(F)m andAlg(F) and a left-and-right inverse for it.
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Theorem 5.8 The categoriesAlg(F)m andAlg(F) are isomorphic.

The following is now immediate:

Corollary 5.9 If (µmF, inm) is an initial Mendler-style F-algebra, then
(µmF, xinmy) is an initial (conventional)F-algebra. For anyF-algebra ϕ :
F(C) → C, the unique homomorphism into it (i.e. catamorphism) is given by
L pϕq Mm : µmF→ C.

Corollary 5.10 If (µF, in) is an initial (conventional)F-algebra, then(µF, pinq)
is an initial Mendler-styleF-algebra. For any Mendler-styleF-algebra (C,Φ),
the unique homomorphism into it (i.e. Mendler-style catamorphism) is given by
L xΦy M : µF→ C.

5.3 Mendler-style inductive types: mixed variant case

The idea of Mendler-style inductive types makes sense not only for covariant base
functorsF : C → C, but also for mixed variant functorsG : Cop × C → C. The
mixed variant case is, in fact, more general, as covariant functors are a degenerate
case of mixed variant functors: for anyF : C → C, one can trivially define
Fo : Cop × C → C, a padding ofFo with a “dummy” contravariant argument, by
letting Fo(Y,X) = F(X).

Definition 5.6 (Mendler-style algebra for a difunctor)
Let G : Cop × C → C be an endodifunctor. AMendler-styleG-algebraor G-
malgebrais a pair(C,Φ), whereC is an object ofC andΦ : Ido/C ..→ G/C is
a dinatural transformation; i.e. for any arrowg : A → B the following diagram
commutes:

C(B,C)

C(g,C)
mmmmm

vvmmmmm QQQQQQQQQQQQQ

QQQQQQQQQQQQQ

C(A,C)

ΦA

��

C(B,C)

ΦB

��
C(G(A,A), C)

C(G(g,idA),C)
QQQQQ

((QQQQQ

C(G(B,B), C)

C(G(idB ,g),C)
mmmmm

vvmmmmm

C(G(B,A), C)
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In terms of the base category,Φ is a mapping that takes any arrowγ : A→ C
to the arrowΦA(α) : G(A,A) → C in such a way that ifα = β ◦ g for some
objectB and arrowsβ : B → C, g : A→ B, then the following equation holds:

ΦA(β ◦ g) ◦ G(g, idA) = ΦB(β) ◦ G(idB, g) (5.6)

or diagrammatically:

B

β

��

G(B,A)
G(g,idA)

yyrrrrrrrrrr
G(idB ,g)

%%LLLLLLLLLL

A

g
@@��������

α
��>>>>>>>> ⇒ G(A,A)

ΦA(α)
&&LLLLLLLLLLL

G(B,B)

ΦB(β)
xxqqqqqqqqqqq

C C

If the contravariant argument of the difunctorG is “dummy” (i.e. G(X,Y ) =
F(Y ) for some covariant functorF : C → C) then the dinaturality condition boils
down to the naturality condition in definition 5.1, and equation 5.6 simplifies to
equation 5.1. So in this case the definitions 5.1 and 5.6 coincide.

Definition 5.7 (malgebra homomorphism)
Let (C,Φ) and (D,Ψ) be G-malgebras for a difunctorG : Cop × C → C. A
homomorphism from(C,Φ) to (D,Ψ) is an arrowh : C → D such that for any
objectA the following diagram commutes inSet :

C(A,C)
C(A,h) //

ΦA
��

C(A,D)

ΨA
��

C(G(A,A), C)
C(G(A,A),h)

// C(G(A,A), D)

In terms of base categoryC, the square above tells that for any objectA and
arrowγ : A→ C, the following equation holds:

h ◦ ΦA(γ) = ΨA(h ◦ γ) (5.7)

or diagrammatically:

A
γ

��~~~~~~~
δ

  @@@@@@@

C
h

// D

⇒

G(A,A)
ΦA(γ)

{{wwwwwwwww ΨA(δ)

##GGGGGGGGG

C
h

// D
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Note that the equation 5.7 looks exactly the same as the equation 5.3. The only
difference between two is on the typing ofΦ andΨ.

Like in the covariant case,G-malgebras and their homomorphisms (for a di-
functorG) form a categoryAlg(G)m.

Definition 5.8 (initial malgebra for a difunctor)
A Mendler-styleG-algebra(µmG, inm) is theinitial G-malgebraif for any Mend-
ler-styleG-algebra(C,Φ) there exists a unique arrowLΦ Mm : µmG→ C satisfy-
ing the universal property:

f ◦ inm
µmG(id) = Φ(f) ≡ f = LΦ Mm cataM-CHARN

In other words, the initial malgebra(µmG, inm) is an initial object in the cat-
egoryAlg(G)m. The cancellation, reflection and fusion laws for Mendler-style
catamorphisms specialize as follows:

Corollary 5.11 Let (µmG, inm) be an initialG-malgebra.

• Cancellation: For anyG-malgebra(C,Φ)

LΦ Mm ◦ inm
µmG(id) = ΦµmG(LΦ Mm) cataM-SELF

• Reflection:

id = L inm Mm cataM-REFL

• Fusion: For anyG-malgebras(C,Φ) and(D,Ψ) and an arrowf : C → D

f ◦ ΦC(id) = ΨC(f) ⇒ f ◦ LΦ Mm = LΨ Mm cataM-FUSION

Note the fact that the arrow mapping part of the signature difunctor is not
mentioned manifestly in the calculational laws for an initial Mendler-style alge-
bra, it only appears in the dinaturality condition and this would in normal practice
always be a “theorem for free”̀a la Wadler [Wad89].

Example 5.2 (course-of-value naturals)
Let G(Y,X) = [Y → N(X)] × N(X) and writeNat ′ for the carrier of the ini-
tial Mendler-styleG-algebra(µmG, inm). Assume that there exists a predecessor
functionpred ′ : Nat ′ → 1 + Nat ′ which satisfies the following specification: for
any objectA and morphismγ : A→ Nat ′

pred ′ ◦ inm(γ) = N(γ) ◦ snd .

71



Then the functionszero ′ : 1→ Nat ′ andsucc′ : Nat ′ → Nat ′ can be defined as

zero ′ = inm
Nat ′(id) ◦ 〈λx. pred ′, inl 〉

succ′ = inm
Nat ′(id) ◦ 〈λx. pred ′, inr 〉.

Now, the Fibonacci function can be defined as a Mendler-style catamorphism
fibo = LΦ Mm : Nat ′ → Nat , where

ΦA(γ : A→ Nat)(p, inl()) = one()
ΦA(γ : A→ Nat)(p, inr(n)) = [ one, λn′. add(γ(n), γ(n′)) ](p(n))

5.4 Restricted existential types

The project opposite to that of the Section 5.2 — reducing Mendler-style inductive
types to conventional inductive types — is unperformable in general. But, as we
will see in Section 5.5, it can be carried out, if certain restricted existential types
are available. Let us explain what these are.

