
GRIGORI MINTS AND COMPUTER SCIENCE

Enn Tyugu
Institute of Cybernetics, Tallinn University of Technology

Abstract. A survey is presented of works of Grigori Mints from the eighties of the last century 
where  logic  was applied  to  program synthesis  and  semantics  of  specification  languages.  It 
demonstrates  examples  of  fruitful  application  of  logic  in  computing.  He  has  left  a  visible 
footprint in the Estonian computer science.

1. Coming to Tallinn
We in Tallinn established contacts with Grigori Mints in 1980. He started participating in the 
summer-  and  winter-schools  organized  with  the  best  Soviet  computer  scientists  and 
mathematicians as lecturers.  Years ago before that,  Grigori  had participated in a successful 
large project of construction of a natural deduction theorem-prover together with N. Shanin, S. 
Maslov et al. [9] which required considerable amount of programming, but his interests and 
experiences in computer science and computer applications were low. It was a pleasant surprise 
that he became interested in the program synthesizer that we were developing with a strong 
practical orientation. The synthesizer called PRIZ [9] had been developed as a result of a long 
experimentation and worked on mainframes similar to IBM370. We were trying to explain the 
synthesis algorithm in terms of logic, but found little understanding from logicians. Grigori 
spent many hours questioning us about the synthesis algorithm and trying to fit it into logic. 

Grigori  lost  his  researcher position in St.  Petersburg,  because he was a quiet  dissident,  not 
actively outspoken, but enough to be persona non grata for the official Soviet science. For a 
shorter period he worked even in a software house in St. Petersburg as a programmer, writing 
code in the IBM assembler language. Hillar Aben -- Director of the Institute of Cybernetics of 
Estonian Academy of Sciences listened to my pleading and agreed to give Grigori a researcher 
position at the Institute of Cybernetics in Tallinn in the end of 1980. This was a really good luck 
for the computer science and logic in Estonia. Grigori spent ten years in Tallinn -- until 1991, 
when he took a position of professor at the Stanford University.  He started educating us in 
logic, published an easily readable preprint on logical foundation of program synthesis [9], and 
gave lectures. He was teaching logic, doing research, organizing scientific meetings (including 
a large meeting on relations between computing and logic COLOG-88 [9]) and communicating 
with scientists  of  different  countries as much as the circumstances  permitted it.  Institute of 
Cybernetics  hosted  S.  McLane,  H.  Barendregt,  S.  Maslov,  P.  Martin-Löf,  J.  McCarthy,  P. 
Suppes, J.-Y. Girard, V. Lifshits, A. Slisenko, E. Griffor and many other mathematicians and 
logicians as visitors invited by Grigori Mints.  

2. Structural synthesis in the beginning 
In the beginning of the eighties we started calling the program synthesis that was used in PRIZ 
“structural program synthesis” [9], because it relied on structural properties of computations, 
taking into the account only which variables were inputs and outputs of building blocks of a 
synthesized  program  --  like  it  is  generally  accepted  now  in  service  composition.  Actual 
relations between the values of inputs and outputs were ignored. However, functional inputs 
were permitted, and the values of these inputs had to be synthesized as well. 

A goal of the synthesis (a synthesis problem) was presented by defining only input and output 
variables of the required program. Complete specification of a synthesis problem was presented 
as a set of all  objects that  are candidates for being computed (i.e.  that may be involved in 
solving the problem) and a set of functions that can be used for computing these objects. The 
elements of the first set could be called variables, because they could get values computed by 

1



the  elements  of  the second set,  but  these were  variables with single  assignment,  hence not 
conventional program variables. Besides these two sets, a set of functional variables that are 
inputs of the functions was given. Such a variable had to be evaluated during the program 
synthesis process, if a function having it as an input was used in computations.   

