Multi-structure frameworks as adhesive fibrations

Davide Grohmann, Marino Miculan

University of Udine

Theory Days - Andu February 6, 2010

Graph rewriting as a framework for concurrency

- + Systems or states of a computation are represented by graphs.
- + Semantics is defined by means of transformations on graphs:
 - + match a subgraph with a lhs part of a rule
 - + and then replacing it with the rhs.
- + A categorical framework which is very suited for defining graphical (and more) models is *adhesive categories*. Indeed they support for theory of double pushout rewriting and of relative pushouts.

Aim of the talk

Investigate how adhesive graph-like categories can be modularly constructed.

Adhesive categories

Definition

A category C is adhesive if

- + C has pullbacks;
- + C has pushouts along monomorphisms;
- + pushouts along monomorphisms are Van Kampen squares.

Example: hypergraph category (HGraph)

Objects: hypergraphs

Morphisms: embeddings between hypergraphs

Embeddings must preserve the source and targets of edges.

Typed hypergraphs as slice category

In order to impose a discipline on nodes and edges, often hypergraphs will be typed.

Slice category

We consider \mathbf{HGraph}/G , where the object G defines the type. For every C, \mathbf{C}/C is adhesive if \mathbf{C} is so.

Typed hypergraphs as arrow category

Arrow category

HGraph $^{\rightarrow}$ allows morphisms to change also the hypergraph type. C^{\rightarrow} is adhesive if C is so.

Fibrations

 $\downarrow P$ is a *fibration* if and only if

- + $P: \mathbf{D} \to \mathbf{C}$ is a functor;
- + for all $u: J \to I$ in **C** and $X \in P(I)$ there is a *cartesian* arrow $u^*: Y \to X$ over u.

Let P(I) be the subcategory of **C** consisting of those morphisms f such that $P(f) = \mathrm{id}_I$.

Codomain fibration

Let **C** be a category with pullbacks.

The codomain fibration \downarrow cod is defined as follows:

- + an object $f: J \rightarrow I$ is mapped to its codomain I
- + a morphism is mapped to its below morphism

+ a map is cartesian if and only if it is a pullback square

Notice that $cod(C) \cong \mathbf{C}/C$.

Adhesive fibration

A fibration \downarrow is fibred adhesive

- + if for every object B in B the fibre E_B is adhesive and
- + the *reindexing functor* preserves adhesivity, i.e., all pullbacks, pushouts along monomorphisms and VK-squares.

By "adhesive fibration" we mean a fibred category which is fibred adhesive.

Theorem

The codomain fibration \downarrow cod is fibred adhesive if the underlying category ${\bf C}$ is adhesive and local cartesian closed.

Change of base on hypergraphs - I

Change of base on hypergraphs - II

Change of base on hypergraphs - III

Modular composition of types - I

Modular composition of types - II

What about systems?

Pushout fibre is complete

Let **C** be adhesive, and let $f: H \rightarrow I$, $g: H \rightarrow J$ be a span in **C**. Let $(K, f': I \rightarrow K, g'J \rightarrow K)$ be the triple constructed as the pushout of f, g.

The pushout fibre of f, g, denoted as POF(f, g), is the full subcategory of \mathbb{C}/K whose objects are obtained by pushout of cleavages of objects over H, as above.

Proposition

 $POF(f,g) \cong \mathbb{C}/K$. where K is the pushout object of types.

How adding interfaces to systems?

- + The standard way: cospans!
- + But cospan on what?
 - ... we do not have just a category, but a fibration!
- + There are two possible approaches:
- + consider cospans on the single fibres
- + defining somehow a fibration for cospans

Cospan over single fibres

Recall that $cod(C) \cong \mathbf{C}/C$, where C in \mathbf{C} .

Input linear cospans on \mathbb{C}/\mathbb{C} (ilc(\mathbb{C}/\mathbb{C}))

Objects: the objects of \mathbf{C}/C , i.e., all the morphisms in \mathbf{C} with codomain equal to C.

Morphisms: cospans on \mathbf{C}/C , i.e.,

- + The system S and its input and output interfaces I, J are all typed over C.
- + Composition is defined by pushouts as usual.

An example of cospan in typed hypergraphs

Change of base on cospans?

Given a morphisms $c: C' \rightarrow C$, it induces a (contravariant) functor

$$F(c':C'\to C): \mathsf{ilc}(\mathbf{C}/C)\to \mathsf{ilc}(\mathbf{C}/C').$$

Objects

Morphisms:

Theorem

F preserves finite colimits (and hence pushouts = cospan composition) if \mathbf{C} is a local cartesian closed category.

Interface types = system types?

- + In the previous solution interface types and system types coincide.
- + It is reasonable, i.e., interface of a Petri nets should be also typed as a Petri net. . .
- + but in many cases, system interfaces are much simpler than systems.
- + Particularly, one would like to expose just a "little" part of a system, e.g., just places for Petri nets.

Idea: add more information into types

A possible solution: take $\mathrm{ilc}(\mathbf{C}/C)$ as based category for defining a new fibration: \downarrow icod. $_{\mathrm{ilc}(\mathbf{C}/C)}$

Sub-typing system interfaces

The fibration $\bigcup_{\mathsf{ilc}(\mathbf{C}/C)}^{\mathsf{ilc}(\mathbf{C}/C)}$ icod can be described as follows.

Objects:

Morphisms:

Conclusion

Summary

- + Adhesive codomain fibration for composing categories of graph-like structures.
- + Systems can be mapped or transported among fibres, allowing for a modular and incremental engineering.
- + Typed hypergraphs as adhesive fibrations.

Future work

- + Improve the interface typing mechanism and analyze what the change of base induces in this case.
- + Investigate if reactive systems (and derived RPO Its) can be modularized w.r.t. the type composition.