Definition 5.9 (restricted cowedge)
Let G : Cop × C → C be an endodifunctor andH : Cop × C → Set a difunctor to
Set . An H-restrictedG-cowedge(cowedge fromG) is a pair(C,Φ) formed of an
objectC of C and dinatural transformationΦ between the difunctorsH andG/C,
i.e., a family of functions{ΦA}A∈C between the setsH(A,A) andC(G(A,A), C)
indexed over objects ofC such that, for any arrowg : A → B the following
diagram commutes:

H(B,A)

H(g,idA)
mmmmm

vvmmmmm H(idB ,g)
QQQQQ

((QQQQQ

H(A,A)

ΦA

��

H(B,B)

ΦB

��
C(G(A,A), C)

C(G(g,idA),C)
QQQQQ

((QQQQQ

C(G(B,B), C)

C(G(idB ,g),C)
mmmmm

vvmmmmm

C(G(B,A), C)

72



In other words,Φ is a function that takes objectsA of C to functionsΦA

sending elementsa of H(A,A) to morphismsΦA(a) : G(A,A) → C so that the
following condition is met: for any objectsA, B and morphismg : A → B of C
and any elementc of H(B,A), it holds inC that

ΦA(H(g, idA)c) ◦ G(g, idA) = ΦB(H(idB, g)c) ◦ G(idB, g)

or diagrammatically

G(B,A)

G(g,idA)

��

G(idB ,g) // G(B,B)

ΦB (H(idB ,g)c)

��
G(A,A)

ΦA (H(g,idA)c)
// C

Definition 5.10 (restricted cowedge homomorphism)
An H-restricted G-cowedge homomorphismbetweenH-restrictedG-cowedges
(C,Φ) and (D,Ψ) is an arrowh : C → D of C with the property that, for
any objectA of C, it holds inSet that

C(G(A,A), h) ◦ ΦA = ΨA

or diagrammatically

H(A,A)
ΦA

wwooooooooooo
ΨA

''OOOOOOOOOOO

C(G(A,A), C)
C(G(A,A),h)

// C(G(A,A), D)

This condition is equivalent to the following one: for any objectA of C and
any elementa of H(A,A), it is the case inC thath ◦ ΦA(a) = ΨA(a).

G(A,A)
ΦA(a)

{{wwwwwwwww ΨA(a)

##GGGGGGGGG

C
h

// D

TheH-restrictedG-cowedges and homomorphisms between them form a cat-
egory,CowH

G.
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Definition 5.11 (restricted coend)
An H-restrictedG-cowedge(Σ(H,G), injH

G) is a H-restrictedG-coendif it is an
initial object ofCowH

G; i.e. for anyH-restrictedG-cowedge(C,Φ) there exists an
unique arrowf = [ Φ ]HG : Σ(H,G)→ C satisfying the universal property:

(∀A, a ∈ H(A,A). f ◦ (injH
G)A(a) = ΦA(a)) ≡ f = [ Φ ]HG case-CHARN

The cancellation, reflection and fusion laws for restricted coends specialize as
follows:

Corollary 5.12 Let (Σ(H,G), injH
G) be aH-restrictedG-coend.

• Cancellation: For anyH-restrictedG-cowedge(C,Φ)

∀A, a ∈ H(A,A). [ Φ ]HG ◦ (injH
G)A(a) = ΦA(a) case-SELF

• Reflection:

idΣ(H,G) = [ injH
G ]HG case-REFL

• Fusion: For any H-restrictedG-cowedges(C,Φ) and (D,Ψ) and arrow
h : C → D

(∀A, a ∈ H(A,A). h ◦ ΦA(a) = ΨA(a)) ⇒ h ◦ [ Φ ]HG = [ Ψ ]HG
case-FUSION

Example 5.3 (coends)
Consider the constant functor1 : Cop × C → Set , which sends everything into a
singleton set (i.e. an terminal object ofSet). Given an endodifunctorG : Cop ×
C → C, a pair (C,Φ) is a 1-restrictedG-cowedge ifΦ is a family of arrows
ΦA = G(A,A)→ C which make the diagram

G(B,A)

G(g,idA)

��

G(idB ,g) // G(B,B)

ΦB

��
G(A,A)

ΦA
// C
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commute for everyg : A → B. In other words, the pair(C,Φ) is a cowedge
of G in ordinary sense1 (i.e. Φ is a dinatural transformation fromG to a constant
functor C). Given two cowedges(C,Φ) and (D,Ψ), an arrowh : C → D is
a homomorphism between them iffh ◦ ΦA = ΨA for any objectA. Finally,
a 1-restrictedG-coend is thecoend ofG (see e.g. [Mac97], where the notation∫ c

G(c, c) is used forΣ(1,G)).

5.5 Mendler-styles inductive types reduced to
conventional inductive types

The necessary preparations made in the previous section, we are now in a position
to construct a reduction of Mendler-style inductive types to conventional inductive
types. We will obtain it in the same fashion as we obtained the reduction of
conventional inductive types to Mendler-style inductive types in Section 5.2.

Let G be an endodifunctor onC such that, for any objectC of C, there exists a

Ido/C-restrictedG-coend((Σ(Ido/C,G), injIdo/C
G ), [ · ]Id

o/C
G ). Then, we can define

the following endofunctionGe onC:

GeC = Σ(Ido/C,G)

Ge(h : C → D) = [λA, γ : A→ C. (injIdo/D
G )A(h ◦ γ) ]Id

o/C
G .

The functionGe turns out to be functorial (as one might expect), soGe is an
endofunctor onC.

Definition 5.12
Given a Mendler-styleG-algebra(C,Φ). Define

xΦy = [ Φ ]Id
o/C

G

Definition 5.13
Given a conventionalGe-algebra(C,ϕ). Define

pϕq = λA, γ : A→ C.ϕ ◦ (injIdo/C
G )A(γ)

Proposition 5.13 If (C,ϕ) is a conventionalGe-algebra, then(C, pϕq) is a
Mendler-styleG-algebra.

1Mac Lane [Mac97] uses the termwedgefor both, the dinatural transformations from and to
constant functor. However, universal wedges are called ends and coends respectively, hence our use
of the term cowedge
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Proof. It has to be checked thatpC,ϕq is dinatural.

B pickA,B, g : A→ B, β : B → C

pϕqA(β ◦ g) ◦ G(g, idA)
= – p−q-def –

ϕ ◦ (injIdo/C
G )A(β ◦ g) ◦ G(g, idA)

= – injIdo/C
G dinatural –

ϕ ◦ (injIdo/C
G )Bβ ◦ G(idB, g)

= – p−q-def –
pϕqB(β) ◦ G(idB, g)

Proposition 5.14 If (C,Φ) is a Mendler-styleG-algebra, then(C, xΦy) is a con-
ventionalGe-algebra.

Proof. Trivial.

Proposition 5.15 If (C,ϕ) is a conventionalGe-algebra, then

xpϕqy = ϕ.

Proof. 

xpϕqy
= – x−y-def –

[ pϕq ]Id
o/C

G
= – p−q-def –

[λA, γ : A→ C.ϕ ◦ (injIdo/C
G )A(γ) ]Id

o/C
G

= – case fusion –

ϕ ◦ [ injIdo/C
G ]Id

o/C
G

= – case reflection –
ϕ

Proposition 5.16 If (C,Φ) is a Mendler-styleG-algebra, then

pxΦyq = Φ.
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Proof. 

B pickA, γ : A→ C

pxΦyqA(γ)
= – p−q-def –

xΦy ◦ (injIdo/C
G )A(γ)

= – x−y-def –

[ Φ ]Id
o/C

G ◦ (injIdo/C
G )A(γ)

= – case cancellation –
ΦA(γ)

Proposition 5.17 If h is a conventionalGe-algebra homomorphism between
(C,ϕ) and(D,ψ), thenh is also a Mendler-styleG-algebra homomorphism be-
tween(C, pϕq) and(D, pψq).

