
A report on “A Generator for Type Checkers”
by H. Gast

Andrey Breslav

November 26, 2009

Abstract

This report presents Tcg, a system for generating type checkers
from declarative specifications (developed by H. Gast in his PhD the-
sis in 2004). The system models type checking process as a proof
search for typing judgements. It is expressive enough to describe type
systems of different kinds of programming languages: from simply-
typed λ-calculus to object-oriented imperative languages. The usage
of the system is illustrated with a type checker specification for the
MiniML language, which captures the key features of ML, including
type inference, polymorphic definitions and mutual recursion.

1 Introduction

Tools for generating parsers from different types of context-free grammars
have been available for decades. They serve for automating the routine task
of developing a parser and make it less error-prone by working with high-level
specifications, which are (in most cases, partially) declarative and checkable
for consistence.

However, a context-free syntax does not capture all the features of a pro-
gramming language. There remains the “non-context-free syntax” or “static
semantics” that is checked by hand-written code. Since the type theory
does not seem underdeveloped compared to automata theory, we should ex-
pect availability of type checker generators as well as parser generators. And
these tools might be a big advantage for implementing non-context-free static
checks.

This report is based on a Ph.D. thesis by H. Gast “A Generator for Type
Checkers” [G04]. Chapter 5 of the thesis examines the related work in detail,
and we will not go into it here. The only thing we have to mention is that

1

there were attempts to create such tools before, but most of them suffer from
being more of domain-specific programming languages than declarative spec-
ification languages. The Type Check Generator (Tcg) tool described
in the thesis makes a significant advance towards the declarative style.

2 Approach Overview

We use types in programming languages to enforce certain properties of our
programs at compile time. Types themselves (provided as annotations or
inferred) can be thought of as statements about those properties, which the
compiler (to be precise, the type checker subsystem of the compiler) ensures
in some way.

In Tcg the type checking process is modeled as a search for explicit
proofs of statements associated with an Abstract Syntax Tree (AST) of a
program. The proofs are built with respect to inference rules specified by
a user; in fact, the rules form the core part of a declarative specification of
a type system in Tcg. This approach is, of course, related to the Curry-
Howard correspondence, but only in a broad sense: Tcg builds proofs using
the AST structure but not necessarily strictly according to it.

A language of types used in Tcg is limited only by very general require-
ments like having most general unifiers (for formal definitions see Chapter 2
of [G04]). Strictly speaking, we cannot always identify a type within a Tcg
statement, since a typing relation (e : t) does not have to be present in it.
The types, where present, may have almost arbitrarily complicated structure.
This structure, as well as the structure of proofs, is described by typing rules
(specified by a user) which are basically inference rules of a proof system.

A generic typing rule consists of a set of universally quantified variables,
a list of premises, a conclusion and a list of parameters :

∀ (variables)
premise1 . . . premisen

conclusion
(rule name[parameters])

Beside the typing rules themselves, a Tcg specification describes

• context-free syntax;

• abstract syntax tree (AST) construction;

• pretty-printing rules.

The latter is irrelevant for our discussion.
At generation time (Figure 1) the translator produces a parser and an

initial context for the proof search.

2

Figure 1: The Tcg Generator

At runtime (Figure 2) the parser builds an AST and collects associated
goals to be proven. Then it runs an “interpreter” which searches for proofs
of the collected goals.

Figure 2: The Tcg Type Checker at Run Time

The basic proof search works roughly as follows: it starts with an initial
goal (see Figure 2), a term which has to be proven; then, it looks for a
typing rule which conclusion unifies with the goal; if such a rule exists, it
is instantiated : the quantified variables are bound and the rule application
marks a node in a proof tree, the premises of the rule become new goals to be
proven. If for some goal there’s no rule applicable, the procedure backtracks.

This process basically implements a backwards reasoning with respect
to the inference rules. To make the procedure more efficient and powerful,
Tcg provides a number of extensions to it, such as passing parameters to
rules, which the user may trigger by referring to them explicitly in the rule
definitions (these techniques are illustrated below). The formal proof calculus
which provides a theoretical foundation for the proof search is described in
Chapter 2 of [G04].

In this report we mainly illustrate the usage of Tcg by giving examples
of typing rules (aiming at implementing a type checker for the MiniML
language [CDDK86] as it is done in Chapter 4 of [G04]). Since Tcg rules

3

include proof search instructions, the same set of examples illustrates the
main techniques used to direct the proof construction. Formal definitions of
the rule language are given in Chapter 3 of [G04].