A specification for structural synthesis of a program could be easily represented as a graph with 
nodes as elements of the sets from above, and incidence relation of nodes representing data 
dependencies (i.e. inputs and outputs) of functions. In order to explain the synthesis algorithm, 
a symbolic notation was introduced for the specification as well. Each function was represented 
by a formula x1,..xm →  y1,…yn{f} called a computability statement, where  x1,..xm were the inputs 
and y1,…yn  the outputs of the function  f.  There was a problem that some of the inputs were 
functional variables that had to be evaluated during the program synthesis, and not during the 
execution  of  the  program.  Inputs  and  outputs  of  a  functional  variable  were  given  in  a 
specification as well. Therefore such a variable itself could be described by a formula that gives 
its inputs and outputs: u1,… uk →  v1,… vl. The order of inputs and outputs of a function could be 
ignored at the derivation of an algorithm, hence a formula for a function took the form a →  b 
with a and b sets of its inputs and outputs. Different versions of the synthesis algorithm were 
described  by  respective  derivation  rules  for  stepwise  construction  of  an  algorithm.  As  an 
example here is a rule for a case when no functional variables were present 

A →  B∪C     C∪G →  F
------------------------------ ,
      A∪G →  F

where A, B, C, G, F are metavariables denoting sets of variables. Handling functional inputs of 
the building blocks required higher order notations, and this was not exactly defined for the 
structural synthesis of programs. This was how we saw the structural synthesis of programs 
(SSP) before Grigori became involved. 

3. Completeness of structural synthesis
We were quite sure that the synthesis algorithm of PRIZ was complete in some sense (which we 
had not defined yet). But, I remember very well one morning, when Grigori just arrived by train 
from St. Petersburg, where he still was working part time as a programmer in a company called 
“Lengipromjasomolprom”, and gave an example of a specification and a goal, asking whether 
the goal is solvable by the PRIZ system. It became soon clear that this goal was unsolvable by 
the  synthesis  algorithm  implemented  in  PRIZ.  This  event  started  a  discussion  of  exact 
representation of the SSP in logic and, naturally, attempts to improve the synthesis algorithm. 
As a result, the synthesis algorithm was changed, and the first paper on logic of SSP appeared 
[9]. 

The following is a brief summary of the results on completeness of  SSP. Let us assume for 
simplicity that the output of a function is always only one (maybe structured) value. A precise 
logical description of a building block f, represented earlier by a computability statement 

x1,x2,…xk →  y{f} 

is as follows:

∀u1∀u2…∀uk(X1(u1)∧X2(u2) ∧…Xk(uk) →  Y(f(u1,u2,…uk))),  (*)

where X1, X2,…Xk are unary predicate symbols denoting computability of a proper value of xi, so 
that the formula Xi(si) can be read as “the value si is a suitable value for the input (or output) xi”. 

2



In the case of  m functional variables  g1,g2…gm as additional inputs of a building block F, the 
logical formula describing the building block takes the form

 ∧(∀si,1∀si,2…∀si,ki(Ui,1(si,1)∧Ui,2(si,2) ∧…Ui,ki(si,ki) →  V(gi(si,1,si,2,…si,ki))) ) →
  1≤i≤m

           →∀u1∀u2…∀uk(X1(u1)∧X2(u2) ∧…Xk(uk) →  Y(F(u1,u2,…uk,g1,g2,…gm))).    (**)

This is the general form of formulas appearing in the logical language of structural synthesis. 
The nested  implications  on  the  left  side  and functional  variables  may be  missing  in  many 
specifications of building blocks, see (*). To present the logical rules of structural synthesis of 
programs we will use the abbreviation (***) instead of the form (**)

 ∧(Ui →  Vi{φ i}) →  (X →  Y{F}),                                (***)
1≤i≤m

where the structure of a formula is preserved, but all  bound variables as well  as inessential 
indices are omitted,  Ui and  X  denote conjunctions of unary predicates.  Let us note that this 
formula includes functional variables φ1, φ2…φm and a higher-order functional constant F. From 
now on it will be assumed that the formulas are closed – universally quantified with respect to 
the variables φ1, φ2…φm as well. 

The structural synthesis rules SSR in a sequent notation were defined as follows:

⇒  ∧ (Ui →  Vi{φ i}) →  (X →  Y{F});  Γ i  ⇒  Ui →  Vi{gi}, i=1,2,…m
                1≤i≤m

____________________________________________________________________________________        (--)
Γ1, Γ2,… Γm ⇒  X →  Y{F*}

Γ ⇒  X →  Y{F}; Σ i ⇒  Xi(ti),  i=1,2,…n
_________________________________        (-)

Γ,Σ1,Σ2,…Σn ⇒  Y(F(t1,t2,…tn))

  Γ, X  ⇒  Y(t)
_______________         (+)
Γ ⇒  X →   Y{λx.t}

Axioms Γ,H⇒  H for any formula H are also assumed. X on the left side of the sequent in the 
rule (+) denotes a list of unary predicates. Σ,Γ denote lists of formulas. F* denotes the result of 
substitution of gi for φi , i=1,2,…m in F. We distinguish between terms for unary predicates and 
functional terms for implications by using different brackets: () and {} respectively. 