Proof.

B h ◦ ϕ = ψ ◦ Geh
B pickA, γ : A→ C

h ◦ pϕqA(γ)
= – p−q-def –

h ◦ ϕ ◦ (injIdo/C
G )A(γ)

= –C –

ψ ◦ Geh ◦ (injIdo/C
G )A(γ)

= – Ge-def –

ψ ◦ [λA, γ : A→ C. (injIdo/D
G )A(h ◦ γ) ]Id

o/C
G ◦ (injIdo/C

G )A(γ)
= – case cancellation –

ψ ◦ (injIdo/D
G )A(h ◦ γ)

= – p−q-def –
pψqA(h ◦ γ)

Proposition 5.18 If h is a Mendler-styleG-algebra homomorphism between
(C,Φ) and(D,Ψ), thenh is also a conventionalGe-algebra homomorphism be-
tween(C, xΦy) and(D, xΨy).
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Proof. 

B ∀A, γ : A→ C. h ◦ ΦA(γ) = ΨA(h ◦ γ)
h ◦ xΦy

= – x−y-def –

h ◦ [ Φ ]Id
o/C

G
= – case fusion –

[λA, γ : A→ C. h ◦ ΦA(γ) ]Id
o/C

G
= –C, withA := A, γ := γ –

[λA, γ : A→ C.ΨA(h ◦ γ) ]Id
o/C

G
= – case cancellation –

[λA, γ : A→ C. [ Ψ ]Id
o/D

G ◦ (injIdo/D
G )A(h ◦ γ) ]Id

o/C
G

= – case fusion –

[ Ψ ]Id
o/D

G ◦ [λA, γ : A→ C. (injIdo/D
G )A(h ◦ γ) ]Id

o/C
G

= – Ge-def –

[ Ψ ]Id
o/D

G ◦ Ge(h)
= – x−y-def –
xΨy ◦ Ge(h)

These propositions tell us that there exists a functor between the categories
Alg(Ge) andAlg(G)m and a left-and-right inverse for it.

Theorem 5.19 The categoriesAlg(Ge) andAlg(G)m are isomorphic.

From here, the following is obvious already.

Corollary 5.20 If (µGe, in) is an initial Ge-algebra, then(µGe, pinq) is an initial
G-malgebra. For anyG-malgebra(C,Φ), the catamorphismL xΦy M : µGe → C
is the unique homomorphism from(µGe, in) to (C,Φ).

Corollary 5.21 If (µmG, inm) is an initial Mendler-style G-algebra, then
(µmG, xinmy) is an initial conventionalGe-algebra. For any conventionalGe-
algebra (C,ϕ), the Mendler-style catamorphismL pϕq Mm : µmG → C is the
unique conventional homomorphism from(µmG, inm) to (C,ϕ).

5.6 Mendler-style inductive types in Haskell

Mendler-style inductive types can be modeled in Haskell by using existential types
and rank-2 type signatures. While not part of the official Haskell98 language
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definition, several Haskell implementations (e.g. Hugs, ghc, hbc) support them as
language extensions.

According to Corollary 5.20, an initial Mendler-style algebra for a difunctor
G is an initial (conventional)Ge-algebra, where functorGe is constructed from
G by terms of certain restricted coends. Hence, in order to model Mendler-style
inductive types, we first have to implement restricted coends.

The Haskell correspondent for aH-restrictedG-cowedge(C,Φ) is a polymor-
phic functionphi :: H a -> G a -> C (together with the typeC), whereH
andGare type constructors. Thus,H-restrictedG-coends can be implemented as
follows:

> data RCoEnd h g = forall a . InjRCE (h a) (g a)

Given type constructorsh and g, this defines the typeRCoEnd h g as a pair
of values of typeh a andg a respectively. The type variablea is existentially
quantified2 and does not appear inRCoEnd h g. It also defines the data construc-
tor InjRCE :: h a -> g a -> RCoEnd g c which corresponds to the re-
stricted coend. The universal cowedge homomorphism out ofInjRCE can be
defined as follows:

> caseRCE :: (forall a . h a -> g a -> c)
-> RCoEnd h g -> c

> caseRCE phi (InjRCE ha ga) = phi ha ga

Note the use of rank 2 type signature to ensure that the first argument is a poly-
morphic function (i.e. is a restricted cowedge).

The type constructor corresponding toGe can be defined by instantiating the
first parameter ofRCoEndwith a type constructor represented by(->c) . Unfor-
tunately, Haskell does not allow sectioning of infix type constructors (as it does
for “ordinary” infix operators). Hence, we have to define the corresponding type
constructor explicitly.

> newtype Fun c a = Fun (a -> c)

> newtype Ext g c = Ext (RCoEnd (Fun c) g)

We also “lift” the definitions of restricted coends and universal cowedge homo-
morphisms forExt g c .

> injExt :: (a -> c) -> g a -> Ext g c
> injExt h x = Ext (InjRCE (Fun h) x)

2The apparently counterintuitive use offorall to capture existentially quantified variables is
justified by the logical equivalence∀A.P ⇒ Q ≡ (∃A.P )⇒ Q, if A is not free inQ.
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> caseExt :: (forall a . (a -> c) -> g a -> d)
> -> Ext g c -> d
> caseExt phi (Ext (InjRCE (Fun h) x)) = phi h x

The arrow mapping part of the functorGe can be defined as follows:

> instance Functor (Ext g) where
> fmap f = caseExt (\ h -> injExt (f . h))

Now, using the Corollary 5.20, we can define Mendler-style inductive types, initial
malgebras and Mendler-style catamorphisms as follows:

> type MuM g = Mu (Ext g)

> inM :: (a -> MuM g) -> g a -> MuM g
> inM h x = In (injExt h x)

> cataM :: (forall a . (a -> c) -> g a -> c)
> -> MuM g -> c
> cataM phi = cata (caseExt phi)

Instead of going through conventional inductive types, we could also imple-
ment Mendler-style inductive types directly as fixed points of certain existential
types.

data MuM g = forall a. InM (a -> MuM g) (g a)

cataM :: (forall a. (a -> c) -> g a -> c)
-> MuM g -> c

cataM phi (InM h x) = phi (cataM phi . h) x

In this case, according to Corollary 5.9, we could define conventional inductive
types in terms of Mendler-style inductive types (only for type constructors which
are functors).

type Mu f = MuM f

inMu :: f (Mu f) -> Mu f
inMu = InM id

cata :: Functor f => (f c -> c) -> Mu f -> c
cata phi = cataM (\ f -> phi . fmap f)
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It may be helpful to think about the existentially quantified type variablea as
some (abstract) type of internal representations for the data type. Then, values of
type MuM gare constructed from a function which converts internal representa-
tions to the data type together with the actual value itself, where the “outer” struc-
ture (given by type constructorg) is explicit but substructures are in the internal
form. In particular, the definition of conventional inductive types is obtained by
using the data type itself also for the internal representation.

Example 5.4 (naturals)
The Mendler-style definition of natural numbers involves the same type construc-
tor Nas the conventional definiton (see example 2.10).

