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Abstract

Model checking is a common technique for verifying computer hardware but it
can be used also for software verification. This report gives a gentle introduction
to model checking and introduces the BLAST analyzer. BLAST stands for Berkeley
Lazy Abstraction Software Verification Tool and uses model checking algorithm that
is specialized for efficient and scalable software verification. It can be used for proving
certain properties of computer programs written in C programming language.

1 Introduction

Software verification and program analysis in general is a very important field of re-
search in computer science. A high number of lines of code are written every day. Not
all programs will do what they are meant to do because they contain defective code.
Bugs in the code can lead to high financial or even human life losses. Therefore it is im-
portant to reduce the number of code defects as much as possible or prove the absence
of bugs and the code conformance to the specification. This is where software model
checking techniques can help.

Model checking is especially suitable for checking program concurrency properties (e.g.
presence of deadlocks) and for checking assertion validity, but also it can be used for
detecting dead code, removing unnecessary null pointer checks, and for checking many
other interesting properties.

This report gives a brief introduction into model checking. Only the basic concepts are
described. A closer view is given to the one of the software model checking toolkits,
known as BLAST. This is followed by a short overview of the related work.



2 Principles of Model Checking

Model checking is about testing whether the given model of hardware or software meets
a given specification. For this task to be carried out algorithmically both the model and
the specification have to be formulated in a precise mathematical language. There are
three essential steps in the model checking process [1]:

Modeling. Firstly, the design of a system must be translated into a mathematical form.
For hardware systems a suitable model could be given as a labeled finite state transition
system (finite state machine). In the modeling step, some irrelevant details of the system
might be removed.

Specification. Secondly, we need to specify the interesting properties of the system that
we would like to check. A popular choice for specification language is some kind of
logic formalism. It is common to use a variant of temporal logics. This will be discussed
more in the report.

Verification. Finally, the model is checked for the specified properties. If a logic for-
malism was used for the specification then this step could mean that an algorithm or a
decision procedure for logical inference is applied. When the verification fails the algo-
rithm should provide insight (a counterexample, an error trace) why the model fails to
satisfy the specification.

By no means these three steps have to be completed as separated tasks. Moreover, es-
pecially in software model checkers, these steps should be tightly integrated in order to
guarantee maximum achievable performance [2].

2.1 Kripke structure

The structure suitable for model checking is called a Kripke structure. It is a four-tuple
M = (S, So, R, L) that consists of: a finite set of states S; a set of initial states Sy (Sg C S);
a transition relation R C S x S; and a labeling of states L : S — 247 where AP is the set
of atomic propositions (atomic logical formulas) that are true in that state [1].

A Kripke structure describes labeled finite state automaton. A state of such automa-
ton is labeled by the predicates which hold in the given state. For example, states of
a microwave oven could contain the following predicates: heat, closed and started. The
predicates represent the operation of the oven: heat - the oven is heated up or not; closed
- whether the door of the oven is closed or not; started - the oven is turned on or off.
A possible property which we would like to verify for the oven is that it is safe to use,
i.e. it does not heat up until the door is closed [16]. A possible starting state would be
{—closed, —started, —heat}.

2.2 Temporal Logics

Model checking with temporal logics is an automatic verification technique commonly
employed for finite state concurrent systems [1]. It is mainly used for verification of



computer hardware which can be described as a finite state system. The first algorithms
for temporal-logics model checking were developed at the start of 1980s.

Temporal logics differs from usual propositional logics by the additional logical opera-
tors and quantifiers that can be used for representing and reasoning about propositions
in terms of time. Some examples (operators of CTL* logics) [1, 9]:

Temporal Operators: Path Quantifiers:
Xp  “pholds next time” A “for every path”
Fp  “pholds sometimes in the future” E “there exists a path”

Gp  “pholds globally in the future”
pUg “pholds until q holds”
pRg “qisreleased when p becomes false”

The semantics of the operators above can be defined in terms of a Kripke structure. A
formal description is found in [1, 9].