3 Tcg In Action

Context-free syntax in Tcg is described by YACC-style productions; each
grammar must have a start symbol called file. Productions may be anno-
tated with AST building instructions (after --> sign) or a block of code to
be executed after the production has been matched (in {! . . . !} brackets).
The file symbol is responsible for running type analysis, which is usually
done by invoking the run command:

file: top_wrap EOF {! run ~save:

[(input.base^".rls",

[("define", "save_defined")])] $1

!}

The arguments passed to the run command deal with saving results and
are irrelevant for our discussion.

The rest of this section presents the case study given in Chapter 4 of the
original work [G04].

3.1 Simply-Typed λ-Calculus

The context-free syntax of the simply-typed λ-calculus is described by the
following rules (we omit lexical definitions and documenting annotations):

top_wrap: tops --> tops($1)

tops: top --> $1 :: []

| top ";;" tops --> $1 :: $3

top: exp --> $1

exp: ID --> id[$1]

| exp exp --> apply($1,$2)

| "\\" ID "." exp --> lambda(id[$2],$4)

| "(" exp ")" --> $2

4

The first three rules describe a sentence as a list of expressions (exp)
separated by double-semicolons (“;;”). The last rule describes a λ-expression
in a usual way: as a variable, application, abstraction or bracketed expression.
As mentioned before, instructions after the “-->” symbols serve for AST-
construction; there are several types of such instructions:

• item references of the form $<number> — reference items on the left-
hand side;

• node constructors of the form <node_type>(<children>);

• list constructors of the form head::tail, where [] denotes the empty
list;

• opaque term constructors of the form <class>[<value>] – these will
be explained later.

For example, a textual representation of the expression

(λf.λx.f x) g y

will be

(\f.\x.f x) g x,

and an AST constructed from it is

tops(

apply(

apply(

lambda(id[f],

lambda(id[x],

apply(id[f], id[x]))),

g),

x)

::[]

)

We will refer to pairs of the form

term : type

as typing judgements, where term is an AST subtree and type is a term
structured according to typing rules. The typing rules are used by Tcg to
construct proofs of typing judgements, which are basically trees where the

5

proven judgement is a root and all the edges are properly labeled with rules
(what “properly” means will be explained later).

As we said before, a generic typing rule consists of a set of universally
quantified variables, a list of premises, a conclusion and a list of parameters.
In Tcg’s concrete syntax it is written like this:

rule apply

forall(f,e,s,t)

apply(f,e) : t

if f : fun(s,t)

and e : s

In this example, f, e, s and t are the quantified variables, apply(f,e) is
the conclusion, f:fun(s,t) and e:s are the premises. In the more familiar
notation of inference rules it can be written like this:

∀ (f, e, s, t)
Γ ` f : s → t Γ ` e : s

Γ ` f e : t
(apply)

This rule expresses the typing for an application. To construct a proof for
a judgement f e : t we have to build a tree, where this judgement will be the
root node and its children will be obtained by application of this rule. So the
root node will have two children having the forms of the premises, where f ,
e and t are already known (they appear in the initial judgement) and s must
be inferred. Each node in the tree is marked with the rule applied at this
node, in our case the root node will be marked with apply rule. To complete
the proof we must construct subtrees proving the children, so that leaves of
the tree will be marked with application of rules which have no premises.

We have written Γ in the example above to provide the most familiar
notation, but in Tcg the context is “global” for the proof search and is be-
ing modified each time a rule is applied (the modified version is relevant to
the subtree of the vertex marked with the applied rule). This is motivated
by the backward style of reasoning adopted by Tcg: when we apply a rule,
we create new vertices in the proof tree and change our knowledge about
currently available typing information. These changes are expressed by con-
text modifiers which are written in the premises instead of context variables
like Γ. For example, here is the rule for λ-abstraction:

rule lambda

forall(x,e,s,t)

lambda(x,e) : fun(s,t)

if e : t

under -(:.1.= x) + [x : s]

6

Here is the tree-like form of this rule:

∀ (x, e, s, t)
−(:1= x), +[x : s] ` e : t

λx.e : fun(s, t)
(lambda)

The context modifiers here are -(:.1. = x) and +[x : s]. The first
one removes rules assigning a type to x from the context of the conclusion,
it consists of two parts: a minus sign, which denotes removal and a selector

:1= x

which is basically a pattern meaning that the top function symbol in terms
we are going to delete is a colon and its first argument is x. Another context
modifier in this example adds a new typing fact: “x : s”.