 Grigori proved the following two theorems in [9] that demonstrate the completeness of SSR. 

Theorem 1.
Let C1,…,Ck be formulas of the form (***) and let C be a goal U →  V.
Then a sequent C’1,…,C’k ⇒  C’ is derivable in the calculus of natural deduction if and only if  
⇒  C is derivable from  ⇒  C1,…,  ⇒  Ck  by the rules SSR, where C’1,…,C’k, C’are respective  
formulas of the form (**). 

Theorem 2.

3



Let C1,…,Ck be formulas of the form (***), W a list of unary predicates denoting computability,  
and let K be a conjunction of the goals Ui →  Vi, 1≤i≤m.
Then the sequent 

C’1,…,C’k,W ⇒  K

is derivable by natural deduction if and only if all the sequents 

W ⇒  Ui →  Vi, 1≤i≤m have normal deductions from ⇒  C1,…, ⇒  Ck  according to the rules of  
SSR. Here C’1,…,C’k  denote respective formulas of the form (**).  

Proof of the first theorem is rather obvious – SSR are admissible rules of intuitionistic logic for 
the  abbreviated  form  (***)  of  formulas.  Proof  of  the  second  theorem  is  based  on  the 
observation that any natural deduction can be transformed into deduction in the long normal 
form, and deductions in the long normal form can be easily transformed in deductions with SSR 
[9]. 

4. It can be a propositional logic
The formula (**) includes only unary predicates, and the quantifiers are used so that we can 
move  quantifiers  close  to  the  predicates  with respective  bound variables  and transform the 
quantified subformulas into the form  ∃uU(u). Indeed, instead of a conventional specification 
∀x(P(x) →  ∃yR(x,y)) of a program (or its building block) where input x and output y are bound 
by a relation R, the  SSP uses a specification  ∀x(P(x)  →  ∃yR(y)).  It can be presented in the 
equivalent form  ∃xP(x)  →  ∃yR(y).   Now the closed subformulas  ∃xP(x)  and  ∃yR(y)  can be 
considered as propositions, i.e. the specification becomes P→R, where P denotes computability 
of the input and R denotes computability of the output of a program.  Bearing in mind that the 
proofs in SSP are constructed in intuitionistic logic, one should not worry about the description 
of computations – the realizations of formulas would be programs, more precisely – lambda 
terms that can be easily converted to programs. This is how the authors reasoned when writing 
the paper [9]. 

The  logical  language  of  SSP becomes  now  an  implicative  fragment  of  the  propositional 
language with restricted nestedness  of  implications.  The general  form of  the  formulas  of  a 
specification is (***), assuming that a special case without nested implications is also accepted. 
But now the formulas obtain precise meaning instead of being just abbreviations of quantified 
formulas. The symbols gi and F denote now lambda terms that are realizations of implications 
Ui →  Vi and (X →  Y)  respectively.  They are constants for preprogrammed building blocks of 
programs, and more complex lambda-terms built for derived formulas. The inference rules for 
this language remain in essence the same as shown above. Changing slightly the rule (--) gives 
us  derivations  where  each  step  exactly  corresponds to  the  application of  a  preprogrammed 
function – a  computation  step.  The  changed rule  requires  that  all  inputs  of  a  function  are 
computed, and the rule is as follows:

⇒  ∧ (Ui →  Vi{φ i}) →  (X →  Y{F});  Γ i , Ui ⇒  Vi(gi), i=1,2,…m; Σ j⇒  Xj(tj), j=1,…n
    1≤i≤m

__________________________________________________________________________________________________       (--)
Γ1, Γ2,… Γm, Σ1,Σ2,…Σn ⇒  Y(F(g1,…,gm,t1,…,tn))

Now the rule (-) becomes a special case of the rule (--), hence it is not needed any more.

