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Abstract. This is a survey of sound race detection techniques for C.
While the basic lockset algorithm is at the core of most analyzers, the
key challenge is to propagate pointer information context-sensitively. The
bulk of the paper is, therefore, concerned with different solutions to the
problem of context-sensitive pointer alias analysis in the context of race
detection. These are the solutions used in the Locksmith, CoBE, and
Relay analyzers. Other problems for sound static race detection are then
discussed.

1 Introduction

A multiple access data race is a problem in low level concurrent programming
where two threads simultaneously access the same shared memory location and
at least one of the accesses is a write. Data races are known to kill innocent
patients and leave unsuspecting citizens without electricity. As races are notori-
ously difficult to detect through testing, data race analysis has the potential to
alleviate much suffering in the world. Unfortunately, race detection is also very
difficult, but in the last couple of years some very impressive data race analyzers
have been presented [6, 7, 10,15].

The fundamental technique in static data races detection is to ensure that
for each shared memory location, there exists (at least) one lock which is held
whenever a thread accesses that memory location. Since at most one thread
can hold a lock, this ensures mutually exclusive access to data and eliminates
races of the kind specified above. In order to determine whether a common lock
exists, one may compute the set of locks that are held by the executing thread
for each program point. As execution may reach a given program point along
many different paths, a sound analysis must conservatively track only locks that
are held across all paths reaching that point. Having computed a set of definitely
held locks, one only has to check the intersection of these locksets at each point
where a given memory location is accessed. If the intersection is non-empty, one
can conclude that there is no race on that given memory cell; otherwise, the
analysis warns that there is a potential data race.

In order to apply this basic idea to analysing real C programs, one has to
address the following challenges. First of all, determining statically the memory
locations that are being accessed is not a trivial task. Even without dynamic
memory allocation, pointers to static global variables need to be resolved. If two



int x; mutex m1 = MUTEX_INIT;

int y,z; mutex m2 = MUTEX_INIT;

void munge(int *v, mutex *m) {

lock(m); (*v)++; unlock(m); }

thread t1() { thread t2() {

munge (&x, &m1); munge(&x, &m1);

munge (&y, &m2); munge(&y, &m1);

munge (&z, &m2); } munge(&z, &m2); }

Fig. 1. Example illustrating the need for context-sensitive pointer analysis [10].

distinct pointers, p and q, may alias, i.e., point to the same memory location,
then syntactically distinct accesses, e.g., p→data and q→data, may partake in
a data race. What makes this particularly challenging is that the locking and
unlocking operations of C are not lexically scoped, so the information about
pointers needs to be tracked context-sensitively, as will be illustrated through
the following example.

Fig. 1 contains a simple program with two threads that execute calls to a
munge() function. This function increments a shared variable while acquiring and
releasing a mutex; both the variable and the mutex are given through pointer
parameters. The effect of the function depends on the context in which it is
called. If these calling contexts are conflated, the analysis will fail to deduce
anything sensible about the program because v will be considered as pointing to
any of the three shared variables, while m is considered as pointing to any of the
two locks. As such functions commonly occur in real programs, context-sensitive
propagation of pointer values is critical. Unfortunately, context-sensitive pointer
information is very expensive to compute. The brute force approach to analyze
the called function for each value of its parameters may not scale very well to
large programs.

In this paper, we shall study three different solutions to this problem, solu-
tions that are used in three different data race analyzers for C. In Section 2, we
consider the type-based label flow used by Locksmith. In Section 3, we turn
to bootstrapping to speed up pointer analysis in the CoBE framework. And in
Section 4, we look at relative locksets that enable Relay to scale to millions of
lines of code. Context-sensitivity is perhaps the main challenge for static race
detection of C, but it is naturally not the only problem, as we will see in Sec-
tion 5.

2 Type-Based Flow Analysis

The Locksmith analyzer [10] annotates the program with a type and effect
system that compute everything needed for sound race detection. Type-based



program analysis is an interesting topic which is extensively studied in its own
right. Formulating an analysis as a type system allows the application of many
techniques from type theory to reason about properties of the analysis. For
race detection, polymorphism allows the context-sensitive propagation of pointer
information into functions, such as munge in Fig. 1, without needing to clone
the body of the function [2]. Instead, a polymorphic function can be given a
parametric type which is instantiated at each call site. As type systems are
formulated for languages with higher-order functions, context-sensitive handling
of function pointers comes for free.

