
Alias Control with Ownership Types

Aivar Annamaa
aivar.annamaa@gmail.com

December 21, 2010

Abstract

Mainstream object-oriented programming languages allow creating net-
works of objects, where possible references and interaction patterns be-
tween objects are not statically restricted. While this provides great flex-
ibility, it also makes difficult to predict the behaviour of large programs,
because state updates in one part of the program can affect behaviour in
any other part of the program.

Parametric ownership types and Universe types are families of type
systems which use annotations to restrict references between objects in
order to increase static predictability about program behaviour. In this
paper we describe two variations of these type systems and compare their
applicability in different situations.

1 Introduction

In most object-oriented languages, objects are passed around by reference. Upon
“meeting” another object (eg. passed as method argument), its reference can
be saved and used later to read or modify referenced object’s state. This kind
of flexibility allows many powerful programming patterns, but as a downside it
brings along very unpredictable heap structure, where any object can potentially
reference and modify any other object. This situation complicates program
understanding and makes many static analyses difficult or impossible.

Creating different (and possibly distant) references to same object is called
aliasing. Difficulties with aliasing arise because when looking at (or analyzing)
the source code of a class we cannot be sure that we see all the operations that
can possibly affect the objects of this class at runtime. During program runtime,
a reference to a part of the object may reach to a different part of the program
and can be used from there in unexpected ways. Because of such coupling,
components of OO programs can’t be analyzed in modular way. Besides just

1



complicating program dynamics, aliasing is often source for security related
bugs1.

Programming languages support aliasing, because it offers several benefits. Be-
sides allowing more efficient implementations (passing objects by reference and
using destructive updates instead of copying), flexibility of aliasing can be used
in complex algorithms requiring object sharing or dynamically changing rela-
tionships between objects, as “[. . . ] aliasing creates implicit communication
channels”[14].

Although useful, the full power of aliasing is very often not needed and the pos-
sibility of it just creates extra burden for understanding the program. Even for
complex problems, some restricted form of aliasing would be usually sufficient.
To keep the benefits of aliasing without complicating simple problems, several
schemes of alias control have been proposed.

At first sight, topic of alias control seems to be related to visibility annota-
tions (like private), which also restrict arbitrary access to interior of objects.
The difference is that private can only forbid accessing this particular field
(name encapsulation), but ownership types can restrict passing around object
references (object encapsulation).

In this review we look into two type systems which restrict aliasing by differ-
entiating between references pointing to objects inside the current object vs.
references pointing outside the current object. In other words, the distinction
is made between objects owned by the current object vs. rest of the objects.

This paper is organized as follows. In section 2 we introduce some general terms
and give an overview how parametric ownership types are used to control alias-
ing. Section 3 describes universe types, which is a different take on the same
problem with different strengths and weaknesses. Section 5 concludes by com-
paring merits of and problems of either approach and listing some applications
enabled by alias control.

The review is mostly based on [9, 4, 11], which have been the most influential
of early papers describing parametric ownership types and universe types.

2 Parametric ownership types

Parametric ownership types (often called simply ownership types) annotate all
variables (including fields, method parameters) in the program with ownership
information. They enforce the owner-as-dominator encapsulation discipline:
objects can reference only objects owned by them or other objects in the same

1A standard example of this is a bug in version 1.1 of Sun’s JVM, which allowed modifica-
tion of a private array (containing information about applet’s signers) using a reference given
out for reading the information.

2



context, no incoming references from outer contexts are allowed.

Simplest usage of ownership types would be dividing fields of an object into
two distinct groups: its representation and nobody’s representation. Objects
referenced by representation fields are integral part of the parent object and
their lifetime never exceeds that of the parent. We say that parent object owns
or contains the objects of it’s representation.

Second group of fields consists of references to objects which can be thought of
living outside the current this object and may be referenced by several different
objects. Objects in this group don’t belong to any particular parent object –
they are nobody’s representation.

