A bigraph-based framework for protein and cell interactions

Giorgio Bacci Davide Grohmann Marino Miculan

Department of Mathematics and Computer Science University of Udine. Italy

Estonian (Winter) Theory Days

6th February 2010, Andu, Estonia

Introduction

In recent years, Formal Methods from CS have been (convincingly?) proposed for representing and understanding biological systems

- + not as continuous (nonlinear) systems (e.g. by means of ODEs)
- + but as discrete reactive systems, with event-driven transitions

Aha! We know how to deal with discrete reactive systems! We have modelled concurrency!
But...how to deal with the overwhelming complexity?

Interactions we want to model

Let take as example the vesicle formation process:

protein interactions complexations de-complexations protein-membrane interactions protein configurations that trigger a membrane reconfiguration

membrane reconfigurations

(fissions and fusions)

Talk outline

- 0. Introduction to Bigraphs
- 1. Biological Bigraphs and Bio β framework
 - + syntax
 - + well-formedness
 - + semantics
- 2. Example: vesicle formation
- 3. Formal comparison results

... bigraphs continued

(basic notation)

place = root or node or site

link = edge or outer name point = port or inner name ... we take advantage of the variant of (Bundgaard-Sassone 06) where edges have type.

Signature: $\langle \mathcal{K}, ar, \mathcal{E} \rangle$

Bigraphs:

$$G^P = (V, ctrl, prnt) \colon m \to n$$
 (place graph)
$$G^L = (V, E, ctrl, edge, link) \colon X \to Y$$
 (link graph)
$$G = (V, E, ctrl, edge, prnt, link) \colon \langle m, X \rangle \to \langle n, Y \rangle$$
 (bigraph)
$$= (G^P, G^L)$$

Why using bigraphical theory

Using bigraphs is convenient for many reasons:

- + connectivity together with locality
- + lots of successful encodings (CCS, π -calculus, Ambient Calculus, Petri nets, ...)
- + local reaction rules
- + construction of compositional bisimilarities for **observational equivalences**
- + general tools (see BPL project)

Talk outline

- 0. Introduction to Bigraphs
- 1. Biological Bigraphs and Bio β framework
 - + syntax
 - + well-formedness
 - + semantics
- 2. Example: vesicle formation
- Formal comparison results

Abstraction on protein structure

Proteins and bonds in bigraphs: intuition

Protein signature: $\langle \mathcal{P}, ar, \{v, h\} \rangle$

Sites can be visible, hidden, or free, determining the protein interface status

(*) Edge types could be extended to capture phosphorilated states (and more)

$\mathsf{Bio}\beta$ syntax and bigraphical meaning

Systems
$$P, Q ::= \diamond |A_p(\rho)| \langle S \rangle P \rangle |P * Q | \nu n.P$$

$$p_n \circ P |f_n \circ \langle S \rangle P \rangle \qquad \text{(pinch and fuse)}$$
Membranes
$$S : T := 0 |A_n(\rho)| S * T$$

Membranes
$$S, T ::= \mathbf{0} \mid A_{ap}(\rho) \mid S \star T$$

$$p_n^{\perp} \, {}_{\!{}_{\!{}^{^\circ}}} \, S \mid f_n^{\perp} \qquad \text{(co-pinch and co-fuse)}$$

$$Ra(1+2^{x})*(Ma(1^{x})*Mb(1^{y})(Rb(1+2^{y})*C(1)))$$

Well-formedness conditions

The syntax is too general: many syntactically correct terms do not have a clear biological meaning.

Definition (Well-formedness)

Graph-likeness: free names occurs at most twice + only binary bonds

Impermebility: protein bonds cannot cross the double layer

Action pairing: actions and co-actions have to be well paired

Action prefix: no occurrences of action terms within an action prefix

impermeability violated!

Well-formedness conditions

The syntax is too general: many syntactically correct terms do not have a clear biological meaning.

