Gödeli meeldetuletus

Tarmo Uustalu

Teooriapäevad Arulas, 3.–5.2.2003

- What is this about? (Rich) languages with a decided intended intended intended intended intended (powerful) theories in such languages, axiomatized (powerful) theorem languages.
- **Definition:** A *language* L is a first-order logical language with equidenumerable amount of non-logical individual, function and predict assume a fixed intended interpretation. This singles out a subset of set of *true* sentences.

 \models A means A is true in the intended interpretation.

An *L*-theory *T* is a subset of all *L*-sentences, these sentences are c $\vdash_T A$ means *A* is a *T*-theorem.

An *axiomatized L-theory* is a *L*-theory generated by a p.r. subset of (called *axioms*) and the inference rules of first-order logic.

- **Definition:** Let T be a theory in a language L (with fixed intended
 - T is said to be *consistent* (kooskõlaline), if $\vdash_T A$ implies $\not\vdash_T -$ more theorems than syntactically ok).
 - T is said to be *sound* (korrektne), if $\vdash_T A$ implies $\models A$ (there a theorems than semantically ok).
 - *T* is said to be *syntactically complete* (süntaktiliselt täielik), if $\vdash_T \neg A$ (there are no less theorems than syntactically ok).
 - T is said to be *semantically complete* (semantiliselt täielik), if $\frac{1}{2}$ (there are no less theorems than semantically ok).

- Observation: The semantic properties are stronger than the syntac
 - soundness implies consistency,
 - and semantic completeness implies syntactic completeness.
- **Observation:** The converses don't hold in general, but:
 - consistency implies soundness under the assumption of semant
 - and syntactic completeness implies semantic completeness und soundness.
- T syntactically perfect, if it's both consistent and syntactically comevery sentence A, either $\vdash_T A$ or $\vdash_T \neg A$ (which mimicks bivalence)
- T is semantically perfect, if it's both sound and semantically comp theoremhood exactly captures truth.

• **Definition:** A language *L* is *rich* if natural numbers, p.r. operation numbers and p.r. relations on natural numbers are effectively *repre* (faithfully wrt. the intended interpretation) in *L* by terms, schematics sentences.

Terms representing natural numbers are called numerals.

• **Definition:** An *L*-theory *T* is *powerful*, if natural numbers, p.r. operelations on them satisfy the following *presentation conditions* (esited)

- for f a p.r. operation,

$$\vdash_T \bar{f}[\bar{m}_1,\ldots,\bar{m}_n] \doteq \bar{m} \text{ iff } f(m_1,\ldots,m_n) =$$

- for p a p.r. relation,

$$\vdash_T \bar{p}[\bar{m_1},\ldots,\bar{m_n}]$$
 iff $p(m_1,\ldots,m_n)$

(\bar{m} denotes the representation of m.)

- Fact: The terms and sentences (and schematic terms and schematic rich language *L* (with denumerable signature) are effectively enumnumbers so that all important syntatic operactions on them reduce numbers (*Gödel numbers*).
- **Consequence:** Because of the representability of natural numbers and sentences of *L* therefore translate to *L*-numerals (*codes*).

 $\lceil m \rceil$ denotes the code of m.

In powerful L-theories, facts about important operations and relation codes are reflected quite well since the presentation conditions hole

• **Convention:** From now on, saying "language", we always mean a saying "theory", we always mean a powerful theory.

- Diagonalization Lemma: Given a language L, one can for any sci P effectively find a sentence S s.t. ⊨ S ≡ P[¬S¬] and, for any L-⊢_T S ≡ P[¬S¬].
- Proof: Instantiating schematic L-sentences with L-numerals is a preduced to Gödel numbers thus a p.r. operation on numbers, hence Let subst be the schematic L-term representing it. Then ⊨ subst[¬ any schematic L-sentence Q and any numeral t. For an L-theory T ⊢_T subst[¬Q¬, t] ≐ ¬Q[t]¬ by the presentation conditions.

Consider any schematic L-sentence P. Let D be the diagonal sche given by $D[t] := P[\mathsf{subst}[t, t]].$

Set $S := D[\ulcorner D \urcorner]$. Then

$$\models S \equiv P[\ulcorner S \urcorner] \text{ and } \vdash_T S \equiv P[\ulcorner S \urcorner]$$

since by the definitions of S and D, $S \equiv P[\ulcorner S \urcorner]$ is identical to $P[\mathsf{subst}[\ulcorner D \urcorner, \ulcorner D \urcorner]] \equiv P[\ulcorner D[\ulcorner D \urcorner] \urcorner].$

• Tarski's theorem about non-representability of truth. Given a l L-sentences is non-representable in L: there is no schematic L-ser

$$= A \text{ iff } \models \mathsf{True}[\ulcorner A \urcorner]$$

Proof. Suppose a schematic *L*-sentence True with the stated proper Then, applying the Diagonalization Lemma to the schematic *L*-sentence an produce an *L*-sentence Tarski such that |= Tarski ≡ ¬True[¬True[¬True]¬

Hence Tarski is a sentence stating its own falsity, a "liar". Indepen Tarski is true <u>or</u> false, it is true <u>and</u> false, which cannot be.