There are various version of temporal logic systems. Most popular ones are Interval
Temporal Logics (ITL), u-calculus, Hennessy-Milner Logics (HML), Computational Tree
Logic (CTL), Linear Temporal Logics (LTL). Some of them are more expressive, some are
less. An overview is given in [1].

A simple and concise example how to apply CTL (which is CTL* with some minor re-
strictions) for a model checking problem can be found in [16]. The example is about the
same microwave oven as described above.

2.3 Symbolic Model Checking

Explicit Kripke structure construction is not computationally feasible for larger state
spaces. In symbolic model checking, the transition relation of the Kripke structure is
not explicitly represented. The state space is constructed by boolean functions instead.
There exists a very efficient way to manipulate with boolean functions in the form of
BDD’s (Binary Decision Diagrams). This has allowed to push the tractable state count up
to 10120 states [9]. With BDD-based approach, a temporal logics that can be implemented
in terms of BDD operations is preferred. There is a suitable variant of CTL* (ACTL*) de-
scribed in [9]. A compherensive guide into different types of BDD’s and their operations
can be found in [17].

2.4 State Space Abstraction

The algorithm or proof procedure for hardware verification can be stated as an exhaus-
tive search of a given state space [1]. However, for larger state spaces this kind of algo-
rithm might be computationally too inefficient [2]. Furthermore, it is completely useless
for software verification since most of the software cannot be described as a finite state
system. Some details have to be eliminated.

The abstraction of infinite state system can give us finite state abstract system [15, 19].
The dangers of abstraction are the loss of analysis precision and the possibility of false



positives/negatives. Therefore it is important to carefully choose the abstraction method.
Most common technique is to use homomorphic transforms which partition the concrete
state space into abstract state space where one abstract state describes one or more (pos-
sibly infinite) of concrete states.

2.5 Abstraction refinement

A very interesting method is not to use a fixed abstraction but to refine it during the
verification procedure [9, 18]. It enables the possibility of exploring the state space only
as much as is needed for proving the interesting property. An algorithm for verification
with abstraction should obey the following characteristics: when the abstract program
is proved to meet the given specification then the concrete program also meets the spec-
ification. Then the verification procedure can be terminated as soon as enough detailed
abstraction is found to satisfy the specification.

On the other hand, the abstraction might be too coarse and the verification might fail
although the program is correct. In this case a counterexample is provided by the model
checking algorithm. The counterexample can be then used to refine the abstraction. This
technique is called counterexample-guided abstraction refinement (CEGAR) [9].

2.6 Model Checking vs. Static Analysis

Model checking is usually not considered to be a static analysis method. Indeed, in the
software case it can be more viewed as the (abstract) symbolic execution of the program.
In general, static analysis is considered to be easier and to find shallow bugs while model
checking is more expensive and gives better results. There is a comparasion between
model checking and static analysis in [31]. Interestingly, the paper puts SLAM, a well-
known model checker, in the category of static analysis tools.

3 The BLAST Toolkit

BLAST (Berkeley Lazy Abstraction Software Verification Tool) is a software model checker for
C language programs [2, 11, 12]. It employs state space abstraction and uses extremely
efficient abstraction refinement which tries iteratively refine only the parts of the model
which are necessary for verification of the given property. Unlike other software model
checkers BLAST is scalable and has been tested on programs with size up to 30000 lines
of code. The BLAST project contains compherensive list of components: a scalable and
efficient core system; a query language for specifications [13]; a graphical user interface
[2]; an Eclipse plugin [14].

BLAST is written in OCaml and uses CIL library to parse and preprocess the input source
code. CIL stands for C Intermediate Language and is also used in various other program
analysis toolkits that are developed in OCaml [21].



The algorithm! contains steps of counterexample-guided-abstraction which are com-
bined with lazy abstraction. The same basic algorithm layout (abstract-verify-refine)
is also used in MAGIC and SLAM [2].

3.1 Program Representation

CFA. The program code is stored as a set of Control Flow Automata (CFA). There is one
such automaton for each program function. A CFA is a directed graph whose nodes
are program locations and edges correspond to operations between those locations. The
function starting point (entry) is the root of the graph. Operations can be basic blocks,
assume predicates, function calls or return instructions.