The context modifiers are applied to the context available at the root of
the subtree, so they are relative to the context of the conclusion, that is why
we do not write anything denoting context under the like.

The rule apply mentioned above has no context modifiers, thus in tree-
like form it is written as follows:

∀ (f, e, s, t)

` f : s → t
` e : s

fe : t
(apply)

The third rule for simply-typed λ-calculus will be the following:

∀ (es, ts)
` [branch] es : ts export ∗ . . .

tops(es)
(tops)

Note that the conclusion here is not a typing judgement; there is no problem:
we are basically proving a theorem and our language is not limited to a single
predicate “:”. The premise contains a [branch] modifier which denotes that
it must be looked for by a independent sub-search procedure; the ellipsis ...
is a shorthand denoting list iteration: in our AST structure tops contains a
list of children, so the es variable will iterate through it item-by-item. The
meaning of export directive will be explained later.

The final step is to construct an initial set of rules, which are available at
the beginning of the proof search. We put all our rules there:

environment apply,lambda,tops

7

3.2 Introducing Constants

Assume we want to have integer or boolean literals in our language. These
will by represented by corresponding tokens: INT, “true” and “false”. AST
productions for these will be the following:

INT --> int[$1]

| "false" --> bool["false"]

| "true" --> bool["true"]

As we have seen before, here opaque terms, e.g. int[$1], are constructed
instead of normal AST nodes, these terms are opaque for the type checker:
it can not look inside them, and can only consider their classes (int and
bool in our case), but the values can be extracted for output (e.g., for error
reporting).

Typing rules for such constants will be of the following form:

∀ (i)
int[i] : int

(int const)

We can declare “primitive” or “built-in” operations in the same manner:

add : int → int → int
(add function)

And likewise are conditional expressions:

∀ (e1, e2, e3, t)

` e1 : bool
` e2 : t
` e3 : t

if e1 then e2 else e3 endif : t
(if expr)

3.3 Bindings

For the monomorphic version of let expression (let x = e in e’) it is suffi-
cient to treat it as λ abstraction applied to the bound term: (λx.e′) e. Thus
we can write down the following rule:

∀ (x, e, e′, s, t)

` e′ : s
−(:1= x), +[x : s] ` e : t

let x = e′ in e : t
(mono let)

In case of polymorphism, which means that x may be typed with ∀α̃.s,
this approach will not work directly, since we need to quantify all the inner
variables of the type scheme s, namely the variables which appear freely in

8

the proof of e′ : s and do not appear in other parts of the proof tree. The
operators presented by now do not allow to do this, so Tcg introduces tools
which are expressive enough to cover it (and much more): rule extraction and
forward application. To illustrate these techniques, we will first reformulate
the above rule mono_let and then extend it to a polymorphic version.

Rule extraction basically takes a (possibly incomplete) subproof and turns
it into a new rule: the root of the subproof becomes a conclusion, and the
leafs become premises. If the subproof was complete, then there will be
no premises in the rule (all the premises will be empty). This operation
corresponds to the idea of memorizing subproofs as lemmata and re-using
them in different parts of the proof. Thus we are going to extract a proof of
e′ : s and then use it in the proof for the second premise (and later for the
proof of ∀x : α̃.s).

The newly extracted rule helps in proving e′ : s, but what we need for
the second premise is x : s. This is where forward application comes into the
stage: it allows to combine two rules into one if the premise of the second
rule unify with the conclusion of the first one.

. . .

e′ : s
+

∀ (e, t)
e : t

x : t

⇒ . . .

x : t

This operation easily generalizes to more than one premise of the second rule.
Now we can reformulate mono_let in this manner: in the context modifier

for the second premise we will extract the proof of the first premise and
perform the forward application, which joins the extracted subproof with
the auxiliary rule let_binding.

∀ (x, e, e′, s, t)

` e′ : s
−(:1= x), +[let binding[x]](〈1〉) ` e : t

let x = e′ in e : t
(let subproof)

The auxiliary rule let_binding looks like this:

∀ (e, t)
` e : t

y : t
(let binding[y])

This rule is not used on its own, only with forward application; thus, it is
not a normal inference rule for the proof system.

Let us explain the new pieces of notation now. First, we have a rule
reference in the context modifier of the first premise:

let binding[x]

9

this simply adds the rule let_binding to the context, passing x to it as an
argument. The rule has a formal parameter y; this parameter must be in-
stantiated with a term upon the rule application; in our case it is instantiated
with the term x.