The general approach of the Locksmith analyzer is to accumulate access-
lock correlation constraints. The analyzer collects for each access to a memory
location ρ with the set of held locks L a correlation constraint ρ . L. Due to
indirect accesses via pointers and parameter passing, other forms of constraints
are also required, as will be explained below. Given a set of constraints C, the
notation C ` ρ . L indicates that the correlation ρ . L can be derived from
the constraints in C. The set S(C, ρ) = {L | C ` ρ . L} denotes the set of all
locksets that were held when accessing ρ. The location ρ is safely protected by
a mutex, whenever the intersection of all locksets is non-empty:

⋂
S(C, ρ) 6= ∅.

The accessed data is then said to be consistently correlated with the lockset. For
the example program, the following correlation constraints are inferred:

t1 : ρx . {m1} ρy . {m2} ρz . {m2}
t2 : ρx . {m1} ρy . {m1} ρz . {m2}

The locations ρx and ρz are consistently correlated with the locks m1 and m2,
respectively. As the intersection for ρy is empty, Locksmith reports a race on
the variable y. In order to obtain such information, one has to compute the set
of held locks, generate all the constraints, and solve them.

As the focus of this survey is on the context-sensitive propagation of pointer
information, we will first briefly discuss a few other features of the analyzer. The
set of definitely held locks are computed flow-sensitively, meaning the control flow
of the program is taken seriously; in contrast, pointer information is propagated
flow-insensitively, meaning the analysis computes an over-approximation of all
assignments within the body of a function independent of the order in which the
assignments may be executed. Consider the following example:

void f() { int *p;
p = &x; lock(&m1); *p = 41; unlock (&m1);
p = &y; lock(&m2); *p = 42; unlock (&m2); }

Locksmith will infer that p may point to either x or y all over this function.
On the other hand, it computes the set of locks for each program point: when
assigning 41 to x it is {m1}, and when assigning 42 to y it is {m2}. Due to flow-
insensitivity, Locksmith will infer the false constraints ρx.{m2} and ρy .{m1},
which lead to a false alarm being reported. However, the coding style in this
example, traversing the same pointer over different stack-allocated variables, is
not that common, hence it is becoming increasingly popular in static analysis to
ignore the flow within functions.



Assign
C;Γ ` e1 : ref ρ(τ) C;Γ ` e2 : τ

C;Γ ` e1 := e2 : τ

Seq
C;Γ ` e1 : τ1 C;Γ ` e2 : τ2

C;Γ ` e1; e2 : τ2

Sub
C;Γ ` e : τ1 C ` τ1 ≤ τ2

C;Γ ` e : τ2

Sub-Ref
C ` ρ ≤ ρ′ C ` τ ≤ τ ′ C ` τ ′ ≤ τ

C ` ref ρ(τ) ≤ ref ρ′
(τ ′)

Fig. 2. Selection of monomorpic (intra-procedural) typing rules.

The flow-sensitive computation of the locksets is essentially achieved through
a data flow analysis over the control flow graph of the program. In the type-based
approach this amounts to using state variables to achieve flow-sensitive analysis.
This allows the use of instantiation constraints for context-sensitive propagation
of locksets, and there is additional cleverness with respect to function calls.

The flow-insensitive propagation of pointers within a function is achieved
through sub-typing [11]. The idea is that each location has a type which asso-
ciates it with a location label ρ; for example, the type of &x is ref ρx (int), a cell
ρx containing an integer. Whenever there is a read or write to a variable of type
ref ρ(τ), one generates the constraint ρ . L where L is the current lockset. The
question is how to deal with indirect accesses through pointers.