• Gödel's theorem about representability of theoremhood. Given theoremhood in an *axiomatized* L-theory T is effectively represent effectively find a schematic sentence Thm_T in L s.t.

$$\vdash_T A \text{ iff } \models \mathsf{Thm}_T[\ulcorner A \urcorner]$$

• **Proof:** For an axiomatized *L*-theory *T*, the relation of a sequence of being a *T*-proof of a *L*-sentence is a p.r. relation, reduced to Gödel relation on numbers, thus effectively representable in *L*. Let Proof *L*-sentence representing it.

Thm_T is constructed by letting Thm_T[t] := $\exists x$. Nat[x] \land Proof_T[

- Lemma (Gödel): Given a language L, each <u>axiomatized</u> L-theory following derivability conditions (tuletatavustingimused):
 - **D1** $\vdash_T A$ implies $\vdash_T \mathsf{Thm}_T[\ulcorner A \urcorner]$ (the theory is positively introsp
 - **D2** \vdash_T Thm_T[$\ulcorner A \supset B \urcorner$] \supset (Thm_T[$\ulcorner A \urcorner$] \supset Thm_T[$\ulcorner B \urcorner$]) (the the closed under modus ponens),
 - **D3** \vdash_T Thm_T[$\ulcorner A \urcorner$] \supset Thm_T[$\ulcorner Thm_T[\ulcorner A \urcorner] \urcorner$] (the theory knows i introspective).
- **Proof:** Hard work (unrewarding).

- Corollary: Given a language L, a sound <u>axiomatized</u> L-theory T is semantically incomplete (and hence because of the assumption of s syntactically incomplete).
- **Proof:** If some *L*-theory *T* was both sound and semantically comp *T*-theoremhood of *L*-sentences would be the same as truth. But on *L*-representable, the other is not.

- Gödel's first incompleteness theorem: Given a language L, for a L-theory T, one can effectively find an L-sentence Godel_T s.t.
 - if T is consistent, then $\not\vdash_T \text{Godel}_T$, but $\models \text{Godel}_T$ (so T is sem incomplete),
 - if T is omega-consistent, then $\nvdash_T \neg \mathsf{Godel}_T$ (so T is also syntax
- Proof: For an axiomatized L-theory T, we know that a schematic exists s.t. ⊢_T A iff ⊨ Thm_T[¬A¬].

Using the Diagonalization Lemma, we construct $Godel_T$ as an L-s

 $\models \mathsf{Godel}_T \equiv \neg \mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner] \text{ and } \vdash_T \mathsf{Godel}_T \equiv \neg \mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T \urcorner]$

(so informally $Godel_T$ says it's a non-T-theorem and that's a T-theorem T is consistent. Suppose $\vdash_T Godel_T$. Then, by D1, also $\vdash_T Thm_T[Godel_T]$. But then, by the construction of $Godel_T, \vdash_T Contradicts consistency.$

Suppose $\not\models$ Godel_T, then by the construction of Godel_T, \models Thm_T by the construction of Thm_T, equivalent to \vdash_T Godel_T, but we alr $\vdash_T \neg$ Godel_T, so again we are contradicting consistency.

• **Remark:** Note that while Tarski is an antinomic sentence, it must merely paradoxical, its existence looks potentially troublesome, bu harmful about it.

• Gödel's second incompleteness theorem: Given a language L, for L-theory T, if T is consistent, than

$$\not\vdash_T \mathsf{Cons}_T$$

where $Cons_T := \neg Thm_T[\ulcorner \bot \urcorner]$ (which says T is consistent). (So consistent axiomatized theory T is not a T-theorem.)

• Proof:

Assume T is a consistent axiomatized L-theory. By the construction have

$$\vdash_T \mathsf{Godel}_T \supset \neg\mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner]$$

From this, by D1, we get

```
\vdash_T \mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner \supset \lnot\mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner]]
```

from where, by D2, we further get

```
\vdash_T \mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner] \supset \mathsf{Thm}_T[\ulcorner\neg\mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T]]
```

But by D3 we also have

 $\vdash_T \mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner] \supset \mathsf{Thm}_T[\ulcorner\mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T$

Combining the last two using D2 and the construction of $Cons_T$, w

$$\vdash_T \mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner] \supset \lnot\mathsf{Cons}_T$$

which of course gives

$$\vdash_T \mathsf{Cons}_T \supset \neg\mathsf{Thm}_T[\ulcorner\mathsf{Godel}_T\urcorner]$$

Together with the construction of $Godel_T$ again (the second half of this yields

 $\vdash_T \mathsf{Cons}_T \supset \mathsf{Godel}_T$

If now it were the case that $\vdash_T \text{Cons}_T$, then also $\vdash_T \text{Godel}_T$, but sittle First Incompleteness Theorem tell us the that $\not\vdash_T \text{Godel}_T$.