4



Grigori pointed out that the language of  SSP is expressive and  SSR rules are complete in the 
following sense. Given a list L of intuitionistic propositional formulas and a proposition B, the 
list  L can be transformed into a list  L’ of  formulas  of  the  form (***) such that  L’⇒  B is 
derivable in SSR if and only if L⇒B is derivable in intiutionistic logic [9]. This transformation 
is  performed  by  introducing  new propositional  variables  for  every subformula  A*B with  a 
connective  *  that  spoils  the  form  (***)  and  applying  equivalent  substitution  theorem  – 
substituting a new variable  W instead of a subformula  A*B, and adding the implications  W→ 
A*B and A*B→W to the list L so that the derivability is preserved. Elimination of ⊥ as well as 
elimination of ∨ on the right side of an implication requires more effort and expands the list L’ 
polynomially, because new implications have to be introduced for every existing propositional 
variable,  see [9].)   These transformations  are suggested by the following two second order 
equivalences:

(p∨ q)↔∀ x((p→x) →((q→x) →x)) and ⊥↔∀ xx.

We  made  a  theorem-proving  experiment  –  proved  all  intuitionistic  propositional  theorems 
(more than one hundred theorems) from S. Kleene’s “Introduction to metamathematics” [9], 
first, encoding the theorems in the input language of the PRIZ system and then using the SSP 
program synthesizer as a theorem prover [9]. This happened to be an interesting experiment, 
because  the  prover  that  had  been  initially  designed  for  program synthesis  gave  interesting 
proofs. An example is a derivation of the intuitionistic analog  ((((A→B)→A)→A)→B)→B of 
the valid classical formula ((A→B)→A)→A. Because of the deeper nestedness of implications, 
this  formula  had to  be  rewritten by introducing new propositional  variables  X,  Y denoting 
respectively A→B and X→A. This gave a new formula ((Y→A) →B) →B. Taking B as a goal, 
one had to derive the sequent ⇒B from the sequent

⇒  (Y→A) →B,

using  possibly  also  the  axioms that  were  added  according  to  the  equivalent  replacement 
condition:

⇒X→  (A→B)
⇒  (A→B) →X
⇒Y→(X→A)
⇒  (X→A) →Y.

The proof was as follows:

  
                                                                               ⇒  (Y→A) →B;      Y, A⇒A
                                                                                  ______________________(--)                
                                                            ⇒  (A→B)→X;            A⇒B                 
                                                                   _____________________(--) 
                     ⇒Y→(X→A);      Y⇒Y;             ⇒X
                     _______________________________  (--)                               
⇒  (Y→A) →B         Y⇒A  
__________________________(--)
                      ⇒  B                                   

5



5. Specifications as types
In practical applications, specifications for program synthesis are written in a language different 
from the logical language used for synthesis. Looking from a practical side – program synthesis 
has become today a part of a compilation technique of declarative problem-oriented languages, 
and most of the logic is hidden in a compiler. Although this approach was not common in the 
eighties  of  the  last  century,  the  SSP was  used already in  combination with a user-friendly 
declarative language. A question of the precise semantics of this language arouse. In the paper 
[9], an attempt was made by G. Mints, J. Smith and E. Tyugu to define the semantics of a small 
specification language in three different ways:  by translating it into logic and applying SSP 
(logical semantics); by considering a specification as a presentation of a type, and proving that 
the type of a goal is inhabited (types semantics); by interpreting the specification in a set theory 
(sets semantics). The equivalence of these three semantics was shown. Considering the idea of 
formulas as types, the relatedness of these semantics should not be a surprise.

Let us look at the  semantics of the kernel language of specifications for  SSP presented in [9] 
and [9]. A specification written in this language is a sequence of statements of the following 
form:

a:(x:s;…;y:t),

where a, x,… y are new names,  a will denote an object and x,…,y will denote its components 
that are also objects having types given by the type specifiers s,…,t. Names of the components 
x,…,y used outside of the object a are a.x,…,a.y, i.e. the prefix a is added to the names. Longer 
compound names like a.x.u may also appear, depending on the types specified by s,…,t. A type 
specifier can be 
 

-- name of a primitive type
-- name of a object specified earlier
-- an expression of one of the following forms

u1,…,um →  um+1 
u1,…,um →  um+1{f},

where u1,…,um, um+1 are names of components,  f is a name of a predefined function. 

Logical semantics of the language was defined by giving a method of constructing a program 
for  a  given  specification  and  a  solvable  goal.  This  method  consisted,  first,  of  rules  for 
translating a specification in the language of SSP, and second, applying the SSP. The translation 
was  rather  straightforward:  unfolding  the  specifications  and  copying  the  implications 
expressing computability for all introduced objects and their components. Besides that, one had 
to introduce extra implications to represent a structure of objects. For each compound object a 
with components x,…,y the following new implications had to be introduced:  

a →   x, …, a →    y and x,…,y →    a.

