
The worker/wrapper transformation

Jaak Randmets

April 20, 2010

Introduction

The worker/wrapper transformation is a technique for
changing the type of computation.

Usually the aim is to improve performance by improving the
choice of data structures used.

Well known to compiler writers, but not so in the functional
programming community.

In this talk we provide systematic recipe for its use and
explore it using wide range of examples.

The basic idea

Given some (recursive) function:

f = body

the first step is to apply appropriate functions wrap and unwrap
that allow the function f to be redefined by equation
f = wrap (unwrap body). Next step is to split the function into
two by naming the intermediate result:

f = wrap work
work = unwrap body

We then elimite the mutual recursion:

f = wrap work
work = unwrap (body [wrap work / f])

The worker/wrapper transformation

We begin by defining fixed point operator in Haskell:

fix :: (a→ a)→ a
fix f = f (fix f)

In order to formalize the worker/wrapper transformation we
will use property of fixed points known as the rolling rule:

fix (g ◦ f) = g (fix (f ◦ g))

Intuitively this is correct because both sides expand to the
application g (f (g (f ...))).

The worker/wrapper transformation

Supposed we have computation defined as a fixed point:

comp :: A
comp = fix body

body :: A→ A

We wish to change the underlying type A to some other type
B.

Worker/wrapper approach to this problem is to define
conversion functions:

unwrap :: A→ B
wrap :: B → A

such that wrap ◦ unwrap = id .

The worker/wrapper transformation

comp
= { applying comp }

fix body
= { id is identity for ◦ }

fix (id ◦ body)
= { assuming wrap ◦ unwrap = id }

fix (wrap ◦ unwrap ◦ body)
= { use of rolling rule }

wrap (fix (unwrap ◦ body ◦ wrap))
= { define work = fix (unwrap ◦ body ◦ wrap) }

wrap work

The worker/wrapper transformation

Sometimes we might require a weaker property. Any of the
following assumptions is valid:

Worker/wrapper assumptions

wrap ◦ unwrap = id

wrap ◦ unwrap ◦ body = body

fix (wrap ◦ unwrap ◦ body) = fix body

In general it’s not the case that unwrap ◦ wrap = id . However,
following fusion property holds:

Worker/wrapper fusion

If wrap ◦ unwrap = id , then unwrap (wrap work) = work.

Can easily be shown by taking:

work = unwrap (body (wrap work))

The worker/wrapper transformation

The worker/wrapper transformation

If comp :: A is a recursive computation defined by comp = fix body
for some body :: A→ A, and wrap :: B → A and unwrap :: A→ B
are conversion functions satisfying any of the worker/wrapper
assumptions, then:

comp = wrap work

where work :: B is defined by:

work = fix (unwrap ◦ body ◦ wrap)

Difference lists

Difference lists is an alternative way of representing lists:

type DList a = [a]→ [a]

Naturally we need to convert to and from difference lists:

fromList :: [a]→ DList a
fromList xs = (xs++)
toList :: DList a→ [a]
toList f = f []

We observe an identity toList ◦ fromList = id :

(toList ◦ fromList) xs = xs ++ [] = xs

Difference lists

Important property of difference lists is that fromList forms a
morphism from lists to functions:

fromList (xs ++ ys) = fromList xs ◦ fromList ys
fromList [] = id

We can verify this by simple calculations:

fromList (xs ++ ys) zs = (xs ++ ys) ++ zs
= xs ++ (ys ++ zs)
= fromList xs (ys ++ zs)
= fromList xs (fromList ys zs)
= (fromList xs ◦ fromList ys) zs

fromList [] zs = [] ++ zs
= zs

Reverse

Let us consider the following definition of reverse:

rev :: [a]→ [a]
rev [] = []
rev (x : xs) = rev xs ++ [x]

As a first step we redefine rev as a fixed point

rev :: [a]→ [a]
rev = fix body
body :: ([a]→ [a])→ ([a]→ [a])
body f [] = []
body f (x : xs) = f xs ++ [x]

Reverse

Our aim is to change to computation type [a]→ [a] to a type
[a]→ DList a:

unwrap :: ([a]→ [a])→ ([a]→ DList a)
unwrap f = fromList ◦ f

wrap :: ([a]→ DList a)→ ([a]→ [a])
wrap g = toList ◦ g

We can verify the worker/wrapper assumption by:

(wrap ◦ unwrap) f = wrap (unwrap f)
= toList ◦ unwrap f
= toList ◦ fromList ◦ f
= id ◦ f
= f

Reverse

Simplifying rev

rev :: [a]→ [a]
rev = wrap work

work :: [a]→ DList a
work = unwrap (body (wrap work))

Inline wrap in body of rev .