Basic blocks are assignments in the form lval=exp, where lval is a variable, structure field
or pointer dereference and exp is an arithmetic expression.

Assume predicates contain boolean expressions involving local variables. These repre-
sent true statements derived from the conditional expressions (e.g. from if-expression
condition part).

Function calls are transformed to call-by-value form. All C language programs can be
converted into this representation [2, 21]. Figure 1 shows an example CFA for a function
that calculates the minimum values of two given arguments.

int min(int a, int b) {
Ll1: dint m = 0;
L2: if (a < b) {

Block(M=0)

Pred(a<b) Pred(a>b)

L3: m= a;

} else { 0
L4: m = b;

} Block(m=a) Block(m=Db)
L5: return m; Return(m)
}

Figure 1: Control Flow Automaton (CFA) for min function

ART. An ART (Abstract Reachability Tree) is a labeled tree. It can be thought of as a
program execution tree, except that variable values are not concrete but represented by
predicates over them. Each node of the tree contains the following components: a CFA
node (a program code location), current call stack and an overapproximation of the set
of data states reachable from this node. The call stack of a node is a sequence of CFA
nodes representing return addresses and the approximation of data states, i.e. possible
variable values are described as predicates over those variables. The edges of the tree
are the operations in CFAs of the program and each path in an ART corresponds to a
program execution [2, 13, 27].

ISurprisingly, BLAST does not use temporal logics. The root ideas of the approach (turning the analysis
into a graph search) are from [29].



Block(a=readInt())

int main() {

L6: int a = readInt();
L7: int b = readInt();
L8: r = min(a, b);

L9: if (I‘ > a) { Block(r=min(a,b))

L10: ERROR;
} red(r>a)

L11l: return r;

Return(r)

Figure 2: Control Flow Automaton (CFA) for main function

Branches in an ART are formed by if-expressions of the program. The reachable data
states are constrained by assuming the if-expression condition to be true in one branch
and false in the other. The ART tree is built and refined during the verification process.

Figure 3 shows complete tree for the program in figure 2 . The program reads two integer
numbers using the function readInt. The details and return values of these functions are
completely irrelevant for this example. This is consistent with BLAST which assumes
that libabry functions can return any value (if not specified otherwise). The program
calculates the minimum of these numbers using the min function. Although this example
is simple, we would still like to check the return value of min for sanity (it is not greater
than the first argument). The complete verfication tree contains predicates for each node
in the bold fontface. It can be seen that ERROR label (L10) is not reachable. Instead
of if-statement we could also have used assert (see Assertion Checking below). Also, the
specification (in the form of if-statement) could have checked that the return values of
min is not greater than both of the arguments. The tree would be almost same.

3.2 Abstract-Check-Refine Loop

The central part of the BLAST algorithm is a loop that implements CEGAR principles.
The steps are outlined here in a quite informal way. The actual implementation is much
more complex and out of scope of this report. Furthermore, it is not at all clear which
techniques are implemented in the tool, and which are not and how all the implemented
methods play together. Articles [2, 13, 14] and the other articles available on the home-
page [12] currently focus on general concepts or specific use cases. The manual [11] lists
possible command line options but the description of those options is not informative
enough. Also, the source code obtained from the homepage contains a minimal amount
of comments.



false (r = a contradicts r > a)

Block(a=readInt())

Block(b=readInt())

Block(r=min(a,b))

a<b a>b
Block(m=Db)
a<b, m= a>b, m=b
Return(m)

a<b, m=a, r=m

Pred(r>a) Pred(r>a)

Return(r) false (a > r contradicts r > a)

Figure 3: Complete Abstract Reachability Tree

1. Abstraction. In the first steps of the algorithm a set of predicates from CFAs is

chosen to abstract the concrete program. This is done by running a depth-first
search (although breath-first search can be used, too [11]). As a result, the push-
down automaton in the form of ART is built. This constitutes the abstract model
of the program [2, 22, 28]. The ART building process is also called a forward search
phase.