We use term object context to denote a group of related objects. All objects
owned by an object form a separate context and all objects without an owner
form together a global root context. Note that object context is (usually) only
a compile-time concept without any representation in runtime. In some papers,
term region can be used instead of context.

2.1 The object contexts rep and norep

Parametric ownership type system provides two special annotations – rep and
norep – to denote representation of this object (it’s owned context) and no-
body’s representation (root context), respectively. Figure 2.1 demonstrates us-
age of these two annotations using a simple example in a Java-like language.

Most important idea in this example is that a Car contains different kind of
references. Reference to an Engine is marked as representation, meaning that
the object this reference points to is owned by Car, it lives in the context of
it’s parent Car and is completely under it’s control. Note that eg. Java offers
name protection by forbidding outside access to a field declared private, but
contents of a private field can still be returned from a method. Ownership types
provide object protection – it is guaranteed that references to rep objects can’t
be accessed outside the parent object.

In this example, encapsulation of engine object forbids accidental or deliberate
violation of a precondition mentioned in method Car.go() – the engine should
be started only when the driver is present. We can be sure of it, because
according to rep annotation, all accesses to a Car’s engine are described in the
source-code of Car class 2.

Driver of a Car, on the other hand, is intended to be sharable by different
objects in the system, therefore it is marked as not belonging to any object and
is created in a special context, called root (or sometimes world). This context
is global and accessible to all objects. Therefore it can be used for eg. sharing

2Here we are ignoring subclassing, but usually it’s possible to additionally analyze all
subclasses, to check that required conditions and invariants still hold

3



class Engine {

void start() { ... }

void stop() { ... }

}

class Driver { ... }

class Car {

// an Engine belongs to Car

rep Engine engine; // so it’s part of representation of this

// a Driver doesn’t belong to Car

norep Driver driver; // it’s nobody’s representation

Car() {

engine = new rep Engine(); // create new Engine as representation of this

driver = null;

}

rep Engine getEngine() { return engine; }

void setEngine(rep Engine e) { engine = e; }

void go() {

if (driver != null) engine.start();

}

}

class Main {

void main() {

norep Driver bob = new norep Driver();

norep Car car = new norep Car();

car.driver = bob;

car.go();

// car.engine.stop(); // type error, can’t reference engine from outside Car

// car.getEngine().stop(); // type error, same reason

rep Engine e = new rep Engine();

// car.setEngine(e); type error, wrong rep

}

}

Figure 1: Car Example

4



immutable value objects and objects which provide system-wide services. In
terms of ownership contexts, standard OOP languages keep all objects in root
context.

Note that neither Engine nor Driver class definition fixes the context where
objects of that class live – context is specified in usage places as a (prefix) argu-
ment to constructor. In the same program, another class may include a Driver
as part of it’s representation and type annotations in respective variable/field
declarations are used to guarantee that a rep Driver can’t be mixed up with
a norep Driver or with a rep Driver from another context.

Last line of the main method shows, that context rep is always relative to
this object3 and objects from different rep contexts (eg. engines from different
instances of Car class) are incompatible.

2.2 Context parameters

Division of references into root context (norep) and individual object contexts
(rep) offers quite limited form of alias control – it’s not possible to express more
complex ownership relationships between objects. To provide more flexibility,
parametric ownership type system supports context parameters which are used
similarly to type parameters introduced with Java 1.5 generics4.

Example program in figure 2.2 defines and uses a stack data-structure, imple-
mented using linked list, where the concrete context of data items stored in
the stack is not prescribed. Instead, when creating a Stack instance, required
context can be specified in angle brackets as context argument. Corresponding
parameter (o) is used throughout the Stack class, just like special context anno-
tations rep or norep in previous example. Note how context specified in Main
class (norep) is passed along from Stack to Link. Only one context parameter
is required in the classes of this example, but in general a class can have any
number of these.