> type NatM = MuM N

The constructor functions for naturals can be defined as follows:

> zeroNM :: NatM
> zeroNM = inM id Z

> succNM :: NatM -> NatM
> succNM n = inM id (S n)

The sum of two naturals can be defined in terms of Mendler-style catamorphism
as follows:

> addNM :: NatM -> NatM -> NatM
> addNM x y = cataM phi x
> where phi add_y Z = y
> phi add_y (S n) = succNM (add_y n)

Example 5.5 (course-of-value naturals)
Course-of-value naturals from example 5.2 can be implemented as follows:

> data N’ x = N’ (x -> N x) (N x)
> type NatCM = MuM N’

In order to define “standard” constructor functions, we first have to define the
predecessor function for course-of-value naturals:

> predC :: NatCM -> N NatCM
> predC = caseExt phi . unIn
> where phi h (N’ _ Z) = Z
> phi h (N’ _ (S n)) = S (h n)
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Now, constructor functions can be defined as follows:

> zeroC :: NatCM
> zeroC = inM id (N’ predC Z)

> succC :: NatCM -> NatCM
> succC n = inM id (N’ predC (S n))

The Fibonacci function from course-of-value naturals to integers can be defined
as follows:

> fibC :: NatCM -> Int
> fibC = cataM phi
> where phi fib (N’ p Z) = 1
> phi fib (N’ p (S n))
> = case p n of
> Z -> fib n
> S m -> fib n + fib m

5.7 Related work

The concept of Mendler-style inductive type is an abstraction from N. P. Mendler’s
work [Men91] on an extension of system F (2nd-order simply-typed lambda-
calculus) with inductive and coinductive types. This system supported iteration
and coiteration through unusual operators whose beta-reduction rules did not men-
tion the arrow mapping component of the base functor of the (co)inductive type.
In [UV97, UV00b, Uus98, Mat98, Mat00], an observation was emphasized that
the system does not loose any of its desirable meta-theoretic properties, if the
base functor is permitted to be non-covariant. It was also shown how to interpret
the liberalized system in lattice theory (µF is not necessarily of (pre-)fixed point
of F, if F is non-monotonic). The same lattice theory explanations reappeared
in [SU99]. The category-theoretic account given here is a “glorification” of the
lattice-theoretic semantics.
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CHAPTER 6

MENDLER-STYLE RECURSION
SCHEMES

In this chapter we present an alternative formalization of recursion operators (for
conventional inductive types) which is based on Mendler-style algebras. In par-
ticular, we develop Mendler-style operators for basic iteration, primitive recur-
sion and course-of-value iteration. The new operators are equivalent to the cor-
responding conventional ones, but are somewhat more intuitive (at least in our
opinion) against the background of “ordinary” (general-)recursive programming.
This chapter is based on [UV00a].

In order to explain the difference between conventional and Mendler-style
approach, consider the functionf : µF → C defined by simple iteration. The
recursive defining equation for it is in the form

f ◦ in = Φ(f),

whereΦ is some definable function from arrowsµF → C to arrowsFµF → C.
Just in this form, the equation does not necessarily definef iteratively. Indeed,
the characterizing equations for primitive recursion and course-of-value iteration
are exactly in the same form. In fact, the equation may have no solution in which
case it does not definef at all.

The conventional method to ensure that the equation definesf by a simple
iteration consists in insisting thatΦ(f) = ϕ◦F(f), whereϕ : F(C)→ C is some
F-algebra. This means imposing a relativelysyntacticcondition on the right-hand
side of the equation: no expression other than ‘ϕ ◦ F(f)’ is acceptable unless we
are eager and able to prove that it equalsϕ ◦ F(f) (which may require quite a bit
of equational reasoning).

The Mendler-style method to ensure that the equation definesf by a simple
iteration is leave the form of its right-hand side as it is (i.e. ‘Φ(f)’) but to require
Φ not to use any specifics about the typeµF. This is achievable by insisting thatΦ
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is an instance of a function parametric inA from arrows of typeA→ C to arrows
of typeF(A) → C (which is verifiable by type-checking). This means adopting
a considerably moresemanticapproach to controlling the right-hand side of the
equation.

6.1 Simple iteration

Mendler-style coding of the simple iteration follows directly from the properties
of initial Mendler-style algebras for a (covariant) functor presented in Section 5.2.
According to Theorem 5.8 and its corollaries any initial algebra determines an
initial Mendler-style algebra and vice versa. Hence, we can take an initial al-
gebra(µF, in) and characterize Mendler-style homomorphisms out of the initial
malgebra(µF, pinq) directly in terms of it.

Definition 6.1 (m-catamorphism)
Let (µF, in) be an initialF-algebra. For anyF-malgebra(C,Φ), am-catamorphism
f = LΦ Mm : µF→ C is a unique arrow satisfying the universal property

f ◦ in = ΦµF(f) ≡ f = LΦ Mm mcata-CHARN

From this, the cancellation, reflection, and fusion laws for m-catamorphism
follow straightforwardly.

Corollary 6.1 Let (µF, in) be an initialF-algebra.

• Cancellation: For anyF-malgebra(C,Φ)

LΦ Mm ◦ in = ΦµF(LΦ Mm) mcata-SELF

• Reflection:

id = LλA, γ : A→ µF. in ◦F(γ) Mm mcata-REFL

• Fusion: For anyF-malgebras(C,Φ) and(D,Ψ) and an arrowf : C → D

(∀A, γ : A→ C. f ◦ ΦA(γ) = ΨA(f ◦ γ)) ⇒ f ◦ LΦ Mm = LΨ Mm

mcata-FUSION
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Note that the left-hand side of the fusion law is equivalent to the simpler
equationf ◦ ΦµF(id) = ΨµF(f). However, for calculational purposes the one
in mcata-FUSION is preferable, as it can be directly instantiated in different con-
texts.

From the Corollary 5.10, we get the definition of m-catamorphism as con-
ventional catamorphism. Similarly, the Corollary 5.9 gives to us the definition of
conventional catamorphism as m-catamorphism.

Corollary 6.2 Let (C,Φ) be aF-malgebra, then

LΦ Mm = LΦµF(id) M mcata-DEF

Corollary 6.3 Let (C,ϕ) be aF-algebra, then

Lϕ M = LλA, γ : A→ C. ϕ ◦ F(γ) Mm mcata-CATA

6.2 Primitive recursion

In this section we formalize the primitive recursion operator in the Mendler-style
setting. For this, we first introduce the notions of rec-malgebra and their homo-
morphisms.

