
A biased history of
equality in type theory

James Chapman
Institute of Cybernetics, Tallinn

Some equations are more equal than others

Semantics days - Andu

A typical biased history
Famous work by genius

(e.g. Aristotle)

tim
e

Other landmark works
(by all big names in your field)

Paper by you
(the final word on the problem posed

by genius as perceived by you)

350 BC

All of last 30
years

Last
week

Why should you care
about equality?

• You’re a type theorist and it’s your favourite topic?

• It’s often necessary when using theorem provers and
implementations of dependently typed programming.

• Coq, Agda, Epigram, etc.

• When you start having to use equality proofs to ‘fix
up’ you types your carefully crafted proofs turn into a
hideous and agonising mess. (Maybe this is just me...)

• Different implementors/theoreticians take a variety of
approaches with different trade-offs - it’s not over yet!

In the beginning there was
Martin-Löf’s theory of types

• Known as type theory for short.

• Based on ideas of intuitionistic mathematics, as
conceived by BHK, it is “intended to be a full-
scale system for intuitionistic mathematics”

• It is at the same time a programming language
and a logic.

• Proposition = Type

• Proof = Program

Type theory formally
• Type theory is usually presented as system of logical

inference rules.

• First we define a number of judgements:

• Γ Γ is a context

• Γ T T is a type

• Γ T = T‘ T is equal to T’

• Γ t : T t is at term of type T

• Γ t = t’ : T t is equal to t’

• Next we give the rules that inhabit the judgements.

⊥
⊥

⊥
⊥

⊥

Definitional equality
(for computers)

• The equality judgements on the previous slide are
known as definitional equality.

• e.g. internal rules like beta-equality and also the
equality we use when making a definition:

•f 0 = x

•f (n + 1) = y

• This is the the equality the type checker uses.

• f 0 equals x, we cannot distinguish between them.

Definitional equality cont.
• There are choices here: e.g. do we include eta-

equality for functions, pairs, and unit:

• λ x . f x = f

• (fst p, snd p) = p

• void = u

• Coq doesn’t, Agda and Epigram do.

• My view is to have the strongest possible decidable
equality: it saves you work.

• Definitional equality is an essential component of the
type checker.

Type checking example
data Vec (A : Set) : Nat → Set where
 nil : Vec A zero
 cons : A → Vec A n → Vec A (suc n)

app : Vec A m → Vec A n → Vec A (m + n)
app nil ws = ws
app (cons v vs) ws = cons v (app vs ws)

Typing constraints from definition of app:
Vec A (zero + n) = Vec A n
Vec A (suc m + n) = Vec A (suc (m + n))

Propositional Equality
(for people)

• Definitional equality is the equality you use
when make a definition. f x = x

• Propositional equality is what you use when
stating a proposition (e.g x ≅ x + 0) that
you will prove yourself.

• Next we move on to discussing different
varieties of propositional equality

Equality reflection

• One seemingly simple option is to define
an provable equality type ≅ and then a
reflection rule:

• But, notice we have thrown away the proof.

• With this rule, typechecking become
undecidable. This is the choice taken in ETT

• In ETT type checking requires proof.

p : X ≅Y
X = Y

Rolling your own
prop. equality types

• Type theory is a rich language we are free to define,
as a new type, an equivalence (or any other) relation
on elements of another type.

• It is not built-in in any sense, nor need it be.

• We can define it by a type valued recursive function
or as in inductive data type.

• If it is defined inductively we can choose which
properties are assumed and which are derived.

Recursive equality on Nat
data One : Set where
 void : One

data Zero : Set where

data Nat : Set where
 z : Nat
 s : Nat → Nat

req : Nat → Nat → Set
req z z = One
req z (s n) = Zero
req (s m) z = Zero
req (s m) (s n) = req m n

We can then prove that this is an equivalence relation. E.g.
trans : ∀m n o : req m n -> req n o -> req m o

Inductive equality for Nat
data ieq : Nat → Nat → Set where
 zeq : ieq z z
 seq : ∀ m n →
 ieq m n → ieq (s m) (s n)

We are free to either add refl., sym. and trans. as
constructors or prove them.