The rule reference is followed by a forward application:

[let binding[x]](〈1〉)

this notation means “extract the proof of the first premise (〈1〉) and perform
forward application on it and the rule let binding[x]”. The generic syntax
for forward application operation will be

rule expression(rule expressions)

where each rule expression may be

• an inline rule (e.g., x : s),

• a reference (e.g., let binding[x]),

• a rule extracted from the subproof of the premise number i (e.g., 〈1〉,
the premise must stay to the left of the current premise),

• the environment which refers to all the rules present in the context.

Now we proceed to the polymorphic version of let. To complete the
definition, we change let_subproof only slightly:

∀ (x, e, e′, s, t)

` e′ : s
−(:1= x), +[let binding[x]](〈1 : [∀]〉) ` e : t

let x = e′ in e : t
(let poly)

Here 〈1 : [∀]〉 stands for “extract the subproof of the first premise and
quantify its inner variables universally”. These will be exactly α̃ — the
variables quantified in the type scheme ∀α̃.s. Note that the type scheme itself
does not appear in the rule: we do not need to enrich our predicate language
with universal quantification since it is successfully handled by the meta-
theory. Why is the meta-theory designed in such a way that it serves exactly
this purpose? The author of the original work gives a detailed explanation
in the Section 4.1.3.3, to put it shortly: quantifying the free variables is
a natural operation which makes a rule usable, and inner variables are the
maximal set of variables which can be quantified without affecting soundness.

10

3.4 Recursion

To define non-trivial functions with let, we need recursion, which is not yet
supported by our rule. To support it we can just add a context modifier to
the first premise:

∀ (x, e, e′, s, t)

+[x : s] ` e′ : s
−(:1= x), +[let binding[x]](〈1 : [∀]〉) ` e : t

let x = e′ in e : t
(let poly)

By doing this we have added the assumption x : s to the proof for e′ : s,
and since x is being bound to e′ this indeed enables recursion.

By now we can handle all the basic functionality available in a functional
language. In further subsections we illustrate more sophisticated features
of Tcg by extending the capabilities of the language with more convenient
mechanisms like multi-binding let and mutual recursion.

3.5 Parallel bindings

To make our language more practical, let us introduce let expressions bind-
ing many variables at the same time. The syntax will be the following:

exp: "let" bind_group "in" exp --> let($2,$4)

bind_group: bind --> $1 :: []

| bind "and" bind_group --> $1 :: $3

bind: ID "=" exp --> bind(id[$1],$3)

In the AST a bind group is represented by a list of bindings. Now we
cannot write a rule of the from

` typings of bindings
+[let binding[x]](〈bindings : [∀]〉) ` e : t

let bindings in e : t

because typings of bindings is not a single premise, but a list of variable
length. Instead, we can process the list by usual recursion:

` head ` bind group(tail)

bind group(head :: tail) bind group([])

11

Then, the let rule will look like this (by ??? we deonte parts of the rule
which will be refined later):

∀ (bs, e, t)

` bind group(bs)
+[???](〈??? : [∀]〉) ` e : t

let bs in e : t

By now we did not show what to extract from the premise and what to
compose it with (by forward application). Indeed, what we did in the previ-
ous example was extracting a subproof which ended with a typing judgement
e′ : s, but here the premise is not a typing judgement, judgements are “hid-
den” in its proof:

e′1 : s1 . . . e′n : sn
...

` bind group(bs) . . . (〈proofs for e1 . . . en : [∀]〉) ` e : t

let bs in e : t

Tcg provides a generalized for of rule extraction which is useful here: the
rules may be marked with “export label”, the label will be put on the proof
tree nodes; the extracting operator may be directed to extract not the whole
tree but only the subtrees marked with a certain label. Not all the label in a
proof tree are visible from its root, but only those which were propagated up
the tree. If a node in the tree is marked with a special label “∗”, it propagates
labels of all the child nodes up. To be able to extract all the needed typing
judgements from the proof of bind group(bs), we can do the following:

` head export bind ` bind group(tail) export ∗
bind group(head :: tail) bind group([])

By doing this, we label every typing judgement from bs and propagate
these labels up the tree when doing a recursive call. This situation is rather
common, so Tcg provides a shorthand for it: to handle lists we can use
ellipsis (. . .) at the premise, this will tell the system to generate the two
rules given above. Now we can complete the initial rule:

∀ (bs, ts, e, t)