Fig. 2 contains the relevant rules for intra-procedural pointer analysis. The
rule for assignment states that a value of type τ can be stored into a memory cell
of the same type ref ρ(τ). Thus, in order to type the statements p = &x; p = &y,
we need p to be of type ref ρp(τ) where τ is equal to ref ρx(int) as well as
ref ρy (int). This is only possible using the sub-typing rules, with which we can
give the type C;Γ ` p : ref ρp(ref ρxy (int)) if C ` ρx ≤ ρxy and C ` ρy ≤ ρxy
for a freshly generated location label ρxy. Inferring the type of the program thus
requires that we generate such constraints. Then, these constraints are resolved
using resolution rules such as the following:

C ∪ {ρ ≤ ρ′} ∪ {ρ′ . L} ∪ ⇒ {ρ . L}

where X ∪⇒ Y is short-hand for X ⇒ X ∪ Y . This rule propagates an access
through a pointer to all its sub-types, so that from {ρxy.L, ρx ≤ ρxy, ρy ≤ ρxy},
we also have ρx . L and ρy . L.

We now add polymorphism to the type system in order to handle function
calls context-sensitively. The traditional approach to polymorphic type inference
universally quantifies all type variables that do not occur freely in the environ-
ment when a function is defined. Polymorphic types are then instantiated at
each usage site by generating fresh variables and substituting in the type all
occurrences of universally quantified types with the newly generated ones. In
the context of constraint-based type inference, this involves the copying of the
constraint sets, which can be quite large. Furthermore, copying the set of con-
straints for each call site would not constitute a significant gain over the brute



force approach of analyzing a separate copy of the function at each call. Instead,
the flow of parameters into and out of a function can be captured as instanti-
ation constraints τ1 �ip τ2 where p is the polarity (direction of flow) and i is
the unique identifier for each call-site. Note that this is a true instantiation in
the sense that for each call site, there must exist a substitution φi such that
φi(τ1) = τ2; additionally, it expresses flow of information through the use of
polarities.

It may be helpful to look at the two critical constraint resolution rules to
understand the use of instantiation constraints.

C ∪ {ρ1 �i− ρ0} ∪ {ρ1 ≤ ρ2} ∪ {ρ2 �i+ ρ3} ∪⇒ {ρ0 ≤ ρ3} (1)

C ∪ {ρ �ip ρ′} ∪ {ρ . L} ∪ {L �i L′} ∪⇒ {ρ′ . L′} (2)

The first rule propagates flow information in and out of a function context-
sensitively, while the second propagates location and lock information into the
function such that correlations constraints within the function are related to the
values of parameters that went in. Locks do not need polarities because locks
are unified as soon as there is flow between two lock labels. Polarities must take
care of the flow in the presence of higher-order functions. Consider first the case
where we have the following definitions:1

int *bar () { return &x; }
int foo (int *(*fp)()) { return *fp(); }

When we now apply foo(bar), we need to register that the location ρx has
flowed into the function foo from the parameter bar. On the other hand, for the
following definitions we have flow in the opposite direction:

int bar (int *p) { return *p; }
int foo (int (*fp)(int *)) { return fp(&x); }

Here, when we apply foo(bar), the location ρx flows from foo into bar. We can
summarize the two cases in a table and then generalize.

type of foo type of bar constraint
∀ρ.(void → ref ρ(int))→ int void → ref ρx(int) ρ �i− ρx
(ref ρx(int)→ int)→ int ∀ρ.ref ρ(int)→ int ρx �i+ ρ

In general, the polarity of the argument to a function is flipped, denoted by p̄.
An instantiation constraint is generated for the function type at each call site
and is then propagated according to the instantiation rule to handle polarities:

Inst-Fun
C ` τ1 �ip̄ τ2 C ` τ ′1 �ip τ ′2

C ` τ1 → τ ′1 �ip τ2 → τ ′2

Inst
C ` τ �+ τ ′

C;Γ, f : ∀~l.τ ` f i : τ ′

1 Definitions in C are read from the inside out; () has a higher priority than *. The
parameter int *(*fp)() is a pointer to – a function that returns – a pointer to –
an integer.



The rule for instantiation is simplified to ignore the free variables that could not
be universally quantified at the let-binding.