. Verification. During the forward search, it can be automatically checked whether
some specified error label is visited. When no error labels are visited during the
search, it can be concluded that the given property is verified. See the next section
of the report how to express analysis problems as reachability. The algorithm will
end with the result “The system is safe”.

When the error label is visited, it might be that a program error is found or the
abstraction was not precise enough. The path in the ART that leads to the error
label is checked with a theorem prover that such execution trace is indeed possible.



Early versions of BLAST used Simplify [30] theorem prover [12]. In the case of a
true error the loop will terminate with the result “The system is unsafe”.

3. Refinement. When the theorem prover fails to prove the ART path to error being a
possible execution path, the abstraction of the program is refined (backward search).
For greater efficiency only necessary parts of the model are considered. This con-
cept is called a lazy abstraction [28]. As a result new predicates are added into the
set of predicates that are used in step 1. The process of adding new predicates is
called an interpolation-based predicate discovery [18].

The presented algorithm is correct which means there are no false positives, i.e. the
algorithm terminates with “The system is safe” but the program contains an error in the
context of the checked property. On the other hand, it might fail to prove some properties
because in a some case it might require solving a halting problem [2].

4 Program Analysis with BLAST

The BLAST toolkit can be used for many different analyses. The most basic one is reach-
ability checking. All other analyses can be reduced to it [2, 11, 27].

4.1 Reachability Checking

Reachability checking verifies whether the special label ERROR is reachable in the source
code. A rather primitive example code to demonstrate it is in the figure 4.

int main() {
int x,y;
if (x> y) {
X =X -7;
if (x <= 0) {
ERROR: goto ERROR;
}
}
}

Figure 4: Reachability Checking Example

The example can be checked using the command path/to/pblast.opt example.c. The output
is “No error found. The system is safe :-)”. Notice that knowing the values of x and y
is not necessary to prove that the ERROR label is never reached. When the condition in
the second if-expression is replaced with x >= 0, the tool will output “Error found! The
system is unsafe :-(".



4.2 Assertion Checking

Reachability analysis can be used for checking assertions [26] statically in the source
code. Assertions are usually checked at runtime during testing, however, they can be
verified with BLAST by using assert.h header that comes with the toolkit. The definition
of the assert function is shown in the figure 5.

void assert(int b) {
if ('b) {
ERROR: goto ERROR;
}
}

Figure 5: Assertion Checking as Reachability

4.3 Correct Locking

For concurrent programs it is important to have shared resources protected from non-
synchronized access. That is, when the thread will access a shared resource it must first
acquire a lock. After finishing with the resources the thread must release the lock. Thus
locking and unlocking actions should be done in an alternating sequence.

Locking problem can be also expressed using program reachability by replacing locking
and unlocking with the following function definitions [22] in the figure 6.

lock() { unlock() {
if (LOCK == 0) { if (LOCK == 1) {
LOCK = 1; LOCK = 0;
} else { } else {
ERROR: goto ERROR; ERROR: goto ERROR;
} }
} }

Figure 6: Locking as Reachability

Here LOCK is a global variable for tracking the state of the lock. For example, if the lock
is already held the value of LOCK is 1 and trying to acquire lock second time without
unlocking first will lead to the ERROR label. To check correct locking it is therefore
sufficient to check whether those ERROR labels are not reachable. The program can be
rewritten to use these definitions manually or using the BLAST query language [13].
There is a practical study of applying the toolkit to the Linux kernel source in [24].

5 Issues with BLAST

Although [2, 11, 13, 14] are touting the BLAST project as a huge success in software
model checking, there have been some reported difficulties in applying it to practical



problems.

Report [22] applies BLAST to a simple linked-list library and concludes that its pointer
analysis capabilities are still not sophisticated enough. Pointer analysis (alias analysis)
is a rather expensive component of static analysis [25]. The BLAST version was 1.0 and
it is likely that things have improved this far. The current version of BLAST is 2.5.

