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Why should you care 
about equality?

• You’re a type theorist and it’s your favourite topic?

• It’s often necessary when using theorem provers and 
implementations of dependently typed programming.

• Coq, Agda, Epigram, etc.

• When you start having to use equality proofs to ‘fix 
up’ you types your carefully crafted proofs turn into a 
hideous and agonising mess. (Maybe this is just me...)

• Different implementors/theoreticians take a variety of 
approaches with different trade-offs - it’s not over yet!



In the beginning there was 
Martin-Löf’s theory of types

• Known as type theory for short.

• Based on ideas of intuitionistic mathematics, as 
conceived by BHK, it is “intended to be a full-
scale system for intuitionistic mathematics”

• It is at the same time a programming language 
and a logic.

• Proposition = Type

• Proof = Program



Type theory formally
• Type theory is usually presented as system of logical 

inference rules.

• First we define a number of judgements:

• Γ                        Γ is a context

• Γ    T                  T is a type

• Γ    T = T‘           T is equal to T’

• Γ    t : T              t is at term of type T

• Γ    t = t’ : T        t is equal to t’

• Next we give the rules that inhabit the judgements.

⊥
⊥

⊥
⊥

⊥



Definitional equality 
(for computers)

• The equality judgements on the previous slide are 
known as definitional equality.

• e.g. internal rules like beta-equality and also the 
equality we use when making a definition:

•f 0 = x

•f (n + 1) = y

• This is the the equality the type checker uses. 

• f 0 equals x, we cannot distinguish between them.



Definitional equality cont.
• There are choices here: e.g. do we include eta-

equality for functions, pairs, and unit:

•  λ x . f x = f

• (fst p, snd p) = p

• void = u

• Coq doesn’t,  Agda and Epigram do.

• My view is to have the strongest possible decidable 
equality: it saves you work.

• Definitional equality is an essential component of the 
type checker.



Type checking example
data Vec (A : Set) : Nat → Set where
  nil  : Vec A zero
  cons : A → Vec A n → Vec A (suc n)

app : Vec A m → Vec A n → Vec A (m + n)
app nil         ws = ws 
app (cons v vs) ws = cons v (app vs ws)

Typing constraints from definition of app:
Vec A (zero  + n) = Vec A n
Vec A (suc m + n) = Vec A (suc (m + n))



Propositional Equality 
(for people)

• Definitional equality is the equality you use 
when make a definition. f x = x

• Propositional equality is what you use when 
stating a proposition (e.g x ≅ x + 0) that 
you will prove yourself.

• Next we move on to discussing different 
varieties of propositional equality



Equality reflection

• One seemingly simple option is to define 
an provable equality  type ≅ and then a 
reflection rule:

• But, notice we have thrown away the proof.

• With this rule, typechecking become 
undecidable. This is the choice taken in ETT

• In ETT type checking requires proof.

p : X ≅Y
X = Y



Rolling your own  
prop. equality types

• Type theory is a rich language we are free to define, 
as a new type, an equivalence (or any other) relation 
on elements of another type.

• It is not built-in in any sense, nor need it be.

• We can define it by a type valued recursive function 
or as in inductive data type.

• If it is defined inductively we can choose which 
properties are assumed and which are derived.



Recursive equality on Nat
data One : Set where
  void : One

data Zero : Set where

data Nat : Set where
  z : Nat
  s : Nat → Nat

req : Nat → Nat → Set
req z     z     = One
req z     (s n) = Zero
req (s m) z     = Zero
req (s m) (s n) = req m n

We can then prove that this is an equivalence relation. E.g. 
trans : ∀m n o : req m n -> req n o -> req m o



Inductive equality for Nat
data ieq : Nat → Nat → Set where
  zeq : ieq z z
  seq : ∀ m n → 
        ieq m n → ieq (s m) (s n)

We are free to either add refl., sym. and trans. as 
constructors or prove them. 

Here it is simpler to prove them (fewer constructors here 
means fewer case in our proofs).

In a more complex situation than Nat adding these 
properties might be really adding something...



A propositional equality  
for all types

• Do we really have to define our own 
equality every time we define a new type? 
No!

• We (either the user or the language 
implementor) can define a propositional 
equality for all types.

• In the remaining slides we will look at the 
different design decisions and issues for 
Propositional Equality.



The original ‘Identity’ type

data Id {X : Set} : X → X → Set where
  refl : (x : X) → Id x x

subst : (X : Set)
        (P : X → Set)
        (x x' : X) → 
        Id x x' → P x → P x'
subst P .x .x (refl x) t = t

subst is a (useful) simplification, really we get given an 
eliminator where P depends on x x’ and the equality proof.



Intentional vs. 
extensional

• Extensional equality equates things that behave the 
same.

• Intentional equality equates things if they are 
constructed in the same way.

• addition on natural numbers defined by induction on 
the first arg. is extensionally equal to addition defined 
by induction on the second arg. but not intentionally

• ∀m n. Id (plus1 m n) (plus2 m n)✔

• Id plus1 plus2 ✖



What’s wrong with Id?
• It turns out to be a bit weak. 

• It is not extensional.

• We cannot prove that all equality proofs are equal 
to each other or equal to refl (proof irrelevance or 
eta equality).

• We can prove eta for other types but not for 
equality itself: we don’t have refl = p.  (H&S)

• The internals of pattern matching use equality but 
need something stronger than the ordinary 
eliminator for the equality type (McBride’s thesis)



How do we improve it?

• We hand-craft a stronger eliminator for equality. 

• It becomes a built-in type with a stronger 
computation principle than the usual automatically 
defined one (Thomas Streicher’s Axiom K). This is 
sufficient for proof irrelevance and pattern matching.

• Also, we can generalise the definition itself 
(McBride’s John Major equality) which turns out to 
be more convenient than Id and K.



John Major Equality
data JM {X : Set} : X → {Y : Set} → 
                    Y → Set where
  refl : (x : X) → JM x x

resp : {X : Set}(P : X → Set)
       (f : (x : X) → P x)
       (x x' : X) → JM x x' →
       JM (f x) (f x')
resp P f .x .x (refl x) = refl (f x)

Notice that resp is not well typed for Id.
We would need to use subst to define it. Our experience is 

if you have to use subst then you’re doing it wrong.



But! Still no extensionality :(

• We can simulate it using setoids (Bishop sets).

• Bishop’s idea is that a set always comes equipped 
with its own equivalence relation.

• We have complete control: we can add 
extensionality or any other property as an 
axiom for the particular set.

• But, it is technically awkward to use and we 
need to define it manually for each type.

• Can we do better?



Yes! Observational Equality
• It internalises the setoid construction but adds significant 

automation

• An appropriate notion of equality and reasoning principles 
are computed for each type.

• This is made possible by using a ‘closed type theory’. 
Rather than extending the theory with each new 
datatype definition:

• We have a universe of datatypes (new datatypes are 
defined as codes in the universe).

• Equality is defined by recursion on codes.

• The case for functions computes to the extensionality 
principle.
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