We now return to the motivating example of Fig. 1. The type of the munge()
function is C;Γ ` ∀ρv,m . ref ρv (int)× lock(m)→ void where C ` ρv . {m}. We
consider the instantiation constraints generated in order to type thread one:

ref ρv (int)× lock(m)→ void �1
+ ref ρx(int)× lock(m1)→ void

ref ρv (int)× lock(m)→ void �2
+ ref ρy (int)× lock(m2)→ void

ref ρv (int)× lock(m)→ void �3
+ ref ρz (int)× lock(m2)→ void

We resolve the first one to ref ρv (int)× lock(m) �1
− ref ρx(int)× lock(m1) which

(by obvious rules I have not shown) simplifies to {ρv �1
− ρx, m �1 m1}. When

this is conjoined with the correlation constraint ρv . {m}, the constraint reso-
lution rule (2) allows us to infer C ` ρx . {m1}. Analogously, we obtain all the
other constraints required to check for races.

This is almost the whole story; a very prominent feature of the type system
has been deliberately ignored in this presentation and eradicated from the typing
rules. Locksmith uses an effect system to enforce linearity among locks. This
is required for sound analysis because a dynamically allocated lock might be
re-allocated:

mutex *m = malloc (); mutex_init(m);
lock(m); x++; unlock(m);
m = malloc (); mutex_init(m);
lock(m); x++; unlock(m);

Here, the lock pointer m is not referring to the same lock. A sound analyzer
should consider this, even if it rarely occurs in real programs. In fact, the Lock-
smith authors turn it off when analyzing real programs because the analysis
does not scale with this feature turned on.

3 Bootstrapping

Kahlon et. al [6] present a technique for fast must-alias analysis of lock pointers
and a shared variable discovery algorithm. Unfortunately, it is unclear how the
ideas presented in the paper apply to the example of Fig 1, where may-aliasing
of pointers to shared variables and must-aliasing of lock pointers are to be jointly
propagated context-sensitively.

The general approach is to first identify shared variables and the location
where these shared variables are accessed. If the same shared variable can be
accessed by two different threads simultaneously and the set of locks they hold
are disjoint, a race warning is emitted. The second step is, therefore, to iden-
tify the set of held locks. Here, a sophisticated must-alias analysis is proposed
based on bootstrapping and procedure summarization. Finally, warning reduc-
tion techniques are applied.



The suggested method for shared variable discovery is somewhat puzzling.
The idea seems to be that one should conservatively consider all global variables
and pointers passed to external functions as shared. Thus much makes sense, but
in order to deal with local aliases to shared data, aliased pointers are also con-
sidered as shared (with the minor refinement that only those pointers are added
which are instrumental in resulting in a true access rather than just propagating
address information.) This is surprising because when there is an indirect access
to a shared variable through a pointer, we would expect an attempt to resolve
the pointer, rather than register the access with the pointer and ensure that
accesses to the pointer are safe.

The must-alias analysis of pointers is based on the idea of Bootstrapping alias
analyses [3]. This is an approach marketed by Vineet Kahlon to “leverage the
combination of divide and conquer, parallelization and function summarization.”
The key idea is to use a succession of alias analyses of increasing precision such
that the rough partitioning of the first alias analysis allows the more precise
ones to run on a much smaller problem instances. This only works if one can
prove that the equivalence classes computed by the more coarse-grained analyses
and the slices of programs that one considers for each cluster suffice to correctly
compute the refined alias information at the next stage.

One suitable pointer analysis to begin the bootstrapping process is Steens-
gaard’s alias analysis. This is nearly identical to the flow-insensitive pointer
analysis from Section 2, except instead of introducing sub-typing when a pointer
p may refer to two distinct locations, the locations are unified, i.e., considered as
a single abstract location. This results in a partitioning of pointers into equiv-
alence classes. Practically, the partitioning means that one only need to deal
with a single equivalence class at a time, and for locks this typically involves 2–3
pointers.

Having clustered the set of pointers, more expensive must-alias analysis can
be applied. The analysis proposed in the article is based on Maximally Complete
Update Sequences which can be used to characterize aliasing. These can then
be used to compute a procedure summary, i.e., a finite representation of the
abstract effect of applying that function. A summary is computed once and for
all and then applied whenever the function is called, achieving context-sensitivity
without the cost of cloning, as was previously achieved through polymorphism.
We begin with the notion of update sequences which are central to this approach.
The goal is to characterize must-aliasing in terms of chains of assignment: two
pointers p and q must alias precisely when there exists some location a and
chains of assignments π1 and π2 that are semantically equivalent to p = a and
q = a. This idea is formalized as follows.