In addition to context parameters, Link class also demonstrates another special
ownership annotation – owner5. This annotation, just like rep, is relative to
this and it denotes the same context where this lives. In this example, the
usage of owner annotation means that all linked Link-s need to live in the same
context, and from the declaration of top Link in the definition of Stack, we
see that (in this example) this happens to be the rep context of the Stack – it
follows that all Links used by a Stack are also owned by it.

The context owner can be thought of as an implicitly defined context parameter
which is given value at construction place of an object (in form of a prefix

3To emphasize this, in some papers keyword self is used instead of rep
4In this paper, parameters given in angle brackets are context parameters – type parame-

ters, as in Java, are not used
5Called peer in some papers

5



class Link<o> {

o Object data;

// next Link lives in same context as this

// its data is owned by o

owner Link<o> next;

Link (o Object data) {

this.next = null;

this.data = data;

}

}

class Stack<o> {

// initial link is owned by stack

rep Link<o> top;

Stack() { top = null; }

void push(o Object data) {

// each new link is also owned stack

rep Link<o> newTop = new rep Link<o>(data);

newTop.next = top;

this.top = newTop;

}

o Object pop() {

rep Link<o> oldTop = top;

this.top = oldTop.next;

return oldTop.data;

}

}

class Main {

// create an owned stack containing globally shared Objects

rep Stack<norep> stack = new rep Stack<norep>();

void storeSharedObject(norep Object obj) {

stack.push(obj);

}

}

Figure 2: Context Parameters Example

6



argument) – it’s just a syntactical convenience and doesn’t have any special
semantics compared to “regular” ownership parameters.

3 Universes

Like parametric ownership type system, universe type system conceptually di-
vides object store into separate contexts, called universes. Most important
difference between these type systems is that parametric ownership restricts
what can be aliased, whereas universe types restrict how aliases can be used.
Universe type system is designed to incur less annotation overhead, and it uses
a different approach for obtaining flexibility.

3.1 Basics of Universes

Universe type system uses two ownership annotations (rep and owner6), whose
meaning is always relative to this object and a third annotation (any) with “ab-
solute” meaning. Passing ownership information around via context parameters
is not supported.

Like in parametric ownership types, rep references point to objects directly
owned by this and owner references point to objects in the same contexts as
this.

Variables or fields marked as any7 can point to objects in any context but these
references can not be used for modifying referenced object8. This approach is
based on observation that object sharing becomes problematic only when the
object is modified using different references. Therefore in universe type sys-
tem distinction is made between read-write references and read-only references.
Read-only any references can be passed around without restrictions and every
other reference can be implicitly converted to an any reference.

Type system still guarantees, that references marked with rep and owner can
be modified only by the owner of respective contexts. This property is called
owner-as-modifier.

Note that any only marks references as being read-only – usually there exists at
least one read-write reference to same object. For this reason this annotation is
semantically different from immutable annotation proposed by different authors
for different OO languages9.

6actually most Universe papers call this annotation peer, but for regularity we will call it
owner

7sometimes called readonly
8In order to distinguish between pure functions and methods with side-effects, effect an-

notations are used on methods
9In depth treatment of this issue is given by Boyland [5]. He also explains why it’s good

7



3.2 any instead of context parameters: trade-offs in flexi-
bility

Universe type system doesn’t use context parameters in order to reduce syn-
tactical complexity of required annotations. It tries to gain back flexibility by
allowing unrestricted creating and passing of read-only aliases. This gives clear
advantages when it’s not necessary to modify objects shared by any references.
If multiple read-write references to same object are required, then static infor-
mation provided by the type system is insufficient. In order to solve this issue,
universe types allow type casts which are checked at runtime. For supporting
this, actual context information is transparently stored with the objects10.

Figure 3.2 demonstrates definition and usage of a simple array based list where
it is possible to store read-only references to any objects.

In order to be as general as possible, ArrayList uses any annotations for the
data items stored in it. This allows user to store also rep and owner objects
in it. If user later wants to modify those objects, it needs to cast read-only
references returned from ArrayList to proper types. Runtime system will check
that given object actually belongs to specified context.

