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Introduction

In recent years, Formal Methods from
CS have been (convincingly?) proposed
for representing and understanding
biological systems

+ not as continuous (nonlinear)
systems (e.g. by means of ODEs)

+ but as discrete reactive systems,
with event-driven transitions

Aha! We know how to deal with
discrete reactive systems! We have
modelled concurrency!
But. . . how to deal with the
overwhelming complexity?
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Abstract Machines of Systems Biology (Cardelli 08)
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(Milner 09)
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In this talk: bigraphs

as a formal framework theory for

integrating and comparing models

we focus on these levels
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Interactions we want to model

Let take as example the vesicle formation process:

mext
mcys

protein
interactions„
complexations

de-complexations

«

protein-membrane
interactions0

@
protein configurations

that trigger a membrane
reconfiguration

1

A

membrane
reconfigurations

`
fissions and fusions

´
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Talk outline

0. Introduction to Bigraphs
1. Biological Bigraphs and Bioβ framework

+ syntax
+ well-formedness
+ semantics

2. Example: vesicle formation

3. Formal comparison results
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A (very short) introduction to Bigraphs (Milner 01)

RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names
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. . . bigraphs continued (basic notation)

The anatomy of bigraphs

1

1

y1 y2

M

x1

0

v1

x0

y0

site

node

control

inner name

outer name

port

edge

v0

0

K
K

e0

e1
v2

root (region)

place = root or node or site

point = port or inner name

link = edge or outer name

16
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. . . bigraphs continued (definition)

. . . we take advantage of the variant of (Bundgaard-Sassone 06)
where edges have type.

Signature: �K, ar , E�

Bigraphs:

GP = (V , ctrl , prnt) : m → n (place graph)

GL = (V ,E , ctrl , edge, link) : X → Y (link graph)

G = (V ,E , ctrl , edge, prnt, link) : �m,X � → �n,Y � (bigraph)

= (GP ,GL)
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Why using bigraphical theory

Using bigraphs is convenient for many reasons:

+ connectivity together with locality

+ lots of successful encodings
(CCS, π-calculus, Ambient Calculus, Petri nets, . . . )

+ local reaction rules

+ construction of compositional bisimilarities
for observational equivalences

+ general tools (see BPL project)
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Talk outline

0. Introduction to Bigraphs
1. Biological Bigraphs and Bioβ framework

+ syntax
+ well-formedness
+ semantics

2. Example: vesicle formation

3. Formal comparison results
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Abstraction on protein structure

iron
emeα chain

β chain

(Hemoglobin A)

How we represent it. . .

covalent bonds
as edges

sites as ports
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Proteins and bonds in bigraphs: intuition

Protein signature: �P, ar , {v, h}�

Sites can be visible, hidden, or free, determining the protein interface status

GTP

xhidden

visible

free

νy .(G(1y + 2̄ + 3̄ + 4x + 5) | GTP(1y ))

GDP

xbond

hidden

νy .(G(1y + 2̄ + 3̄ + 4x + 5̄) | GDP(1y ))

(*) Edge types could be extended to capture phosphorilated states (and more)
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Bioβ syntax and bigraphical meaning

Systems P,Q ::= � | Ap(ρ) | �S � P�� | P ∗ Q | νn.P

pn � P | fn � �S � P�� (pinch and fuse)

Membranes S ,T ::= 0 | Aap(ρ) | S � T

p⊥n � S | f⊥n (co-pinch and co-fuse)

PS

membrane
contents

�S � P��

Ra(1 + 2x ) ∗ �Ma(1x ) � Mb(1y ) � Rb(1 + 2y ) ∗ C(1)��
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Well-formedness conditions

The syntax is too general: many syntactically correct terms do
not have a clear biological meaning.

Definition (Well-formedness)

Graph-likeness: free names occurs at most twice + only binary bonds

Impermebility: protein bonds cannot cross the double layer

Action pairing: actions and co-actions have to be well paired

Action prefix: no occurrences of action terms within an action prefix

??

hyper edges �= bonds impermeability violated!

Well-formedness is ensured by a

type system
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Type system

Γ1; Γ2 � K : τ (Judgement)

free names of K
occurring once

. . . occurring twice
a Bioβ term

(system/membrane)

free actions
occurring in K

(empty)
� ∈ {0, �}
∅; ∅ � � : ∅

A ∈ P ∀x ∈ fn(ρ). |ρ, x | ≤ 2

{x ∈ fn(ρ) | |ρ, x | = 1}; {x ∈ fn(ρ) | |ρ, x | = 2} � A(ρ) : ∅ (prot)

(action)
t ∈ {p, p⊥, f} Γ1; Γ2 � K : ∅ act(K ) = ∅

Γ1, x ; Γ2 � tx � K : {tx}
Γ1; Γ2 � P : τ x /∈ Γ1 τ�{x} = ∅

Γ1; Γ2 \ {x} � νx .P : τ
(ν-prot)

(co-f)
x ; ∅ � f⊥x : {f⊥x }

t ∈ {p, f} Γ1; Γ2, x � P : τ ∪ {tx , t⊥x } {tx , t⊥x } ∩ τ = ∅
Γ1; Γ2 � νx .P : τ

(ν-action)

(par)

op ∈ {∗, �}
Γ1, Γ; Γ2 � K : τ ∆1, Γ; ∆2 � L : σ

(Γ1 ∪ Γ2) ∩ (∆1 ∪∆2) �= ∅ (τ�Γ)
⊥ = σ�Γ

Γ1,∆1; Γ2,∆2, Γ � K op L : τ ∪ σ

Γ1, Γ; Γ2 � S : τ Γ; ∆2 � P : σ

(Γ1 ∪ Γ2) ∩∆2 �= ∅ (τ�Γ)
⊥ = σ�Γ

Γ1; Γ2,∆2, Γ � �S � P�� : τ ∪ σ
(cell)
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Properties of the type system