These implications described the computability of components of a and the computability of a 
itself from its components.

It is easy to see that the kernel language describes objects of simple types, and it is easy today 
to  apply  type  inference  to  find  a  proper  term for  a  given  goal.  However,  a  more  general 
approach with dependent types was used for types semantics in the work [9] done together with 
Jan Smith from the Gothenburg computer science group, where program synthesis in Martin-
Löf’s  type  theory  was  investigated.  The  types  (Π x:A)B and  (∑ x:A)B were  used  for 
representing A→  B and A ∧ B respectively. For a specification S with representation Θ(S) in the 
type language, and a solvable goal a→  b, the types semantics gave a term f such that Θ(S) |-- f:

6



(Π x:A)B,  where  |-- denotes the derivability in Martin Löf’s type theory as described in [9]. 
Here again, first the representation Θ(S) of the specification was found, and then the term f was 
built. 

6. Induction in a propositional language 
The program synthesis used  in the PRIZ system permitted to synthesize recursive programs 
from axioms given in the language of SSP. In order to formulate an extension of derivation 
rules for synthesis of recursive programs, the notion of a sequent was extended so that inductive 
proofs became possible. Expressions of the form [A] for formulas A were allowed to occur on 
the left side of a sequent for expressing the induction. The following rule for recursion was 
added:

           Γ,  [X →  Y], X ⇒  Y
           ______________      (Rec)
                Γ, X ⇒  Y
This  rule  was  obtained  from the usual  transfinite  induction  rule  by  suppressing  individual 
variables like we did in Section 3 for all bound vaiables. The rule (--) had to be extended as 
well:

⇒   ∧  (Ui →  Vi) →  (X →  Y);  Γ i  ⇒  Ui →  Vi, i=1,2,…l
     1≤ i ≤m

____________________________________________________________________________________        (--R)
Γ1, Γ2,… Γ l,[Ui →  Vi] ⇒  X →  Y

         l+1≤ i ≤m

Also the programming language had to be extended with a recursion functional. This approach 
was quite innovative in the eighties. Introducing induction without explicitly requiring well-
foundedness meant that one could not ensure termination of a synthesized program. The proof 
of termination had to be done by other means (remained a responsibility of the user). A simple 
example of a recursive synthesis is the following synthesis of factorial:

    ⇒  (N→F) →  (N→F)      
______________________   (--R)
       [N→F] ⇒  N →F
    ________________    (Rec)
              N ⇒  F
       _________  (+)
      ⇒  N→F

7. Propositional logic programming and more synthesis
Although logic programming is defined broadly as “using logic for program construction, it is 
often thought of as predicate Horn clause programming, e.g. Prolog. But, more generally, logic 
programming means exploiting the basic truth that the structure of a program is similar to a 
constructive proof of the fact that the desired result of the program exists (can be computed). 
This enables one to use results obtained in logic for building correct program schemas or for 
determining schemas of computations and control the computations.  We made an attempt to 
present program development in PRIZ, i.e. the structural synthesis of programs, as propositional 
logic programming, and to extend the scope of logic programming in this way [9,9]. The control 
of computations in Prolog is performed in runtime by unification, it may cause backtracking 
and unnecessary computations. Control in PRIZ is encoded in the preprogrammed higher order 

7



functions that call synthesized parts of programs. The search with backtracking is done before 
the actual computations, and unnecessary computations are avoided. Comparing the control in 
Prolog and PRIZ in a naïve way, we can say that a clause

P(X,Y) :- Q(…),R(…) 

means in Prolog “if P(X,Y) may be used, then try to use sequentially Q(…),…,R(…),if this is not 
successful,  then  try  to  find  some  other  way.”  In  PRIZ,  the  control  of  computations  is 
preprogrammed in the implementations of formulas with nested implications. A formula 

(u→v) ∧ …(s→ t)→(x→y){F} 

means in PRIZ “if F can be used, then try to find functions for solving u→v,…, s→ t and apply 
them as prescribed by F.” 

Grigori collected a number of papers from the Soviet logicians and computer scientists, and we 
put them in a special issue of the Journal of Logic Programing [9]. The papers by I. Babaev [9], 
by M. Kanovich [9], and by G. Mints and E. Tyugu [9] in this journal are on propositional logic 
programming. An interesting paper of V. Mikhailov and N. Zamov [9] is about the synthesis of 
technological algorithms that is also a program synthesis in some sense. 