Note that array variable uses two ownership annotations – one for array itself
and second for contents of the array.

Annotation any is similar to norep in that it denotes globally shared objects,
but because its restriction on modification it’s not possible to express globally
accessible mutable services.

4 Issues with Parametric Ownership types and
Universes

Although there are several clear benefits in using either of the proposed type
systems, there are also several problems to tackle before they can become widely
used in commercial development.

Extra annotations can create two possible barriers: industry is not keen to
switch over to new syntax and entering annotations can be seen as unnecessary
extra work. Fortunately there are several solutions [1, 16] that show that own-
ership type systems can be specified using available syntactical features already
present in Java (generic type parameters and Java annotations). Unfortunately
these constructions are not syntactically optimal and therefore increase visual
noise in source-code considerably.

to base immutability on ownership types
10for some objects this overhead can be avoided if it’s possible to statically verify that casts

are always valid

8



class ArrayList {

// rep applies to array, any applies to array content

rep any Object[] arr;

ArrayList(int n) {

arr = new rep any Object[n];

}

void set(int i, any Object value) {

arr[i] = value;

}

any Object get(int i) {

return arr[i];

}

}

class User {

void use() {

rep ArrayList list = new rep ArrayList(2);

list.set(0, new rep Object());

list.set(1, new owner Object());

rep Object obj; // prepare a read-write variable

obj = (rep Object)list.get(0);

// obj = (rep Object)list.get(1); // runtime cast error

}

}

Figure 3: Universal List Example

9



Another important issue to take into account is restrictions that ownership
types place on program design. As an example we consider specific variant of
“iterator” design pattern.

External iterators are easy to write using both parametric ownership types and
universe types, because they rely only on collections’ public interface (and inter-
face design principles usually match with ownership types requirements). But
in order to get maximum efficiency, structure sharing iterators are needed, that
link into internal representation of the collection. By the definition, structure
sharing iterators can’t be written using parametric ownership types, because
linking from outside the owner into the representation is forbidden.

Structure sharing iterators can be written using universe types (because of un-
restricted read access and possibility of downcasting). Figure 4 presents one
possible implementation.

Note that universe types require slight change in the usual design of such iter-
ator. Iterator must use services from LinkedList to modify Node-s, as latter
is the only object with read-write access to Node-s.

Several other well-known design patterns cause problems for either or both
parametric ownership types and universe types. Good overview is given in [13].

5 Conclusion and Applications

The two type systems described in this review can be regarded as two of the
most popular branches of research regarding alias control in OO programs. In
many cases both systems provide useful information for program analysis and
their usage is quite intuitive and doesn’t require too much extra annotations.
The problems arise with more complex relationships between objects. Here each
of the type systems has its own strengths and weaknesses.

Parametric ownership allows to pass context information along the structure of
object relationships, therefore precise context information is always available.
Its owner-as-dominator access policy ensures total control over owned objects,
therefore analyses related to garbage collection and representation independence
work better with parametric ownership types. On the other hand, this approach
tends to be too inflexible for implementing some common patters (eg. collection
iterators). Also, specifying context parameters can be too unwieldy, especially
in combination with generic type parameters.

Universe types try to offer comparable utility without context parameters, by
allowing unrestricted sharing of read-only references and enforcing owner-as-
modifier access policy. This flexibility comes at the cost of reduced precision
at compile time and therefore it needs extra time and memory resources at
runtime. Yet, universe type system provides sufficient precision to enable mod-

10



// wrapper for links of the list

class LinkedList {

rep Node first;

// LinkedList owns Nodes and can modify them

void set(any Node np, any Object e) {

// assuming np is one of this list nodes

rep Node n = (rep Node) np; // downcast is required

n.data = e;

}

any Node get(int i) {

...

}

...