Another study [24] checks memory safety and correct locking behavior of Linux device
drivers with BLAST 2.0. Similarly to the previous study, pointer analysis capabilities are
lacking for proving safety in many cases. The biggest problem seems to be with function
pointers.

Both articles reported problems with usability and documentation. The analysis process
failed many times with cryptic uninformative error messages. For the second study
this required manual rewriting and simplification of the input source code until the tool
accepted it.

The second study also suggested that BLAST should accept the same arguments as the
compiler and should automate the required preprocessing steps of the source code as
this would make it easier for a developer to apply the tool.

6 Related work

A number of software model checkers other than BLAST have been developed in the last
decade. Some of them will be described in brief details. Although the list of software
described here is more-less random and certainly does not represent all software model
checkers available, it illustrates the usage of the ideas introduced above.

6.1 Groove

Groove is a model checker for object-oriented systems (Java). It is uses similar methods
as described above and uses CT logics directly. It does not employ state space abstrac-
tion. The state space transition system is represented as a call graph and explicit graph
transformation rules on it. The representation is later turned into a Kripke structure and
the standard CTL algorithm is applied. Groove does not scale well to larger programs
[3]. Abstraction (with respect to graph transitions) can be still implemented as described
in [4].

6.2 SPIN

SPIN (Simple Promela Interpreter) is a general verification system that is specialized for
the design and verification of asynchronous process systems. It accepts system specifi-
cations written in PROMELA (Process Meta Language) verification language. SPIN uses
LT logics (by translating it to Biichi automaton [1, p. 122], then applying optimized
depth-first graph search) and is most suitable for verification of highly concurrent soft-
ware like distributed operating systems. SPIN can be easily extended to construct more
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advanced/specific tools [7]. Instead of state space abstraction it uses a partial order
reduction method to reduce the number of states that must be explored to complete a
verification. Partial order reduction is an alternative method to speed up the model
checking process [8].

6.3 PathFinder

PathFinder is a model checker for Java programs. It translates Java program into a
PROMELA model which is input to the previously described SPIN model checker. The
state space of the generated PROMELA model corresponds directly to the state space
of the translated Java program. The model is checked for deadlocks and assertion vio-
lations. PathFinder is developed by NASA. Previously in NASA, the SPIN system had
been successfully used in verification of multithreaded operating system of Deep Space
1 spacecraft (written in Common Lisp instead of Java). However, PathFinder scalability
is limited by the SPIN model checker and it has been only applied to programs with up
to 2000 lines [10].

6.4 MAGIC

The MAGIC (Modular Analysis of Programs in C) approaches verification by decompos-
ing large programs into modular parts that reflect the modularity in the software design.
The verification procedure is defined as weak simulation between the specification and
model, i.e. the specification is defined using state charts and the model is a finite state
machine derived from the code using predicate extraction in combination with abstrac-
tion [20]. The predicate abstraction in MAGIC is similar as described in [9, 19]. The
checking of simulation relation between the specification and the model is reduced to
boolean satisfiability and thus highly efficient SAT solvers can be used.

6.5 SLAM

SLAM (Software, Languages, Analysis, and Modeling) is an analysis engine from Microsoft
Research. The main goal of the project was to create a tool for automatic checking that a
C program correctly uses the interface to an external library. SLAM was the first model
checker to implement counterexample-guided predicate abstraction refinement (an im-
plementation of more general CEGAR principle) [5, 6]. The ideas used in the SLAM
project were later largely improved by the BLAST tool [2]. SLAM is internally used in
the development of device drivers in Microsoft and is available as a part of Windows
Driver Development Kit for third-party driver developers [6].

More detailed overview, including the direct comparison between SLAM and BLAST
can be found in [23].
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7

Conclusions

Although model checking as a verification method is commonly used for computer
hardware it can be used for software verification as well. The techniques of model check-
ing are cleverly employed in the BLAST program analyzer which is a scalable and effi-
cient model checker for C language programs. The described analyzer can be used for
proving various interesting properties of computer programs. Current problems with
the toolkit are the lack of user documentation and shortcomings in pointer analysis and
general usability.
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