Proposition (Unicity of type)

Let K a Bioβ term. If Γ1; Γ2 � K : τ and ∆1; ∆2 � K : σ, then
Γ1 = ∆1, Γ2 = ∆2 and τ = σ

Theorem (Well-formedness)

A Bioβ system P is well-formed if and only if Γ1; Γ2 � P : τ

. . . later subject reduction

16 / 29



Semantics: Bioβ reactive system

A Bioβ reactive system (Π,→) is parametrized over two reaction
rule specifications:

+ Protein reactions: similar to chemical reaction rules,
but with (essential) spatial informations

+ Mobility configurations: protein configurations that
trigger membrane re-modeling

Reactions for Membrane transport are fixed� indeed, biological membrane modifications
are very limited: only pinching and fuse

�
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Protein reactions across multiple localities

Protein reactions are
endowed with spatial

information

C
Re Rm Rc rec

−�
C

Re Rm Rc

� C (1) ∗ Re(1+2x) , Rc(1y+2̄) | Rm(1x+2y ) � rec−−→

νz .� C (1z) ∗ Re(1z+2x) , Rc(1y+2) | Rm(1x+2y ) �
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Mobility configurations

Membrane transport must be justified by protein interactions.

This is formalized by means of
membrane reactions configurations

pn p⊥n

( P , P �, S , S �, Q )pinching

configuration

fn

f⊥n

( P , S , R , T , Q )fusing

configuration
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Membrane transport: pinch

pinch-in
−�

Q

T

S

p⊥n

P

pn

Q

T

PS

pn � P ∗ �p⊥n � S � T � Q�� → �T � �S � P�� ∗ Q��

pinch-out
−�

Q

T

P

pn

S

p⊥n
PS

Q

T

�p⊥n � S � T � pn � P ∗ Q�� → �S � P�� ∗ �T � Q��

20 / 29



Membrane transport: fuse

fuse-hor
−�PS

fn

Q
T

f⊥n
P Q

S

T

fn � �S � P�� ∗ �f⊥n � T � Q�� → �S � T � P ∗ Q��

fuse-ver
−�Q

T

f⊥n
PS

fn

Q

S

T
P

�f⊥n � T � fn � �S � P�� ∗ Q�� → P ∗ �S � T � Q��
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Reactions preserve well-formedness

Theorem (Subject reduction)

Let P, Q be Bioβ systems.

If Γ1; Γ2 � P : τ and P → Q, then Γ1; ∆2 � Q : σ

where either Γ2 = ∆2 and τ = σ,

or Γ2 = ∆2, n and τ = σ + {tn, t⊥n } (t ∈ {p, f})

Note:

Free names of P and Q can differ
only for one occurrence of an action name
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Talk outline

0. Introduction to Bigraphs
1. Biological Bigraphs and Bioβ framework

+ syntax
+ well-formedness
+ semantics

2. Example: vesicle formation

3. Formal comparison results
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mext
mcys

We formalize the above vesicle formation pathway
showing the Bioβ specification needed to define

the Bioβ reactive system

C
Re Rm Rc rec

−�
C

Re Rm Rc

�C(1) ∗ Re (1 + 2x ), Rc (1y + 2̄) | Rm(1x + 2y )� rec−−→ νz.�C(1z ) ∗ Re (1z + 2x ) , Rc (1y + 2) | Rm(1x + 2y )�

x

Rc Ad

adpt
−�

x

Rc
Ad

�Rc (1x + 2) ∗ Ad(1 + 2̄) |� adpt−−→ νy .�Rc (1x + 2y ) ∗ Ad(1y + 2) |�

x

Ad

Cl

0

coat
−�

x

Ad

Cl

0

�Ad(1x + 2) ∗ Cl(1) |� coat−−→ νy .�Ad(1x + 2y ) ∗ Cl(1y ) |�

{(P , P �, S , S �, Q)}
P =

P6
i=1

`
C(1x ) ∗ Re(1x + 2y )

´
P� = �

S =
P6

i=1

`
Rm(1y + 2w )

´
S � = 0

Q =
P6

i=1

`
Rc (1w + 2a) ∗Ad(1a + 2b) ∗Cl(1b)

´
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Another example: Fc receptor-mediated phagocytosis

Even more complex biological pathways can be specified. . .

pc

pm

pd

FcR

Act

IgG

particle-R
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0. Introduction to Bigraphs
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+ syntax
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Formalizing connections between models

The formal Bioβ model allows to establish a formal connection
between the protein-only and membrane mobility-only models:

biological

bigraphs

protein only bigraphs

mobility

bigraphs

Fm

Fp

Theorem
Each transition in biological
bigraphs corresponds to either a
protein-only transition or to a
mobility-only transition

Proteins
signal processing,

metabolism
regulation

Membranes
confinements,

storage, transport

implements
fusion/fission

holds
receptors/reactions 27 / 29



Conclusions & Future Work

Done:

+ a bigraphical model for protein-membrane interactions

+ a model-driven (and user-friendly) framework

+ formalization of causality among mobility and protein
interaction

+ a formal type system for well-formedness

To do:

+ stochastic refinement of reactions (stochastic bigraphs)

+ adding molecular transporters/channels

+ refinements on fluidity and distances

+ tools (modeling and simulation)
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