Definition 6.2 (rec-malgebra)
Let F : C → C be an endofunctor for which there exists an initial algebra(µF, in).
A F-rec-malgebrais a pair (C,Φ), whereC is an object andΦ : C(−, C ×
µF) .→ C(F(−), C) is a natural transformation; i.e. for any arrowg : A → B
the following diagram commutes:

C(B,C × µF)
ΦB //

C(g, C×idµF)

��

C(F(B), C)

C(F(g),C)

��
C(A,C × µF)

ΦA
// C(F(A), C)

In other words,Φ is a family of functions{ΦA}A∈C which take arrowsα :
A → C × µF to the arrowsΦA(α) : F(A) → C. The naturality condition says,

85



thatΦ preserves compositions in the following sense: ifα = β ◦g for some object
B and arrowsβ : B → C × µF, g : A→ B, then

ΦA(β ◦ g) = ΦB(β) ◦ F(g) (6.1)

or diagrammatically

A

α ##GGGGGGGGG
g // B

β{{wwwwwwwww

C × µF

⇒
F(A)

ΦA(α) !!DDDDDDDD

F(g) // F(B)

ΦB(β)}}zzzzzzzz

C

In particular, by takingB = C × µF andβ = idC×µF, we get an equivalent
condition:

ΦA(α) = ΦC×µF(id) ◦ F(α) (6.2)

Definition 6.3 (rec-malgebra homomorphism)
Let (C,Φ) and(D,Ψ) be twoF-rec-malgebras. Ahomomorphismfrom (C,Φ) to
(D,Ψ) is an arrowh : C → D in the categoryC, such that for any objectA the
following diagram commutes inSet :

C(A,C × µF)
C(A,h×idµF)

//

ΦA
��

C(A,D × µF)

ΨA
��

C(F(A), C)
C(F(A),h)

// C(F(A), D)

In terms of the base category, the square above tells that for any objectA and
arrowγ : A→ C × µF, the following equation holds:

h ◦ ΦA(γ) = ΨA((h× id) ◦ γ) (6.3)

or diagrammatically:

A
γ

{{wwwwwwwww
δ

##GGGGGGGGG

C × µF
h×idµF

// D × µF

⇒

F(A)
ΦA(γ)

}}zzzzzzzz ΨA(δ)

!!DDDDDDDD

C
h

// D

In particular, if we takeA = C × µF andγ = idC×µF, then

h ◦ ΦC(id) = ΨC(h× id). (6.4)
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Note that, in a cartesian closed base category,F-rec-malgebras and their ho-
momorphisms are equivalent to ordinary Mendler-style algebras and homomor-
phisms for a difunctorG(Y,X) = [Y → µF]× F(X).

Definition 6.4 (m-paramorphism)
Let (µF, in) be an initialF-algebra. For anyF-rec-malgebra(C,Φ), a m-para-
morphismf = 〈|Φ |〉m : µF → C is a unique arrow satisfying the universal
property

f ◦ in = ΦµF〈 f, id 〉 ≡ f = 〈|Φ |〉m mpara-CHARN

Proposition 6.4 Let (µF, in) be an initialF-algebra.

• Cancellation: For anyF-rec-malgebra(C,Φ)

〈|Φ |〉m ◦ in = ΦµF〈 〈|Φ |〉m, id 〉 mpara-SELF

• Reflection:

id = 〈|λA, γ : A→ µF× µF. in ◦F(fst ◦α) |〉m mpara-REFL

• Fusion: For any F-rec-malgebras(C,Φ) and (D,Ψ) and an arrowf :
C → D

(∀A, γ : A→ C × µF. f ◦ ΦA(γ) = ΨA((f × id) ◦ γ))
⇒ f ◦ 〈|Φ |〉m = 〈|Ψ |〉m

mpara-FUSION

Proof. The cancellation law is directly obtained form the universal property of
paramorphisms by substitutingf := 〈|Φ |〉m thus making the right-hand equation
in mpara-CHARN trivially true. For the reflection law we argue:

id
= – mpara-CHARN –

id ◦ in
= – identity,F functor –

in ◦F(id)
= – pairing –

in ◦F(fst ◦〈 id, id 〉)
〈|λA, γ : A→ µF× µF. in ◦F(fst ◦ γ) |〉m
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Finally, the fusion law is proved as follows:

B ∀A, γ : A→ C × µF. f ◦ ΦA(γ) = ΨA((f × id) ◦ γ)
f ◦ 〈|Φ |〉m

= – mpara-CHARN –

f ◦ 〈|Φ |〉m ◦ in
= – mpara-SELF –

f ◦ ΦµF〈 〈|Φ |〉m, id 〉
= –C –

ΨµF((f × id) ◦ 〈 〈|Φ |〉m, id 〉)
= – pairing –

ΨµF〈 f ◦ 〈|Φ |〉m, id 〉
〈|Ψ |〉m

Proposition 6.5 For anyF-rec-malgebras(C,Φ)

〈|Φ |〉m = 〈|ΦµF×µF(id) |〉 mpara-DEF

Proof. 

〈|ΦµF×µF(id) |〉
= – mpara-CHARN –

〈|ΦµF×µF(id) |〉 ◦ in
= – para-SELF –

ΦµF×µF(id) ◦ F 〈 〈|ΦµF×µF(id) |〉, id 〉
= – 6.2 –

ΦµF〈 〈|ΦµF×µF(id) |〉, id 〉
〈|Φ |〉m

Proposition 6.6 For any arrowϕ : F(C × µF)→ C

〈|ϕ |〉 = 〈|λA, γ : A→ C × µF. ϕ ◦ F(γ) |〉m mpara-PARA

Proof.

〈|λA, γ : A→ C × µF. ϕ ◦ F(γ) |〉m
= – para-CHARN – 〈|λA, γ : A→ C × µF. ϕ ◦ F(γ) |〉m ◦ in

= – mpara-SELF –
ϕ ◦ F〈 〈|λA, γ : A→ C × µF. ϕ ◦ F(γ) |〉m, id 〉

〈|ϕ |〉
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Proposition 6.7 For anyF-malgebra(C,Φ)

LΦ Mm = 〈|λA, γ : A→ C × µF. ΦA(fst ◦ γ) |〉m mpara-MCATA

Proof.

〈|λA, γ : A→ C × µF. ΦA(fst ◦ γ) |〉m
= – mcata-CHARN –

〈|λA, γ : A→ C × µF. ΦA(fst ◦ γ) |〉m ◦ in
= – mpara-SELF –

ΦµF(fst ◦〈 〈|λA, γ : A→ C × µF. ΦA(fst ◦ γ) |〉m, id 〉)
= – pairing –

ΦµF〈|λA, γ : A→ C × µF. ΦA(fst ◦ γ) |〉m
LΦ Mm

6.3 Course-of-value iteration

In this section we formalize the course-of-value iteration operator in the Mendler-
style setting. We do it in the analogous way to the primitive recursion by intro-
ducing the notions of cv-malgebra and their homomorphisms. For this, we need
Mulry’s notion of strong dinaturality [Mul91].

Definition 6.5 (strong dinaturality)
Let H,G : Cop × C → A be difunctors. Astrong dinatural transformationΦ :
H ..→G is a family of mapsΦA for all A ∈ C, such that for every arrowg : A→ B
the following diagram commutes:

W

xxrrrrrrrrrrr

&&MMMMMMMMMMM

H(A,A)

ΦA

��

H(idA,g)
LLLL

%%LLLL

H(B,B)

ΦB

��

H(g,idB)
rrrr

yyrrrr

H(A,B)

G(A,A)

G(idA,g)
LLLL

%%LLLL

G(B,B)

G(g,idB)
rrrr

yyrrrr

G(A,B)

whereW is the pullback ofH(idA, g) andH(g, idB).
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Proposition 6.8 ([Mul91]) Every strong dinatural transformationΦ : H ..→G is a
dinatural transformation.

Proof. SinceH(idA, g) ◦ H(g, idA) = H(g, idB) ◦ H(idB, g), the pair of arrows
H(g, idA) andH(idB, g) factors throughW and thusG(idA, g)◦ΦA◦H(g, idA) =
G(g, idB) ◦ ΦB ◦ H(idB, g).

Note that malgebras and rec-malgebras, which by definition are dinatural
transformations, are also strong dinatural transformations, as the pullback squares
for them are trivial.