Definition 1 (Complete Update Sequence [3]). Let λ : l0, . . . , lm be a se-
quence of successive program locations and let π be the following sequence of
pointer assignments along λ:

li1 : p1 = a0; li2 : p2 = a1; . . . lik : pk = ak−1;



Then π is called a complete update sequence from p to q leading from locations
l0 to lm if the following conditions hold:

– a0 and pk are semantically equivalent (i.e., evaluate to the same location) to
p and q at locations l0 and lm, respectively.

– for each j, aj is semantically equivalent to pj at lij ,
– for each j, there does not exist any (semantic) assignment to pointer aj

between locations lij and lij+1 ; to a0 between l0 and li1 ; and to pk between
lik and lm along λ.

Thus, a complete update sequence from p to q (leading from l0 to lm) means
that executing the code snippet between l0 and lm has an effect on q which is
equivalent to performing the assignment q = p at location lm.

int main() {
int *a, *b, *c;
int **x, **y;
1: b = c;
2: x = &a;
3: y = &b;
4: *x = b; }

Fig. 3. Update Sequence

Kahlon gives the example shown in Fig. 3 to
illustrate the idea. We can see that line 4 by itself
is a complete update sequence from b to a (lead-
ing from 1 to 4) because executing the snippet
will result in assigning b to a though the indirect
assignment on line 3. Note that the sequence is
effectively equivalent to a = b being performed at
the end, but the single assignment does not ad-
equately capture the effect of these lines on the
variable a because b has obtained its value from
c in the first line, which we have ignored. In contrast, the update sequence 1, 4 is
also a complete update sequence leading from 1 to 4, but it is from c to a. This
update sequence really captures what happens to the pointer a when executing
lines 1 to 4. Such update sequences are called maximally complete.

Formally, the maximally complete update sequence for a pointer q leading
from location l0 to lm along λ is the complete update sequence π of maximum
length, over all pointers p, from p to q (leading from locations l0 to lm) occurring
along λ. We can now characterize aliasing as follows: pointers p and q must alias
at program point l if and only if there exists a pointer a with maximally complete
update sequences to both p and q. Since the goal is to obtain an efficient summary
of a procedure’s effect on aliasing, the summaries track maximally complete
update sequences.

The summary of a function f is the set of triples of the form (p, l, A), where
p is the pointer of interest, l is an (important) program point, and A is the
set of all pointers q such that there is a complete update sequence from q to p
along every path leading from the entry of the function to the program point
l. This summary is computed through a process that is reminiscent of weakest
pre-condition computation: we start with the summary of (p, l, {p}) and work
backwards in the control flow graph so that an assignment p = q has the effect
of replacing p with q in the set A giving us (p, l, {q}). When we reach the entry
point of the function we have computed the summary for the aliases of p at
location l. The effect of applying a function on the pointer p is the summary for
that pointer at the exit location. Thus, when the analysis needs to consider the



effect of a function call, it looks up the summary for each pointer in A. It would
be interesting to apply the algorithm to the example in Fig. 3, but unfortunately
the algorithm, as described in the paper, does not consider the case of indirect
updates. (The example is not from the same paper.)

A more serious problem is that this approach does not handle the running ex-
ample from the introduction: although pointers are updated context-sensitively
at each call site, the different calling contexts are not distinguished within the
body of the function. The may-aliasing of shared variables are not really dis-
cussed in the paper. In a more recent paper, Kahlon et al. [5] propose a Context
Sensitive Call-Graph construction, but in order to deal with our motivating ex-
ample, the must- and may-alias information need to be propagated into functions
to infer correlations context-sensitively. In the next section, we will study a sum-
marization approach which achieves this goal by summarizing locksets together
with guarded accesses.