Grigori explained another synthesis algorithm used in PRIZ for so called independent subtasks 
in modal logic [9]. He also wrote a comprehensive and elegant paper about the complexity of 
proof search in different fragments of the intuitionistic propositonal logic [9], and I think he got 
the idea that this kind of a paper may be useful for computer scientists, when discussing several 
modifications of the PRIZ synthesizer. 

Independent subtasks are useful because of less complex search needed for synthesis. A subtask 
is called independent, if its solvability does not depend on the availability of inputs of other 
subtasks. In the case when all subtasks are independent, the order of testing the solvability of 
subtasks is inessential  as long as no new variables are computed.  Hence, for finding in the 
synthesis  process a new applicable function,  one has to make at most  n solvability tests  of 
subtasks where  n is the number of subtasks. A subtask solvability test can be performed in 
linear time with respect of the number of occurrences of propositional variables in all formulas. 
As the result, the time complexity of search in this case is polynomial. (It is exponential in the 
general case of SSP as it is for the proof search in the intuitionistic propositional calculus.) 

For the independent subtasks, one used another rule (--)ind instead of the SSR rule (--):

⇒  ∧ (Ui →  Vi{φ i}) →  (X →  Y{F});  U’i ⇒  Vi(gi), i=1,2,…m; Σ j⇒  Xj(tj), j=1,…n
    1≤i≤m

____________________________________________________________________________________________________        (--)ind
⇒  Y(F(g1,…,gm,t1,…,tn))

where  U’i denoted a list  of variables occurring in the conjunction  Ui.  One can see that the 
second premise of the rule was simpler – it did not contain extra formulas  Γ i that made the 
complexity of the search exponential. The rule (--)ind together with the SSR rules (-) and (+) 
were called SSRind.

Unfortunately for  the PRIZ developers,  using the rule  (--)ind did not  fit  in the logic as we 
understood it. To help us, Grigori translated the formulas and sequents of the synthesis with 
independent subtasks in the language of modal logic by rewriting implications A →  B as strict 

8



implications ÿ (A⊃ B).  He proved that a sequent in this language is derivable in the modal logic 
S4 if and only if the original sequent in the language of SSP is derivable in SSRind [9].  

8. Concluding remarks
Working  together with computer scientists in Tallinn, Grigori  became an advocate of  using 
logic  in  computer  science.  It  was  his  idea  to  organize  together  with  P.  Martin-Löf  and  P. 
Lorents an international conference where logicians and computer scientists could meet. The 
International Conference in Computer Logic COLOG-88 [9] was a big success and it indeed 
brought together researchers from computing and logic from many countries. 

Speaking about Grigori’s influence on computer science one must not ignore his influence on 
young scientists whose educator he has been. A number of well-known professors found their 
way to logic and computer science due to Grigori, for example, Mati Pentus (now professor of 
Moscow  University),  Tarmo  Uustalu  and  Tanel  Tammet  (professors  of  Tallinn  Technical 
University). I am not speaking about Grigori’s role in logic, but still wish to point out Sergei 
Tupailo as one example. Sergei was Grigori’s doctoral student, he defended one Ph.D. thesis at 
Stanford  University  and  another  at  Tartu  University.  He  is  dedicated  to  foundations  of 
mathematics, and is known by his works on NF.     

I take the complete responsibility for all mistakes and for the form of presentation of the results 
here, although most  of  ideas presented in this paper belong to Grigori Mints,  who has had 
invaluable influence on the computer scientists who were lucky to work with him.

9. References

1. I. Babajev. Problem Specification and Program Synthesis in the System SPORA. J. of 
Logic Programming, v. 9, No. 2&3 (1990) 141 – 157.

2. Journal of Logic Programming, v. 9, No. 2&3 (1990)

3. M. Kanovich. Efficient Program Synthesis in Computational Models. J. Logic 
Programming, v. 9, No. 2&3 (1990) 159 – 177.

4. S. Kleene. Introduction to Metamatemathics. North-Holland (1952)

5. P.   Martin-Löf  , G. Mints: COLOG-88, International Conference on Computer Logic, 
Proceedings LNCS,  Springer (1988)

6. V. Mikhailov, N. Zamov. Deductive Synthesis of Solutions for Technological Tasks. J. 
Logic Programming, v. 9, No. 2&3 (1990) 195 – 220.