Definition 6.6 (cv-malgebra)
Let F : C → C be an endofunctor. AF-cv-malgebrais a pair(C,Φ), where
C is an object andΦ : C(−, C × F(=)) ..→ C(F(−), C) is a strong dinatural
transformation; i.e. for any arrowg : A→ B the following diagram commutes:

W

uukkkkkkkkkkkkkkkk

))SSSSSSSSSSSSSSSS

C(A,C × F(A))

ΦA

��

C(idA,idC×F(g))
RRRRR

))RRRRR

C(B,C × F(B))

ΦB

��

C(g,idC×F(B))
lllll

uulllll

C(A,C × F(B))

C(F(A), C)

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
C(F(B), C)

C(F(g),C)
lllll

uulllll

C(F(A), C)

whereW = {(α : A→ C×F(A), β : A→ C×F(A)) | (idC×F(g))◦α = β◦g}
is a pullback ofC(idA, idC×F(g)) andC(g, idC×F(B)).

In terms of the base categoryC, Φ is a family of functions{ΦA}A∈C which
take F×C-coalgebras (see Definition 4.1)α : A → C × F(A) to the arrows
ΦA(α) : F(A) → C. The strong dinaturality condition means, that for arbi-
trary F×C-coalgebrasα : A → C × F(A) andβ : B → C × F(B), and an arrow
g : A→ B, the following holds:

(idC×F(g)) ◦ α = β ◦ g ⇒ ΦA(α) = ΦB(β) ◦ F(g) (6.5)
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or diagrammatically

A

g

��

α // C × F(A)

idC×F(g)

��
B

β
// C × F(B)

⇒
F(A)

ΦA(α) !!DDDDDDDD

F(g) // F(B)

ΦB(β)}}zzzzzzzz

C

Note that the left-hand side of the implication says, thatg is a homomorphism
betweenF×C-coalgebrasα andβ.

Assume that there exists a terminalF×C-coalgebra(νF×C , out). Then, by taking
B = νF×C andβ = out, the condition 6.5 simplifies to the following equation:

ΦA(α) = ΦνF×C
(out) ◦ F([(α )]) (6.6)

As the calculation below shows, the equation is equivalent to the previous impli-
cation. Indeed, if equation 6.6 holds, then

B pickA,B, g : A→ B,α : A→ C × F(A), β : B → C × F(B)
B (idC ×F(g)) ◦ α = β ◦ g

ΦA(α)
= – 6.6 –

ΦνF×C
(out) ◦ F([(α )])

= –C, ana-FUSION –
ΦνF×C

(out) ◦ F([(β )] ◦ g)
= – F functor –

ΦνF×C
(out) ◦ F([(β )]) ◦ F(g)

= – 6.6 –
ΦB(β) ◦ F(g)

Definition 6.7 (cv-malgebra homomorphism)
Let (C,Φ) and(D,Ψ) be twoF-cv-malgebras. Ahomomorphismfrom (C,Φ) to
(D,Ψ) is an arrowh : C → D in the categoryC, such that for any objectA the
following diagram commutes inSet :

C(A,C × F(A))
C(idA,h×idF(A))//

ΦA
��

C(A,D × F(A))

ΨA
��

C(F(A), C)
C(idF(A),h)

// C(F(A), D)
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In terms of the base category, the square above tells that for any objectA and
F×C-coalgebraγ : A→ C × F(A), the following equation holds:

h ◦ ΦA(γ) = ΨA((h× id) ◦ γ) (6.7)

or diagrammatically:

A
γ

zzuuuuuuuuuu
δ

$$IIIIIIIIII

C × F(A)
h×idF(A)

// D × F(A)
⇒

F(A)
ΦA(γ)

}}zzzzzzzz ΨA(δ)

!!DDDDDDDD

C
h

// D

Assuming that there exists a terminalF×D-coalgebra(νF×D, out), the condition
above simplifies to the equivalent equation:

h ◦ ΦA(out) = ΨA((h× id) ◦ out) (6.8)

Note that, in a cartesian closed base category,F-cv-malgebras and their ho-
momorphisms are equivalent to ordinary Mendler-style algebras and homomor-
phisms for a difunctorG(Y,X) = [Y → F(X)] × F(X) (the instance of which
we used in the example 5.2 for course-of-value naturals).

Definition 6.8 (m-histomorphism)
Let (µF, in) be an initialF-algebra. For anyF-cv-malgebra(C,Φ), a m-histo-
morphismf = {|Φ |}m : µF → C is a unique arrow satisfying the universal
property

f ◦ in = ΦµF〈 f, in−1 〉 ≡ f = {|Φ |}m mhisto-CHARN

Proposition 6.9 Let (µF, in) be an initialF-algebra.

• Cancellation: For anyF-cv-malgebra(C,Φ)

{|Φ |}m ◦ in = ΦµF〈 {|Φ |}m, in−1 〉 mhisto-SELF

• Reflection:

id = {|λA, γ : A→ µF× F(A). in ◦F(fst ◦ γ) |}m mhisto-REFL

• Fusion: For any F-cv-malgebras(C,Φ) and (D,Ψ) and an arrow
f : C → D

(∀A, γ : A→ C × F(A). f ◦ ΦA(γ) = ΨA((f × id) ◦ γ))
⇒ f ◦ {|Φ |}m = {|Ψ |}m

mhisto-FUSION
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Proof. The cancellation law is directly obtained form the universal property. For
the reflection law we argue:

id
= – mhisto-CHARN –

id ◦ in
= – identity,F functor –

in ◦F(id)
= – pairing –

in ◦F (fst ◦〈 id, in−1 〉)
{|λA, γ : A→ µF× F(A). in ◦F(fst ◦ γ) |}m

Finally, the fusion law is proved as follows:

B ∀A, γ : A→ C × F(A). f ◦ ΦA(γ) = ΨA((f × id) ◦ γ)
f ◦ {|Φ |}m

= – mhisto-CHARN –
f ◦ {|Φ |}m ◦ in

= – mhisto-SELF –
f ◦ ΦµF〈 {|Φ |}m, in−1 〉

= –C –
ΨµF〈 f ◦ {|Φ |}m, in−1 〉

{|Ψ |}m

If there exists a terminalF×D-coalgebra(νF×D, out), then any m-histomorphism
can be defined in terms of a (conventional) histomorphism, and vice versa.

Proposition 6.10 Let (νF×C , out) be a terminalF×C-coalgebra, then for anyF-cv-
malgebra(C,Φ)

{|Φ |}m = {|ΦνF×C
(out) |} mhisto-DEF

Proof. 

{|ΦνF×C
(out) |}

= – mhisto-CHARN –
{|ΦνF×C

(out) |} ◦ in
= – histo-SELF –

ΦνF×C
(out) ◦ F [( 〈 {|ΦνF×C

(out) |}, in−1 〉 )]
= – 6.6 –

ΦµF〈 {|ΦνF×C
(out) |}, in−1 〉

{|Φ |}m
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Proposition 6.11 For anyF-cv-algebraϕ : F(Fν(C))→ C

{|ϕ |} = {|λA, γ : A→ C × F(A). ϕ ◦ F[( γ )] |}m mhisto-HISTO

Proof.