η-expand work.

Reverse

Simplifying rev

rev :: [a]→ [a]
rev xs = work xs []

work :: [a]→ DList a
work xs = unwrap (body (wrap work)) xs

Expand unwrap.

Reverse

Simplifying rev

rev :: [a]→ [a]
rev xs = work xs []

work :: [a]→ DList a
work xs = fromList (body (wrap work) xs)

Inline body .

Reverse

Simplifying rev

rev :: [a]→ [a]
rev xs = work xs []

work :: [a]→ DList a
work xs = fromList (case xs of

[] → []
(x : xs)→ wrap work xs ++ [x])

case transformation.

Reverse

Simplifying rev

rev :: [a]→ [a]
rev xs = work xs []

work :: [a]→ DList a
work [] = fromList []
work (x : xs) = fromList (wrap work xs ++ [x])

fromList is morphism.

Reverse

Simplifying rev

rev :: [a]→ [a]
rev xs = work xs []

work :: [a]→ DList a
work [] = id
work (x : xs) = fromList (wrap work xs) ◦ fromList [x]

fromList (wrap work xs)
= unwrap (wrap work) xs
= work xs

Reverse

Simplifying rev

rev :: [a]→ [a]
rev xs = work xs []

work :: [a]→ DList a
work [] = id
work (x : xs) = work xs ◦ fromList [x]

η-expand work.

Expand fromList and ◦.

Reverse

Simplifying rev

rev :: [a]→ [a]
rev xs = work xs []

work :: [a]→ [a]→ [a]
work [] ys = ys
work (x : xs) ys = work xs (x : ys)

We have reached linear time accumulating version of list
reversing function.

Memoisation

Our approach to memoising is to observe that any function f from
natural numbers can be represented as infinite stream [f 0, f 1, ...].

unwrap/wrap

unwrap :: (Nat → a)→ Stream a
unwrap f = map f [0 . .]

= f 0 : unwrap (f ◦ (+1))

wrap :: Stream a→ (Nat → a)
wrap xs = (xs!!)

(!!) :: Stream a→ Nat → a
xs !! 0 = head xs
xs !! (n + 1) = (tail xs) !! n

Memoisation

We will show that wrap ◦ unwrap = id by expanding wrap and
making arguments explicit: (unwrap f) !! n = f n.

Base case:

(unwrap f) !! 0
= (f 0 : unwrap (f ◦ (+1))) !! 0
= f 0

Inductive case:

(unwrap f) !! (n + 1)
= (f 0 : unwrap (f ◦ (+1))) !! (n + 1)
= unwrap (f ◦ (+1)) !! n
= (f ◦ (+1)) n
= f (n + 1)

Fibonacci

Fibonacci function

fib :: Nat → Nat
fib = fix body

body :: (Nat → Nat)→ Nat → Nat
body f 0 = 0
body f 1 = 1
body f (n + 2) = f n + f (n + 1)

Fibonacci

Simplifying fib

fib :: Nat → Nat
fib = wrap work

work :: Stream Nat
work = unwrap (body (wrap work))

Apply wrap in fib.

Apply unwrap in work.

Fibonacci

Simplifying fib

fib :: Nat → Nat
fib n = work !! n

work :: Stream Nat
work = map (body (wrap work)) [0 . .]

Inline body .

Fibonacci

Simplifying fib

fib :: Nat → Nat
fib n = work !! n

work :: Stream Nat
work = map (λn→ case n of

0 → 0
1 → 1
(n + 2)→ wrap work n + wrap work (n + 1)) [0 . .]

Apply wrap.

Fibonacci

Simplifying fib

fib :: Nat → Nat
fib n = work !! n

work :: Stream Nat
work = map (λn→ case n of

0 → 0
1 → 1
(n + 2)→ work !! n + work !! (n + 1)) [0 . .]

Finally introduce f .

Fibonacci

Simplifying fib

fib :: Nat → Nat
fib n = work !! n

work :: Stream Nat
work = map f [0 . .]

where
f 0 = 0
f 1 = 1
f (n + 2) = work !! n + work !! (n + 1)

We have reached a quadratic Fibonacci function from
exponential one.