Definition (Well-formedness)

Graph-likeness: free names occurs at most twice + only binary bonds

Impermebility: protein bonds cannot cross the double layer

Action pairing: actions and co-actions have to be well paired

Action prefix: no occurrences of action terms within an action prefix

Well-formedness is ensured by a **type system**

Type system

$$\Gamma_1$$
; $\Gamma_2 \vdash K : \tau$

(Judgement)

$$(\mathsf{empty}) \ \frac{\epsilon \in \{\mathbf{0}, \diamond\}}{\emptyset; \emptyset \vdash \epsilon : \emptyset} \qquad \frac{A \in \mathcal{P} \quad \forall x \in \mathit{fn}(\rho). \ |\rho, x| \leq 2}{\{x \in \mathit{fn}(\rho) \mid |\rho, x| = 1\}; \{x \in \mathit{fn}(\rho) \mid |\rho, x| = 2\} \vdash \mathit{A}(\rho) : \emptyset} \ (\mathsf{prot})$$

$$(\mathsf{action}) \ \frac{t \in \{\mathsf{p}, \mathsf{p}^{\perp}, \mathsf{f}\}}{\Gamma_1, x; \Gamma_2 \vdash t_x \, \text{$;$} K : \{t_x\}} \qquad \frac{\Gamma_1; \Gamma_2 \vdash P : \tau \quad x \notin \Gamma_1 \quad \tau \upharpoonright_{\{x\}} = \emptyset}{\Gamma_1; \Gamma_2 \setminus \{x\} \vdash \nu x. P : \tau} \ (\nu\text{-prot})$$

$$(\mathsf{co-f}) \ \frac{t \in \{\mathsf{p}, \mathsf{f}\}}{x; \emptyset \vdash \mathsf{f}_x^\perp} : \{\mathsf{f}_x^\perp\}} \qquad \frac{t \in \{\mathsf{p}, \mathsf{f}\}}{\Gamma_1; \Gamma_2, x \vdash P : \tau \cup \{t_x, t_x^\perp\}} \quad \{t_x, t_x^\perp\} \cap \tau = \emptyset}{\Gamma_1; \Gamma_2 \vdash \nu x. P : \tau} \ (\nu\text{-action})$$

$$(\mathsf{par}) \ \frac{\mathsf{op} \in \{*, \star\}}{\Gamma_1, \Gamma; \Gamma_2 \vdash K : \tau \quad \Delta_1, \Gamma; \Delta_2 \vdash L : \sigma} \quad \frac{\Gamma_1, \Gamma; \Gamma_2 \vdash S : \tau \quad \Gamma; \Delta_2 \vdash P : \sigma}{\Gamma_1, \Delta_1; \Gamma_2, \Delta_2, \Gamma \vdash K \; \mathsf{op} \; L : \tau \cup \sigma} \quad \frac{(\Gamma_1 \cup \Gamma_2) \cap \Delta_2 \neq \emptyset \quad (\tau \upharpoonright_{\Gamma})^\perp = \sigma \upharpoonright_{\Gamma}}{\Gamma_1; \Gamma_2, \Delta_2, \Gamma \vdash \mathcal{E} \; S : \tau \cap \mathcal{E} \; \mathcal{$$

Properties of the type system

Proposition (Unicity of type)

Let K a Bio β term. If Γ_1 ; $\Gamma_2 \vdash K : \tau$ and Δ_1 ; $\Delta_2 \vdash K : \sigma$, then $\Gamma_1 = \Delta_1$, $\Gamma_2 = \Delta_2$ and $\tau = \sigma$

Theorem (Well-formedness)

A Bio β system P is well-formed if and only if Γ_1 ; $\Gamma_2 \vdash P : \tau$

...later subject reduction

Semantics: Bio β reactive system

A Bio β reactive system (Π, \rightarrow) is parametrized over two reaction rule specifications:

- + **Protein reactions:** similar to chemical reaction rules, but with (essential) spatial informations
- + **Mobility configurations:** protein configurations that trigger membrane re-modeling

```
Reactions for Membrane transport are fixed indeed, biological membrane modifications are very limited: only pinching and fuse
```

Protein reactions across multiple localities

Protein reactions are endowed with spatial information

$$\langle C(1) * R_{e}(1+2^{x}), R_{e}(1^{y}+\overline{2}) | R_{e}(1^{y}+2^{y}) \rangle \xrightarrow{\text{rec}} \langle C(1^{y}+2^{y}), R_{e}(1^{y}+2^{y}), R_{e}(1^{y}+2^{y}) \rangle \xrightarrow{\text{rec}} \langle C(1^{z}) * R_{e}(1^{z}+2^{x}), R_{e}(1^{y}+2^{y}) \rangle \rangle$$

Mobility configurations

Membrane transport must be justified by protein interactions.