{|λA, γ : A→ C × F(A). ϕ ◦ F[( γ )] |}m
= – histo-CHARN – {|λA, γ : A→ C × F(A). ϕ ◦ F[( γ )] |}m ◦ in

= – mhisto-SELF –
ϕ ◦ F[( 〈 {|λA, γ : A→ C × F(A). ϕ ◦ F[( γ )] |}m, in−1 〉 )]

{|ϕ |}

Every m-catamorphism can be defined as m-histomorphism, which uses only
the value on the “predecessor” of the current argument.

Proposition 6.12 For anyF-malgebra(C,Φ)

LΦ Mm = {|λA, γ : A→ C × F(A). Φ(fst ◦ γ) |}m mhisto-MCATA

Proof.

{|λA, γ : A→ C × F(A). Φ(fst ◦ γ) |}m
= – mcata-CHARN –

{|λA, γ : A→ C × F(A). Φ(fst ◦ γ) |}m ◦ in
= – mhisto-SELF –

Φ(fst ◦〈 {|λA, γ : A→ C × F(A). Φ(fst ◦ γ) |}m, in−1 〉)
= – pairing –

Φ{|λA, γ : A→ C × F(A). Φ(fst ◦ γ) |}m
LΦ Mm

6.4 Mendler-style recursion operators in Haskell

In Haskell, we can implement m-catamorphisms as follows:

> mcata :: (forall a. (a -> c) -> f a -> c)
> -> Mu f -> c
> mcata phi (In x) = phi (mcata phi) x
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The constraint forphi , that it is Mendler-style algebra, is expressed by its typing,
which requiresphi to be polymorphic ona. Differently from conventional cata-
morphisms, the type formcata does not contain the restriction for type construc-
tor f to be an instance of classFunctor . This is not required, as the defining
equation (which expresses the cancellation law), does not usefmap . Note that
there was no such requirement in the definition of typeMu f either. Hence, if we
usemcata combinator instead ofcata , we can define inductive types only by
defining the corresponding type constructor, and no instance declaration for class
Functor is required.

Example 6.1 (naturals to integers)
The functionnat2int , which converts naturals to corresponding integers, can be
defined as m-catamorphism:

> nat2int :: Nat -> Int
> nat2int = mcata phi
> where phi n2i Z = 0
> phi n2i (S n) = 1 + n2i n

Note thatn in the second equation ofphi corresponds to the original predecessor,
and not to the value of the function on it (as it had been case if we had usedcata ).
The value on the predecessor is computed by applying to it the function provided
as the first argument ofphi . Using the suitable naming of this argument, the
definition ofphi becomes very similar to the directly recursive definition for the
functionnat2int .

Example 6.2 (length)
The function, which computes the length of a given list, can be defined as follows:

> lengthM :: List a -> Nat
> lengthM = mcata phi
> where phi len N = zeroN
> phi len (C _ xs) = succN (len xs)

The Haskell correspondent for aF-rec-malgebra is a polymorphic function of
type(a -> (c, Mu f)) -> (f a -> c) for some fixed type constructorf
and typec . However, for convenience, we use an equivalent version of it; namely,
(a -> c) -> (a -> Mu f) -> (f a -> c) . Now, we can implement
m-paramorphisms, by using the accordingly modified cancellation law, as follows:

> mpara :: (forall a. (a -> c) -> (a -> Mu f)
> -> f a -> c)
> -> Mu f -> c
> mpara phi (In x) = phi (mpara phi) id x
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Example 6.3 (factorial)
The factorial function can be implemented as Mendler-style paramorphism:

> factM :: Nat -> Nat
> factM = mpara phi
> where phi fac i Z = oneN
> phi fac i (S x)
> = mulN (succN (i x)) (fac x)

The first functional argument ofphi is used for computing the value on the previ-
ous argumentx (like in the case ofmcata combinator). However, nowphi has
also the second functional argumenti , which is applied to the previous argument
in places where the argument itself is needed.

Example 6.4 (dropwhile)
The functiondropWhile can be implemented as follows:

> dropWhileM :: (a -> Bool) -> List a -> List a
> dropWhileM p = mpara phi
> where phi dropW i N = nilL
> phi dropW i (C x xs)
> | p x = i xs
> | otherwise = consL x (dropW xs)

The Haskell correspondent for aF-cv-malgebra is a polymorphic function of
type (a -> (c, f a)) -> (f a -> c) for some fixed type constructorf
and typec . Again, for convenience, we use a slightly modified, but equivalent,
version of it; namely,(a -> c) -> (a -> f a) -> (f a -> c) . Now,
we can implement m-histomorphisms, by using the accordingly modified cancel-
lation law, as follows:

> mhisto :: (forall a. (a -> c) -> (a -> f a)
> -> f a -> c)
> -> Mu f -> c
> mhisto phi (In x) = phi (mhisto phi) unIn x

Note, that the definition does not use any intermediate data or codata structure.
Hence, it does not memoize values on previous arguments. (However, it is possi-
ble to arrive to the memoizing version by exploiting mhisto-DEF.)
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Example 6.5 (Fibonacci)
The Fibonacci function can be implemented as Mendler-style histomorphism:

> fiboM :: Nat -> Int
> fiboM = mhisto phi
> where phi fib pre Z = 1
> phi fib pre (S x)
> = case pre x of
> Z -> 1
> S y -> fib x + fib y

The first functional argument ofphi is used for computing the value on the pre-
vious argumentx (like in the case ofmcata or mpara combinator). However,
now phi has also the second functional argumentpre , which is applied to the
previous argumentx in places where its predecessor is needed.

Example 6.6 (evens)
The functionevens , which takes from the given list every second element, can
be defined as follows:

> evensM :: List a -> List a
> evensM = mhisto phi
> where phi eve pre N = nilL
> phi eve pre (C _ x)
> = case pre x of
> N -> nilL
> C a y -> consL a (eve y)

6.5 Related work

Mendler-style recursion combinators were invented in type theory by
N. P. Mendler. In [Men87] (a conference paper), he studied an extension of sys-
tem F with (co)inductive types and primitive (co)recursion; [Men91] (its journal
version) treats a simplified calculus that only supported (co)iteration. Some im-
portant works commenting on [Men87]/[Men91] and, in particular, on the em-
beddings between simply typed lambda calculi with conventional- and Mendler-
style iterators and primitive-recursors and system F are [Lei90, Geu92, Spł93].
Mendler-style course-of-value iteration was studied by us in a type-theoretic set-
ting in [UV97, UV00b, Uus98]. In [UV00a] we also studied a Mendler-style
combinator for simultaneous iteration.
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CHAPTER 7

CONCLUSIONS

In this last chapter we summarize the contribution of this thesis and outline some
possible directions for future work.

7.1 Summary

We have studied the theory of inductive and coinductive types in a categorical
framework. The goal of this thesis was to develop new recursion combinators that
capture more complex recursion patterns than simple (co)iteration but still possess
nice reasoning properties. In particular, we considered combinators for primitive
(co)recursion and course-of-value (co)iteration using two different approaches.

The first approach was based on the treatment of inductive and coinductive
types as initial algebras and terminal coalgebras. In this setting, it is well known
that the primitive recursion can be simulated by a simple iteration which com-
putes a value paired together with the argument, and that this construction leads
to the notion of paramorphism which captures the primitive recursion directly.
We showed (in Chapter 3), that the obvious dualization of this construction leads
to notion of apomorphism which captures the recursion pattern known as prim-
itive corecursion. More importantly, we also showed (in Chapter 4) that a more
involved generic simulation of memoization by iteration leads to the notion of his-
tomorphism, a direct formalization of course-of-value iteration, and also described
the dual notion of futumorphism, a formalization of course-of-value coiteration.

