
Untyped general polymorphic functions

Martin Pettai

February 5, 2010

Introduction

• We would like to have a functional language where it is
possible to define general polymorphic functions

• Return type of a function is uniquely determined by the
argument type

• All polymorphic functions where the implied function on types
belongs to a certain large class of total functions, should be
definable

• Higher-order polymorphic functions
• Static type checking

• We will see how polymorphic functions can be defined in
• dynamically typed languages with typecase
• extensional polymorphism, which uses typecase in a statically

typed language
• our language, which uses typecase in untyped functions in an

otherwise statically typed language

Dynamically typed languages with typecase

• Run-time values are tagged with types, e.g. 3 is internally
(Int, 3)

• We can also include pure types (without a value) as ordinary
run-time objects

• typeof operator to get the type of a value, e.g. typeof 3
==> Int

• In such a language types can be computed with (e.g.
branching, recursion) as easily as values

Dynamically typed languages with typecase

• We can easily define polymorphic functions:

let f = \ x .
typecase (typeof x) of

Int -> x + 3;
String -> x ++ "s";
_ -> "ERROR";

end
in

(f 3, f "symbol", f True)
=> (3, "symbols", "ERROR")

Dynamically typed languages with typecase

• We can use typecase inside any expression:

let f = \ x .
100 * typecase (typeof x) of

Int -> x;
String -> length x;
_ -> 13;

end
in

[f 3, f "symbol", f True]
=> [300, 600, 1300]

Dynamically typed languages with typecase

• We can have recursion over types:

let rec f = \ x .
typecase (typeof x) of

Int -> x;
List _ ->

let y = map f x
in typecase (typeof y) of List a ->

typecase a of
Int -> Just (sum y);
Maybe Int ->

case y of
Just z :: zs -> z;
_ -> 0;

end; end; end; end

Dynamically typed languages with typecase

• Suppose we also have typed functions, e.g.
\ (x : Int) : Int . x + 2 has type Int -> Int

Dynamically typed languages with typecase

• We can also have higher-order functions:

let reverseargs f =
let rec revtypes t cont =

typecase t of
Unit -> cont t;
List _ -> cont t;
(t1 -> t2) -> revtypes t2 (\ u . t1 -> cont u)

in let rec proc ts cont =
typecase ts of

Unit -> cont f;
List _ -> cont f;
(t -> ts’) -> \ (x : t) : ts’ .

proc ts’ (\ g . cont (g x))
in

proc (revtypes (typeof f) (\ t . t)) (\ g . g)

Statically typed functional languages

• Polymorphic functions are more difficult to define

• There are only typed functions, no untyped functions

• Usually the argument type and result type must be specified
(or inferred by the compiler) and the function type is
constructed from these

• These types may contain universally quantified type variables
(this gives us parametric polymorphism), e.g. forall a.
List (a,a) -> Maybe a

• Ad-hoc polymorphism is more difficult to achieve

Extensional polymorphism

• Introduced by Dubois, Rouaix, and Weis in 1995

• Example:

let rec generic flat =
case d1 list -> d2 list of
t1 list list -> t2 list => (function l ->

flat (flatten l))
| t list -> t list => (function l -> l)

• Branching only on the type of a polymorphic value

• A type inference algorithm is used to annotate subexpressions
(including polymorphic variables) with types

• Another algorithm is used to check that polymorphic values
are only used at the types for which they are defined

• For this, branching and recursion on the inferred type is
performed

Extensional polymorphism: problems

• Type system is complicated
• Must include polymorphic types
• Polymorphic values have several types: the general type

scheme, the type scheme for each branch, the inferred types
for the used instances

• Type inference is complicated
• The type of a variable is not constant
• The return type of a function might not be uniquely

determined by the argument type

• Higher-order (impredicative) polymorphism difficult to achieve
• Higher-order polymorphic types make type inference

undecidable

Our approach: drop the polymorphic types

• Because polymorphic types create many problems, we leave
polymorphic functions untyped, i.e. they do not have a type in
the type system (although they have an implicit type outside
the type system)

• Our untyped polymorphic functions can use higher-order
polymorphism, typecase, and pure types

• Expressions will be reduced in two phases: static
(compile-time) and dynamic (run-time) phase

• Typecases and other type-level constructs will be reduced in
the static phase

• If (and only if) the program is not type-correct, type errors will
occur during static-phase reductions

• For dynamic-phase reductions, type information is not needed
and type errors cannot occur

• The type system only defines types for the expressions that
cannot be reduced further in the static phase (we call those
expressions box expressions)

• Return type of an untyped polymorphic function is uniquely
determined by the argument type