4 Relative Locksets

The Relay analyzer [15] provides a very simple and elegant solution to the
problem of context-sensitive pointer analysis. It relies on the concept of a relative
lockset to describe the changes in the locksets relative to the function entry point.
It also accumulates accessed memory locations relative to the entry point, thus
obtaining a set of guarded accesses which are expressed in relation to the entry
parameters of the function. This summarizes the effect of the function, which is
then used at call sites by plugging in the values of the parameters at any given
calling context. Consider the following function.

void foo(struct node *x) {
lock(x→ mtx1); x→ f = 7; unlock(x→ mtx2);

}

Its summary would consist of two components: first, the relative lockset at the
end of the call, which is to add x→mtx1 and remove x→mtx2 from the set of
mutexes of the caller; and second, a list of relative accesses, which in this case
is just the access to x→f with the relative lockset of adding x→mtx1 to set of
mutexes of the caller.

Functions are processed bottom-up in the call graph. Any function whose
callees have been summarized can be analyzed in separation; this allows par-
allelization of the analysis. For each function, three analyses are performed:
symbolic execution, relative lockset analysis, and guarded access analysis. The
foundation for the other analyses is laid by the symbolic execution which aims to
express the values of program variables in terms of the “incoming” values of the
function’s parameters. The analysis tracks for each program point a symbolic
map Σ : O→ V from symbolic L-values to symbolic R-values defined as follows.

o ::= x | p | o.f | ∗o L-values
v ::= ⊥ | > | i | init(o) | may{os} R-values



R-Values include ⊥ (unassigned), > (unknown), integers, the incoming (initial)
value of some L-Value, and a may-points-to set of L-Values. For the symbolic
L-Values, the meta-variable x ranges over program variables, while p ranges over
representative summary nodes computed by an external flow-insensitive (hence
very fast) points-to analysis. This is primarily to ensure termination. Consider
the following example:

void foo(struct node *x) {
struct list *y = x→ first;
while (y) { y→ data = 5; y = y→ next; }

}

Before executing the loop the mapping is [x 7→ init(x), y 7→ may{x→first}],
where we use o→f as a synonym for (∗o).f . After executing the loop, the pointer
p may now point to a possibly infinite set {x→first, x→first→next, x→
first→next→next, . . . }, which one may want to simply replace with a single
summary node. The main idea of relative locksets is independent of the precise
symbolic execution analysis.

The second step is the computation of relative locksets using the information
from the symbolic execution to evaluate lock expressions. A relative lockset L
is the pair (L+, L−) of definitely acquired and possibly released locks since the
beginning of the function. The ordering is as expected with a must- and may-set:

(L+, L−) v (L′+, L
′
−) ⇐⇒ L+ ⊇ L′+ and L− ⊆ L′−

The relative lockset at the exit of a function f is the summary lockset Lf which
is used whenever the function is invoked. The analysis treats everything as func-
tion calls with lock(&l) and unlock(&l) being simulated as functions with
summaries ({l}, ∅) and (∅, {l}), respectively. Summaries are applied according
to the following scheme: rebind the formals in Lf to the values of the argu-
ments computed by the symbolic execution and update the lockset before the
call L with the effect of the summary Lf . The effect of a call f(a), where a is
the argument list and p is the list of formal parameters of f , is computed as
update(L,Lf [p 7→ eval(a)]) where

update((L+, L−), (L′+, L
′
−)) = ((L+ ∪ L′+) \ L′−, (L− ∪ L′−) \ L′+)

This updates the lockset by adding the effect of the summary and then removing
any lock that may have been released from the set of definitely held locks as well
as removing any lock that the called function definitely ends up holding from
the set of released locks.

Finally, the set of guarded accesses are computed for each function. A guarded
access is a triple a = (o, L, k), where o ∈ O is an L-value being accessed, L is
the relative lockset and k indicates whether the access was a read or a write.
The propagation of guarded accesses by using summaries is very similar to the
relative locksets, although computing the set of accesses does not need to be
flow-sensitive, but can simply traverse assignments in any order.