This is formalized by means of membrane reactions configurations

pinching configuration
$$(P, P', S, S', Q)$$

fusing configuration (P, S, R, T, Q)

Mobility configurations

Membrane transport must be justified by protein interactions.

This is formalized by means of membrane reactions configurations

Membrane transport: pinch

$$\{p_n^{\perp} ; S \star T \mid p_n ; P \star Q\}\} \rightarrow \{S \mid P\}\} \star \{T \mid Q\}\}$$

Membrane transport: fuse

$$\mathsf{f}_n\, \, ; \, \big(S \, \big(\, P \big) \big) \, * \, \big(\, \mathsf{f}_n^\perp \, \star \, T \, \big(\, Q \big) \big) \, \to \, \big(\, S \, \star \, T \, \big(\, P \, * \, Q \big) \big)$$

Reactions preserve well-formedness

Theorem (Subject reduction)

Let P, Q be $Bio\beta$ systems.

If
$$\Gamma_1$$
; $\Gamma_2 \vdash P : \tau$ and $P \rightarrow Q$, then Γ_1 ; $\Delta_2 \vdash Q : \sigma$

where

either
$$\Gamma_2 = \Delta_2$$
 and $\tau = \sigma$,

or
$$\Gamma_2 = \Delta_2$$
, n and $\tau = \sigma + \{t_n, t_n^{\perp}\}$ $(t \in \{p, f\})$

Note:

Free names of P and Q can differ only for one occurrence of an action name

Talk outline

- 0. Introduction to Bigraphs
- 1. Biological Bigraphs and Bio β framework
 - + syntax
 - + well-formedness
 - + semantics
- 2. Example: vesicle formation
- 3. Formal comparison results

We formalize the above vesicle formation pathway showing the ${\sf Bio}\beta$ specification needed to define the ${\sf Bio}\beta$ reactive system

 $\langle C(1)*R_{e}(1+2^{x}),R_{c}(1^{y}+\bar{2})\mid R_{m}(1^{x}+2^{y})\rangle\xrightarrow{\text{rec}}\nu z. \\ \langle C(1^{z})*R_{e}(1^{z}+2^{x}),R_{c}(1^{y}+2)\mid R_{m}(1^{x}+2^{y})\rangle$

$$\langle \textit{R}_\textit{c}(1^{\textit{x}}+2)*\textit{Ad}(1+\bar{2})\mid\rangle \xrightarrow{\textit{adpt}} \nu\textit{y}.\langle \textit{R}_\textit{c}(1^{\textit{x}}+2^{\textit{y}})*\textit{Ad}(1^{\textit{y}}+2)\mid\rangle$$

$$\langle Ad(1^x + 2) * Cl(1) \mid \rangle \xrightarrow{\mathsf{coat}} \nu y. \langle Ad(1^x + 2^y) * Cl(1^y) \mid \rangle$$

$$\{(P, P', S, S', Q)\}$$

$$P = \sum_{i=1}^{6} (C(1^{x}) * R_{e}(1^{x} + 2^{y})) \quad P' = \diamond$$

$$S = \sum_{i=1}^{6} (R_m(1^y + 2^w))$$
 $S' = \mathbf{0}$

$$Q = \sum_{i=1}^{6} (R_c(1^w + 2^a) * Ad(1^a + 2^b) * Cl(1^b))$$

Another example: Fc receptor-mediated phagocytosis

Even more complex biological pathways can be specified...

Talk outline

- 0. Introduction to Bigraphs
- 1. Biological Bigraphs and $\mathsf{Bio}\beta$ framework
 - + syntax
 - + well-formedness
 - + semantics
- 2. Example: vesicle formation
- 3. Formal comparison results

Formalizing connections between models

The formal $\text{Bio}\beta$ model allows to establish a **formal** connection between the protein-only and membrane mobility-only models:

Conclusions & Future Work

Done:

- + a bigraphical model for protein-membrane interactions
- + a model-driven (and user-friendly) framework
- + formalization of causality among mobility and protein interaction
- + a formal type system for well-formedness

To do:

- + stochastic refinement of reactions (stochastic bigraphs)
- + adding molecular transporters/channels
- + refinements on fluidity and distances
- + tools (modeling and simulation)