Our language: syntax

SIMPLETYPE ::= Unit | List SIMPLETYPE
| SIMPLETYPE -> SIMPLETYPE

EXPR ::= VAR | VAR : SIMPLETYPE | unit | nil SIMPLETYPE
| cons EXPR EXPR | typeof EXPR | EXPR EXPR
| tlam VAR (VAR :< TYPE) . EXPR
| vlam VAR (VAR : EXPR) : EXPR . EXPR
| iffun EXPR then EXPR else EXPR
| iftype EXPR then EXPR else EXPR
| tcase EXPR of Unit -> EXPR; List VAR -> EXPR;

(VAR -> VAR) -> EXPR
| vcase EXPR of nil -> EXPR; cons VAR VAR -> EXPR
| SIMPLETYPE

TYPE ::= SIMPLETYPE | Type SIMPLETYPE | Fun NAT
NAT ::= 0 | 1 | 2 | ...

Our language: box expressions

BOX ::= VAR : SIMPLETYPE | unit | nil SIMPLETYPE
| cons BOX_v BOX_v | BOX_v BOX_v
| tlam VAR (VAR :< TYPE) . EXPR
| vlam VAR (VAR : SIMPLETYPE) : SIMPLETYPE . EXPR
| vcase BOX_v of nil -> BOX_v; cons VAR VAR -> BOX_v
| SIMPLETYPE

BOX_v ::= VAR : SIMPLETYPE | unit | nil SIMPLETYPE
| cons BOX_v BOX_v | BOX_v BOX_v
| vlam VAR (VAR : SIMPLETYPE) : SIMPLETYPE . BOX_v
| vcase BOX_v of nil -> BOX_v; cons VAR VAR -> BOX_v

Our language: final expressions

FINAL ::= VAR : SIMPLETYPE | unit | nil SIMPLETYPE
| cons FINAL FINAL
| tlam VAR (VAR :< TYPE) . EXPR
| vlam VAR (VAR : SIMPLETYPE) : SIMPLETYPE . EXPR
| SIMPLETYPE

Our language: type rules

(x : t) : t unit : Unit nil t : List t

b1 : t b2 : List t

cons b1 b2 : List t tlam x1 (x2 :< τ) . e : max(τ, Fun 0)

(vlam x1 (x2 : t1) : t2 . e) : (t1 -> t2) t : Type t

b1 : List t1 b2 : t2 b3 : t2
(vcase b1 of nil -> b2; cons x1 x2 -> b3) : t2

b1 : (t1 -> t2) b2 : t1
b1 b2 : t2

Our language: type ordering

• To be able to verify the termination of type-level recursion, we
define on the set TYPE a partial order that is well-founded and
computable:

t1 < t2 t2 < t3
t1 < t3

t1 < t2
Type t1 < Type t2

n1 <NAT n2

Fun n1 < Fun n2

t < List t t1 < (t1 -> t2) t2 < (t1 -> t2)

t1 < Type t2 t < Fun n Type t < Fun n

Our language: example

tlet reverseargs{0} f =
tlet revtypes{1} t cont{0} =

tcase t of
Unit -> cont t;
List _ -> cont t;
(t1 -> t2) -> revtypes t2 (tlam u . t1 -> cont u)

in tlet proc{1} ts cont{0} =
tcase ts of

Unit -> cont f;
List _ -> cont f;
(t -> ts’) -> vlam (x : t) : ts’ .

proc ts’ (tlam g . cont (g x))
in

proc (revtypes (typeof f) (tlam t . t)) (tlam g . g)

Our language: example

• If we apply reverseargs to f : Unit -> (Unit -> Unit)
-> List Unit -> Unit, it will reduce in the type level to
the expression

vlam (x1 : List Unit) : (Unit -> Unit) -> Unit -> Unit .
vlam (x2 : Unit -> Unit) : Unit -> Unit .

vlam (x3 : Unit) : Unit .
(f : Unit -> (Unit -> Unit) -> List Unit -> Unit

) x3 x2 x1

• which has type List Unit -> (Unit -> Unit) -> Unit
-> Unit.

Our language vs dynamically typed languages

• If we do not require decidability of type checking
• We can drop the kind annotations and use the same syntax as

the dynamically typed language
• Type checking only uses type-level information
• If the type checking terminates, the program is guaranteed not

to produce type errors at run time
• Thus we have statically type-checked the dynamically typed

program

Conclusion

• We have a language that allows defining very general
higher-order polymorphic functions

• which can be defined almost as easily as in dynamically typed
languages with typecase

• the type system is very simple (no need for polymorphic types)

• But we have not been able to prove the decidability of type
checking

• Maybe it is necessary to change the kind system

The End