Let us return to the example program from the introduction. The guarded
access for munge is {(∗v, ({m}, ∅),write)} which at each instantiation is rebound
to the arguments and the lockset is updated with the relative lockset of the
caller, which in this case is empty. Instantiating the arguments requires resolv-
ing the may-points-to sets: ∗v[v 7→ eval(&x) = may{x}] = x. Here, we had a
singleton points-to set, but in principle a guarded access of a function may need
to be instantiated to multiple accesses if the caller gave an ambiguous pointer
as parameter. In our simple example, we obtain for t1 and t2:

t1 : {(x, ({m1}, ∅), write), (y, ({m2}, ∅), write), (z, ({m2}, ∅), write)}
t2 : {(x, ({m1}, ∅), write), (y, ({m1}, ∅), write), (z, ({m2}, ∅), write)}

Race warnings are generated by considering pairs of thread entry points (here
there is only one such pair: t1 and t2) and identifying whether there exists
a pair of accesses a1 and a2 that conflict, i.e., their L-values alias, but the
locksets are disjoint (and at least one is a write). In the example, the accesses
{(y, ({m2}, ∅), write) and {(y, ({m1}, ∅), write) conflict, hence the correct warn-
ing is flagged.

5 Remaining challenges for static race detection

This paper has focused on the main challenge of static race detection for C: mak-
ing context-sensitive alias analysis scale. In this section, we will briefly consider
other issues in race detection. First, we face the fact that mutexes are not the
only means to ensure mutually exclusive access to data. Second, we consider the
additional challenges to pointer analysis posed by dynamic memory allocation.
Finally, we consider the challenges of dealing with slightly different locking oper-
ation, e.g., semaphores and reader-writer locks, as well as cases when control flow
depends on the acquired locks. These problems are based on the classification of
false alarms by the authors of Relay.

Synchronization-Sensitivity. The safest way to ensure freedom from races is to
only run a single thread. Even in a multi-threaded programs, a thread may
not be running in parallel with all other threads at all times. There are many
mechanisms to achieve lock-free synchronization. These are often very hard to
analyze, as the following example will illustrate, but something can be done by
attempting to track thread identities and inferring which threads may possibly
run in parallel.

Consider, as an example [10], the scenario where we have a main thread
with k worker threads. The main thread maintains an array A with k elements,
one for each thread, such that A[i] is manipulated by thread i. Furthermore,
suppose the main thread initializes the array before spawning worker threads
and processes the array after all workers have terminated. Although there is no
locking, the program is free from races because the main thread may only access
the array when the workers do not and the workers follow a convention that
ensures mutually exclusive access.



There are typically distinct temporal phases in a program, such as initial-
ization, processing, and post-processing. An analyzer must, therefore, determine
not only which threads may run in parallel, but whether two given accesses may
actually conflict, taking into account which threads accesses what data at what
time. In the example, the main is still running when the worker threads start,
but it no longer touches the array. The conventional approach is to attempt to
partially order statements when it is clear that something must happen before
another operation. A race can then only occur on two accesses that lack or-
dering constraints. This is exploited by many dynamic analyzers, such as the
Intel Thread Checker. For static analysis of C, acquisition histories, proposed
by Kahlon et al. [4], is an interesting approach to improving synchronization-
sensitivity.

Although some progress has been made in this regard [5], much of the prac-
tical synchronization in programs are based on deeper properties of the program
logic, or rely on various spooky synchronization primitives, like signals, condi-
tional variables, wait-queues, etc.

Races in the Heap. It should come as no surprise that dynamic memory allo-
cation is extremely difficult for static analyzers. Since many serious program
errors relate to memory safety, the analysis of the heap is currently a highly
active area of research. When it comes to race detection tools, most of them still
rely on summarizing all data allocated at a given program point into a single
representative “blob”. This can be highly imprecise: the alias analysis used by
Relay had in the extreme case merged over 10,000 objects into a single blob.

The problem with summarization for race detection is that on the one hand,
we have to treat an accesses to a blob as an access to all the objects it represents,
while on the other hand, we must consider the locking of a blob as taking none of
the locks. This asymmetry is a consequence of having to ensure that if two thread
may access the same element, they must lock the same lock. This problem can
be illustrated even without dynamic memory. It is quite natural for an object
to contain a dedicated lock which ensures mutually exclusive access to its data
fields, as in the following example:

struct { int datum; mutex mtx; } A, B;
if (*) p = &A; else p = &B;
lock(p→ mtx); p→ datum ++; unlock(p→ mtx);

After the non-deterministic branching the pointer p may point to either A or
B, so when we acquire the lock p→mtx we may hold either one of them, and
thus neither of them is definitely held. Nevertheless, it is obvious that the above
code is correct; after all, the same pointer is used for both the access and for
the locking. The situation is precisely the same when p points to a blob of
dynamically allocated memory.