Here it is simpler to prove them (fewer constructors here
means fewer case in our proofs).

In a more complex situation than Nat adding these
properties might be really adding something...

A propositional equality
for all types

• Do we really have to define our own
equality every time we define a new type?
No!

• We (either the user or the language
implementor) can define a propositional
equality for all types.

• In the remaining slides we will look at the
different design decisions and issues for
Propositional Equality.

The original ‘Identity’ type

data Id {X : Set} : X → X → Set where
 refl : (x : X) → Id x x

subst : (X : Set)
 (P : X → Set)
 (x x' : X) →
 Id x x' → P x → P x'
subst P .x .x (refl x) t = t

subst is a (useful) simplification, really we get given an
eliminator where P depends on x x’ and the equality proof.

Intentional vs.
extensional

• Extensional equality equates things that behave the
same.

• Intentional equality equates things if they are
constructed in the same way.

• addition on natural numbers defined by induction on
the first arg. is extensionally equal to addition defined
by induction on the second arg. but not intentionally

• ∀m n. Id (plus1 m n) (plus2 m n)✔

• Id plus1 plus2 ✖

What’s wrong with Id?
• It turns out to be a bit weak.

• It is not extensional.

• We cannot prove that all equality proofs are equal
to each other or equal to refl (proof irrelevance or
eta equality).

• We can prove eta for other types but not for
equality itself: we don’t have refl = p. (H&S)

• The internals of pattern matching use equality but
need something stronger than the ordinary
eliminator for the equality type (McBride’s thesis)

How do we improve it?

• We hand-craft a stronger eliminator for equality.

• It becomes a built-in type with a stronger
computation principle than the usual automatically
defined one (Thomas Streicher’s Axiom K). This is
sufficient for proof irrelevance and pattern matching.

• Also, we can generalise the definition itself
(McBride’s John Major equality) which turns out to
be more convenient than Id and K.

John Major Equality
data JM {X : Set} : X → {Y : Set} →
 Y → Set where
 refl : (x : X) → JM x x

resp : {X : Set}(P : X → Set)
 (f : (x : X) → P x)
 (x x' : X) → JM x x' →
 JM (f x) (f x')
resp P f .x .x (refl x) = refl (f x)

Notice that resp is not well typed for Id.
We would need to use subst to define it. Our experience is

if you have to use subst then you’re doing it wrong.

But! Still no extensionality :(

• We can simulate it using setoids (Bishop sets).

• Bishop’s idea is that a set always comes equipped
with its own equivalence relation.

• We have complete control: we can add
extensionality or any other property as an
axiom for the particular set.

• But, it is technically awkward to use and we
need to define it manually for each type.

• Can we do better?

Yes! Observational Equality
• It internalises the setoid construction but adds significant

automation

• An appropriate notion of equality and reasoning principles
are computed for each type.

• This is made possible by using a ‘closed type theory’.
Rather than extending the theory with each new
datatype definition:

• We have a universe of datatypes (new datatypes are
defined as codes in the universe).

• Equality is defined by recursion on codes.

• The case for functions computes to the extensionality
principle.

Bibliography
• Foundations of Constructive Analysis - Bishop, 1967

• About models for intuitionistic type theories and the notion
of definitional equality - Martin-Löf, 1975

• Intuitionistic Type Theory - Martin-Löf, 1984

• A groupoid model refutes uniqueness of identity proofs.
Hofmann & Streicher, 1994

• Dependently Typed Functional Programs and their Proofs -
McBride, 1999

• Observational Equality Now! Altenkirch, McBride, &
Swierstra, 2007

• Epigram 2 prototype - Brady, Chapman, Dagand, Gundry,
McBride, Morris, and Norell, 2010