The second approach, inspired by type-theoretic work by N. P. Mendler, was
here pursued for inductive types only. To recast Mendler’s work in category-
theoretic terms, we invented the concepts of malgebra and malgebra homomor-
phism and treated inductive types as initial malgebras (chapter 5). From that basis,
we then introduced Mendler-style analogs for the cata, para and histo combinators
(chapter 6). From the theory developed, it appears that Mender-style recursion
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combinators are just as well-suited for program calculation as the conventional
ones, but support a programming style more close to customary (general-) recur-
sive programming.

7.2 Future work

Semantics of Mendler-style inductive and coinductive types.While the basic
theory of Mendler-style inductive and coinductive types has been settled, many
questions remain still unresolved. First, the precise conditions of the existence of
initial (terminal) Mendler-style (co)algebras for mixed-variant base functors and
their relationship to Freyd’s dialgebras [Fre90, Fre91] need further study. Also,
recently, Bird and others [BM98, BP99] have proposed a new approach for nested
data types. How this work relates to ours is currently unclear and is a very inter-
esting topic to investigate.

Modeling of interactive processes.Coalgebras and coinductive types have re-
ceived much attention recently. They facilitate elegant modeling of interactive
processes and several very important notions of object-oriented programming like
objects, classes and inheritance. Our preliminary investigations on Mendler-style
coinductive types show that at least modeling of simple processes is easily achiev-
able by them. As the next step, we plan to use Mendler-style coinductive types
to model more complex process calculi (like CSP or CCS), and, if we succeed
in this, we start to develop the specification methodology of processes based on
these models. We also plan to provide several case studies for specifying pro-
cesses using the methodology.

Computations with side-effects and (co)inductive types.The use of monads to
represent side-effecting computations is nowadays considered standard, and for
instance in lazy functional language Haskell they are the main structuring lan-
guage construction for side-effects including input/output. The popularity of using
monads is caused by the fact that they provide a simple and effective way to handle
computations that interact purely functionally but internally use side-effects. At
the same time, the monadic approach is not without shortcomings, as the model it
provides for input/output assumes that the environment is closed (i.e. the program
is the only one which interacts with environment). Recently Kieburtz [Kie99]
proposed a conjecture that comonads (duals of monads) together with coinductive
types yield a more appropriate formalism for modeling the interaction with outer
environment. We plan to verify this conjecture, and more generally to investi-
gate the possibilities for integration of monads and comonads with Mendler-style
(co)inductive types.
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Generic programming. Genericity and reusability are two important issues for
simplifying the design and maintenance of programs. The purpose of generic pro-
gramming [BJJM99] is to develop new methods to parameterize algorithms and
programs. For instance, while traditional polymorphism allows parameterization
with respect to types, the so-called polytypism [JJ96] allows also parameterization
also with respect to type constructors. Most of the approaches for generic pro-
gramming are using inductive and coinductive types, as they come equipped with
universal combinators representing different generic recursion schemes. Mendler-
style inductive and coinductive types have the same potential, but their real utility
in generic programming needs further investigation.

Program transformation. The genericity and reusability of programs have a
side-effect that resulting programs can be very resource-consuming. The prob-
lem can be solved by using different program transformation techniques, like
partial evaluation or deforestation. In the context of inductive and coinductive
types, the last is especially interesting, as it allows to eliminate data structures
constructed during intermediate computations, and can be made fully automatic.
Traditional deforestation is based on the unfold-fold method by Burstall and Dar-
lington [BD77], and is quite inefficient as it requires keeping the full computation
history to guarantee the termination. Takano and Meijer [TM95] proposed an
alternative approach based on (co)inductive types, called “acid rain”, where in-
termediate data structures are removed using pure calculation, and keeping the
computation history is not required. We hope that this method can be generalized
for Mendler-style (co)inductive types. Also, we plan to investigate other program
transformation methods in this setting.
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KATEGOORNE PROGRAMMEERIMINE
INDUKTIIVSETE JA KOINDUKTIIVSETE

TÜÜPIDEGA

Kokkuv õte

Algoritmika ehk programmide konstrueerimise matemaatika on teoreetilise in-
formaatika haru, mille eesm̈argiks on uute matemaatiliselt põhjendatud tarkvara-
tehnika meetodide v̈aljatöötamine. Seejuures kasutatav matemaatiline aparatuur
baseerub p̃ohiliselt universaalalgebral ja loogikal, ning eriti just viimasel ajal
kategooriate teoorial. Algoritmikäuks olulisemaid tunnuseid on, et tulempro-
grammi korrektsus spetsifikatsiooni suhtes garanteeritakse konstruktsiooni käigus
ning selle eraldi verifitseerimist ei ole vaja. Eelistatakse deklaratiivseid program-
meerimisparadigmasid, iseäranis ẗuübitud funktsionaalseid keeli, kuna nende se-
mantiline baas on v̈aga l̈ahedane kasutatava matemaatilise aparatuuriga. Muuhul-
gas ṽoimaldab see nii spetsifitseerimis- kui ka realiseerimisfaasis jäädaühe para-
digma piiresse.

Käesolevas doktoritöös on kategooriate teooria abil uuritud induktiivseid ja
koinduktiivseid andmetüüpe ja nendega seotud rekursiooniskeeme. Töö käigus
jõuti järgmiste uute tulemusteni:

• Uuriti korekursiivsete funktsioonide defineerimise skeemi, mille formali-
satsiooniks terminaalsete koalgebratega distributiivsetes kategooriates on
nn. apomorfismid (primitiivne korekursioon); sõnastati ja t̃oestati apomor-
fismide iseloomulikud omadused, võrreldi neid anamorfismidega (lihtsa ko-
iteratsiooniga); esitati lihtsaid näiteid koandmeẗuüpidega funktsionaalpro-
grammeerimisest, kus apomorfismid on tululikud.

• Uuriti rekursiivsete ja korekursiivsete funktsioonide defineerimise erinevaid
skeeme. N̈aidati, etcourse-of-value-iteratiivsed funktsioonid on formali-
seeritavad initsiaalsete algebratega distributiivsetes kategooriates nn. histo-
morfismidena ningcourse-of-value-koiteratiivsed funktsioonid on duaalselt
formaliseeritavad terminaalsete koalgebratega distributiivsetes kategoori-
ates nn. futumorfismidena.

• Formaliseeriti nn. Mendleri-laadi induktiivsete tüüpide kategoorne seman-
tika, tuues selleks sisse Mendleri-laadi algebrate ning nende vaheliste ho-
momorfismide m̃oisteid. N̈aidati, et kovariantse baasfunktori korral on in-
dutseeritud Mendleri-laadi algebrate kategooria ekvivalentne sama funktori
(tavaliste) algebrate kategooriaga. Segavariantse baasfunktori jaoks näidati,
et kui baaskategoorias leiduvad teatud suured summad (täpsemalt teatud
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tensorite kol̃opud), siis saab konstrueerida uue kovariantse funktori, mille
algebrate kategooria on esialgse funktori Mendleri-laadi algebrate kategoo-
riaga ekvivalentne. Lisaks uuriti Mendleri-laadi induktiivsete tüüpidega
seotud rekursioonioperaatorite omadusi ning nende kasutatavust program-
mide konstrueerimisel.
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