Continuations

Any type can be alternatively represented as a continuation.
Idea is to represent value x as a function λc → c x that takes
a (continuation) c and applies it to x .

type Cont a = (a→ a)→ a

We can convert from and to continuations as follows:

toCont :: a→ Cont a
toCont x = λc → c x
fromCont :: Cont a→ a
fromCont f = f id

It’s easy to show that:

(fromCont ◦ toCont) x = (toCont x) id
= (λc → c x) id
= x

Evaluation

We will now consider simple expression language:

data Expr = Val Int
| Expr ⊕ Expr
| Throw
| Catch Expr Expr

With standard evaluation function:

eval :: Expr → MInt
eval (Val n) = Just n
eval (e0 ⊕ e1) = case eval e0 of

Nothing → Nothing
Just n → case eval e1 of

Nothing → Nothing
Just m → Just (n + m)

eval Throw = Nothing
eval (Catch e0 e1) = case eval e0 of

Nothing → eval e1

Just n → Just n

Evaluation

One might expect to move to representation of type
Expr → Cont MInt. Instead we will have different
continuation for exceptional control flow and regular control
flow.

We split MInt → MInt into two and reach type:

Expr → (Int → MInt)→ MInt → MInt

Wrap/unwrap are given by:

unwrap g e s f = case g e of
Nothing → f
Just n → s n

wrap h e = h e Just Nothing

Evaluation

Worker/wrapper assumption can easily verified as follows:

(wrap ◦ unwrap) g e
= wrap (unwrap g) e
= unwrap g e Just Nothing
= case g e of

Nothing → Nothing
Just n → Just n

= g e

We can now apply the worker/wrapper transformation.

Evaluation

Simplifying eval

eval :: Expr → MInt
eval = wrap work

work :: Expr → (Int → MInt)→ MInt → MInt
work = unwrap (body (wrap work))

Inline wrap.

η-expand work.

Evaluation

Simplifying eval

eval :: Expr → MInt
eval = work e Just Nothing

work :: Expr → (Int → MInt)→ MInt → MInt
work e s f = unwrap (body (wrap work)) e s f

Apply unwrap.

Evaluation

Simplifying eval

eval :: Expr → MInt
eval = work e Just Nothing

work :: Expr → (Int → MInt)→ MInt → MInt
work e s f = case body (wrap work) e of

Nothing → f
Just n → s n

Apply body .

Evaluation

Simplifying eval

work e s f = case (case e of
Val n → Just n
e0 ⊕ e1 → case wrap work e0 of

Nothing → Nothing
Just n → case wrap work e1 of

Nothing → Nothing
Just m→ Just (n + m)

Throw → Nothing
Catch e0 e1 → case wrap work e0 of

Nothing → wrap work e1

Just n→ Just n) of
Nothing → f
Just n → s n

Evaluation

Simplifying eval

work e s f = case e of
Val n → s n
e0 ⊕ e1 → case wrap work e0 of

Nothing → f
Just n → case wrap work e1 of

Nothing → f
Just m→ s (n + m)

Throw → f
Catch e0 e1 → case wrap work e0 of

Nothing → case wrap work e1 of
Nothing → f
Just n→ s n

Just n→ s n

Evaluation

Simplifying eval

work (Val n) s f = s n
work (e0 ⊕ e1) s f = case wrap work e0 of

Nothing → f
Just n → case wrap work e1 of

Nothing → f
Just m→ s (n + m)

work Throw s f = f
work (Catch e0 e1) s f = case wrap work e0 of

Nothing → case wrap work e1 of
Nothing → f
Just n→ s n

Just n→ s n

Evaluation

By re-exposing unwrap we can perform further simplification:

case wrap work x of
Nothing → g
Just n→ s n

= { unapply unwrap }
unwrap (wrap work) x s g

= { worker/wrapper fusion }
work x s g

We can apply this multiple times.

Evaluation

Simplifying eval

work (Val n) s f = s n
work (e0 ⊕ e1) s f = work e0 (λn→

work e1 (λm→ s (n + m)) f) f
work Throw s f = f
work (Catch e0 e1) s f = work e0 s (work e1 s f)

Corresponds to abstract machine that works on two stacks,
one for normal evaluation and other for handling exceptions.

Fin.

	Introduction
	The worker/wrapper transformation
	Example: reverse
	Example: Fibonacci
	Example: evaluation