}

class Iterator {

owner LinkedList list; // owns nodes

any Node pos; // current position

Iterator (owner LinkedList list) {

this.list = list;

this.pos = list.getFirst();

}

void setValue(any Object o) {

// Iterator has direct (readonly) access to Nodes

// but need to delegate modification to LinkedList

list.set(pos, o);

}

...

}

Figure 4: Iterator example

11



ular analysis, because it can prevent non-local state updates through arbitrary
references.

During last few years many variations and combinations of these ideas have
appeared in literature. Ownership types have been combined with uniqueness
annotations[2, 8] – this makes it easier, for example, to track objects’ movement
between different ownership contexts.

In the type systems described above, whenever we needed to share something
between two unrelated objects, we needed to share it with everybody. More
precision is gained by allowing multiple owners for one object[6]. Ownership
information has been also used together with complex effect systems allowing
more flexibility in usage of any references[7].

Most popular area for applications of ownership information appears to be con-
current programming. Both parametric ownership types and universe types have
been used as basis for type-systems avoiding race conditions and deadlocks[12,
10, 3] and for automatic parallelization[15].

Unfortunately ownership types haven’t yet seen wide use in commercial setting.
Seems that researchers still need to look for best balance between precision of the
type system, flexibility of its application and amount of annotations required.

References

[1] Jonathan Aldrich. Ownership domainsin real world. IWACO 2007, 2007.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias an-
notations for program understanding. In OOPSLA ’02: Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 311–330, New York, NY, USA,
2002. ACM.

[3] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types
for safe programming: preventing data races and deadlocks. In OOPSLA
’02: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 211–230, New
York, NY, USA, 2002. ACM.

[4] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership
types for object encapsulation. In POPL ’03: Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 213–223, New York, NY, USA, 2003. ACM.

[5] John Boyland. Why we should not add readonly to java (yet). Journal of
Object Technology, 5(5):5–29, June 2006. Workshop on Formal Techniques
for Java-like Programs (FTfJP), ECOOP 2005.

12



[6] Nicholas R. Cameron, Sophia Drossopoulou, James Noble, and Matthew J.
Smith. Multiple ownership. SIGPLAN Not., 42:441–460, October 2007.

[7] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. SIGPLAN Not., 37:292–310, November
2002.

[8] Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough.
In ECOOP 2003 – Object-Oriented Programming, volume 2743 of Lecture
Notes in Computer Science, pages 59–67. Springer Berlin / Heidelberg,
2003.

[9] David G. Clarke, John M. Potter, and James Noble. Ownership types for
flexible alias protection. SIGPLAN Not., 33(10):48–64, 1998.

[10] David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universe
Types for Race Safety. In VAMP 07, pages 20–51, September 2007.

[11] Werner Dietl and Peter Müller. Universes: Lightweight ownership for jml.
Journal of Object Technology, 4(8):5–32, 2005.

[12] Eric Kerfoot, Steve McKeever, and Faraz Torshizi. Deadlock freedom
through object ownership. In IWACO ’09: International Workshop on
Aliasing, Confinement and Ownership in Object-Oriented Programming,
pages 1–8, New York, NY, USA, 2009. ACM.

[13] Stefan Nägeli. Ownership in design patterns. Master’s Thesis, 09/2005 –
03/2006, March 2006.

[14] Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[15] Sven Stork, Paulo Marques, and Jonathan Aldrich. Concurrency by de-
fault: using permissions to express dataflow in stateful programs. In OOP-
SLA ’09: Proceeding of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, pages
933–940, New York, NY, USA, 2009. ACM.

[16] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst.
Ownership and immutability in generic Java. In Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 2010), Revo, NV,
USA, October 19–21, 2010.

13


	Introduction
	Parametric ownership types
	The object contexts rep and norep
	Context parameters

	Universes
	Basics of Universes
	any instead of context parameters: trade-offs in flexibility

	Issues with Parametric Ownership types and Universes
	Conclusion and Applications