The Locksmith analyzer can deal with the per-element locking just de-
scribed by means of existential quantification in their label flow [9]. This requires
programmer annotations to explicitly introduce quantification whenever an el-
ement of a blob should be treated as a concrete representative for elements in



the blob. In order to avoid annotations, one can use pointer must-equality anal-
ysis to reason about the access and the lock relative to the root pointer (e.g.,
p→datum is accessed while holding p→mtx) and instantiate the found invariant
to all elements that p may point to, including blobs [13].

There are naturally many complicated locking schemes. Naik and Aiken [8]
discuss different granularities of locking schemes from coarse-grained to fine-
grained. They propose disjoint reachability analysis to deal with medium-grained
locking, e.g., one lock for a linked list. The technique, which is based on condi-
tional aliasing for Java, is hard to transfer to the C scenario where the lock for a
linked list may not be contained in the head object, making conditional aliasing
unhelpful. If the locks can be statically named, region analysis can be used to
verify medium-grained locking schemes such as synchronized hash-tables [12].

There is an additional concern with dynamically allocated memory which
reminds of the problems of synchronization sensitivity. A dynamically allocated
object often has its own life cycle, such as initialization, consumption, and de-
struction. Although we consider a dynamically allocated object part of the global
heap, a freshly allocated object is only accessible by the thread that allocated it
until the thread publicizes the element by connecting it to the rest of the heap,
e.g., adding it to a linked list. Similarly, near the end of an objects life-time, it
may be privatized by being removed from the data structure where it lived, so
that it is only accessible by a single thread.

Discovering when a freshly allocated object becomes shared is much easier
than dealing with privatization. For example, Locksmith performs an effect
analysis to discover when allocated variables escape the thread. Once an object
has escaped and is part of the heap, one can only discover its removal through
careful analysis of the heap. This requires the use of scalable concurrent shape
analysis of low-level C, which in spite of much recent progress is far from reality.

Conditional locking and variations on locking. The authors of Relay write,
“several false warnings generated by Relay were because the program checks
some condition to determine whether to acquire locks, and later, checks a corre-
lated condition to determine whether the access should occur. Unfortunately, the
acquisition of the lock and the actual access occur in different blocks or functions
thereby introducing a path-sensitivity problem.” Path-sensitivity is the ability
of the analysis to distinguish feasible paths from infeasible one:

if (do_work) pthread_mutext_lock (&m);
if (do_work) work ++;
if (do_work) pthread_mutext_unlock (&m);

There are 8 paths in the above program, but only two are valid paths. Path-
sensitivity is also required in situations where thread creation and locking opera-
tions may fail, such as pthread’s trylock and the kernel’s lock_interruptible.
The return value is then used to correlate the different locksets that result from
potentially failing locking operation with the values of program variables. One
method for achieving path-sensitivity is called property-simulation [1], which an-
alyzes the state of the program for each configuration of the relevant property,



namely locksets. This approach is used by the Goblint analyzer to deal with
conditional locking and possibly failing locks [14].

When analyzing the Kernel, especially older versions, some synchronization
is achieved through the use of semaphores. These allow nested locking and un-
locking and count the number of times they have been locked so that the lock
is only released when all acquisitions are matched with a release. Naturally, one
can approximate semaphores as mutexes, counting the first release as a release
of the semaphore. This leads to false alarms; however, unless semaphores are
lexically scoped, semaphore locking schemes are probably undecidable.

The kernel also uses reader-writer (R/W) locks and the read-commit-update
(RCU) mechanism to synchronize linked lists. R/W-locks allow multiple read-
ers to acquire a lock, as long as nobody has not acquired for writing, in which
case only a single thread can hold the lock. R/W-locks can be dealt with fairly
easily by tracking whether a lock was acquired for reading or writing and only
considering a reader lock to guard an access if it is a read access: write accesses
while holding a reader lock are just as bad as having no lock at all. The kernel’s
RCU mechanism is usually defined in terms of R/W-locks, but the actual im-
plementation is far more efficient. Although these should be simple to handle in
principle, race detection tools tend to not deal with these variations on locking
mechanisms.
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