` bs : ts export bind . . .
+[exp binding](〈1 : bind[∀]〉) ` e : t

let bs in e : t

The extraction operator is now 〈1 : bind[∀]〉, which will extract from the
proof of the first premise all the subproofs labeled with bind and universally
quantify the inner variables of the whole proof of the first premise (this

12

“over-quantification” is safe). Note that the variable ts is free, so it will be
quantified. The auxiliary rule exp_binding is the following:

∀ (x, e, t)
` x = e : t

x : t
(exp binding)

We also need a rule to be able to rove judgements of the form x = e : t.
It is straightforward:

∀ (x, e, t)
` e : t

x = e : t
(binding)

3.6 Mutual Recursion

To type-check a mutually recursive definition like this

letrec even = \x. if (eq_int x) 0 then true else odd ((sub x) 1)

and odd = \x. if (eq_int x) 0 then false else even ((sub x) 1)

in even 5

we need to choose fresh type variables α1 and α2 and assume even : α1

and odd : α2 before the right-hand sides of the bindings. This procedure is
different from what we have seen by now in a way that it needs “a lookahead”,
in other words, we cannot look at every item in the program only once. To
handle this, we write the following rules:

∀ (bs, e, t, x)

` bind group(bs) export∗
−(:1= x →:1= x); +[exp binding](〈1 : bind[∀]〉) `
e : t

letrec bs in e : t
(letrec)

∀ (bs, ts, x)

` bs : ts export fwd . . .
−(:1= x →:1= x); +[exp binding](〈1 : fwd〉) `
bs : ts export bind . . .

bind group(bs)
(bind group)

The first premise of the rule letrec contains the most significant infor-
mation: all the recursive definitions are checked there. The check itself is
done by the bind_group rule, which iterates over the first premise, checks
each element in bs and marks the result with fwd label. These results will
have the form x = e : α for a fresh α since ts does not appear anywhere else
in the rule, thus there is nothing to prove about such judgements, and we can
make Tcg’s life easier by marking them as solved goals (done by putting “!”
after the fwd label). The overall process precisely mimics what was discussed

13

for the code example above: we take fresh type variables, assume typings for
bound variables and check the expressions to the right of “=”.

The context modifier −(:1= x →:1= x) is a guarded one: it is triggered
by adding a rule matching :1= x (to the left of the arrow) is added, namely,
it removes all the previously existing bindings for x when a new binding is
added.

4 Conclusion

We have illustrated the usage of Tcg by developing a type system for the
MiniML programming language, which supports mutually recursive poly-
morphic functions. While doing this we have used most features of the gen-
erator, so the reader has had a chance to overview the system. Our examples
have shown that the specification language is purely declarative and rather
concise.

The original paper [G04] provides many interesting examples, which we
did not cover, such as imperative languages, object-oriented languages and
a language for stating generic algorithms with explicit requirements on their
parameter types. These examples show that the approach works for large
variety of type systems, not only functional languages with Hindley-Milner
type inference.

The original paper also provides comparison with other approaches to
type system specification (Chapter 5), such as TYPOL [BCD89], Tinker-
Type [LP03], constraints solving and logical frameworks (Isabelle [P94]).
These comparisons bring the evidence of Tcg being, on the one hand, much
less of a (logical) programming languages than previous solutions, on the
other hand, an fully specialized integrated framework as opposed to con-
straint solvers and logical frameworks. On the “technical” level the ability
of subproof extraction is a distinguishing feature of Tcg.

A major disadvantage which may prevent this approach from being used
in practice might be the lack of comprehensible error reporting: when no
proof is found (which means that the program is not correct), a type checker
must complain with a helpful error message mentioning the reason of the
problem; this aspect was not studied in the [G04].

References

[G04] H. Gast, A Generator for Type Checkers, Ph.D. Thesis, Eberhard-
Karls-Universität Tübingen, 2004.

14

[CDDK86] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn. A Sim-
ple Applicative Language: Mini-ML. In Proceedings of the 1986 ACM
Conference on LISP and Functional Programming, pages 1326, Cam-
bridge, Massachusetts, USA, August 1986. ACM.

[BCD89] P. Borras, D. Cle ment, Th. Despeyroux, J. Incerpi, G. Kahn, B.
Lang, and V. Pascual. CENTAUR: the system. ACM SIGPLAN Notices,
24(2):1424, February 1989.

[LP03] M. Levin and B. Pierce. TinkerType: A language for playing with
formal systems. Journal of Functional Programming, 13(2), March 2003.

[P94] L. Paulson. Isabelle A Generic Theorem Prover. Number 828 in Lec-
ture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg,
1994.

15