7. G. Mints, E. Tyugu. The completeness of structural synthesis rules. Soviet Math. 
Doklady. V. 25 (1982) p. 2334 – 2336.

8. G. Mints. Logical foundation of program synthesis. Institute of Cybernetics (in 
Russian). Tallinn (1982).

9. G. Mints. Complexity of Subclasses of the Intuitionistic Propositional Calculus. Bit, v. 
32, No. 1 (1992) 64 – 69. 

9

http://dblp.uni-trier.de/rec/bibtex/journals/jsyml/Mints91
http://dblp.uni-trier.de/db/indices/a-tree/m/Martin=L=ouml=f:Per.html


10. G. Mints, E. Tyugu: Justifications of the Structural Synthesis of Programs. Sci. 
Comput. Program. 2(3): 215-240 (1982)

11. G. Mints, E. Tyugu. Semantics of a declarative language. OInformation Processing 
leters 23, Elsevier (1986) p. 147 – 151.

12. G. Mints, E. Tyugu: The Programming System PRIZ. J. Symb. Comput. 5(3): 359-375 
(1988)

13. G. Mints, E. Tyugu: Propositional Logic Programming and the Priz System. J. Log. 
Program. 9 (2&3): 179-193 (1990)

14. G. Mints, E. Tyugu: The Programming System PRIZ. Baltic Computer Science LNCS, 
v. 502, Springer (1991) 1-17 

15. G. Mints, J. M. Smith, E. Tyugu: Type-theoretical Semantics of Some Declarative 
Languages. Baltic Computer Science LNCS, v. 502, Springer (1991) p. 18-32 

16. G. Mints, T. Tammet: Condensed Detachment is Complete for Relevance Logic: A 
Computer-Aided Proof. J. Autom. Reasoning 7(4): 587-596 (1991) 

17. G. Mints. Propositional Logic Programming. In. J. Hayes, D. Michie, E. Tyugu (eds.) 
Machine Intelligence v. 12 (1991) 17 - 37

18. B. Nordström, K. Petersson, J. M. Smith. Programming in Martin-Löf’s Type Theory. 
Chalmers (1989)

19. N. Shanin, G. Davidov, S. Maslov, G. Minc, V. Orevkov. A. Slisenko. An algorithm for 
a machine search of a natural logical deduction in a propositional calculus.  (in Russian) 
Academy of Sciencies of the USSR, Steklov Mat. Inst., Leningrad department, 
"Nauka", Moscow (1965). 

20. E. Tyugu: The structural synthesis of programs. Algorithms in Modern Mathematics 
and Computer Science LNCS, v. 122, Springer (1979) 290-303

21. E. Tyugu: Three New-Generation Software Environments. Commun. ACM 34(6): 
46-59 (1991)

22. B. Volozh, M. Matskin, G. Mints, E. Tyugu. Theorem proving with the aid of a 
program synthesizer. Cybernetics, No. 6, (1982) 63 – 70.

10

http://dblp.uni-trier.de/db/journals/cacm/cacm34.html#Tyugu91
http://dblp.uni-trier.de/db/conf/ershov/ershov1979.html#Tyugu79
http://dblp.uni-trier.de/db/conf/ershov/ershov1979.html#Tyugu79
http://dblp.uni-trier.de/db/journals/jar/jar7.html#MintsT91
http://dblp.uni-trier.de/db/indices/a-tree/t/Tammet:Tanel.html
http://dblp.uni-trier.de/db/conf/balt/balt1991.html#MintsST91
http://dblp.uni-trier.de/db/indices/a-tree/t/Tyugu:Enn.html
http://dblp.uni-trier.de/db/indices/a-tree/s/Smith:Jan_M=.html
http://dblp.uni-trier.de/db/conf/balt/balt1991.html#MintsT91
http://dblp.uni-trier.de/db/conf/balt/balt1991.html#MintsT91
http://dblp.uni-trier.de/db/indices/a-tree/t/Tyugu:Enn.html
http://dblp.uni-trier.de/db/journals/jlp/jlp9.html#MintsT90a
http://dblp.uni-trier.de/db/journals/jlp/jlp9.html#MintsT90a
http://dblp.uni-trier.de/db/indices/a-tree/t/Tyugu:Enn.html
http://dblp.uni-trier.de/db/journals/jsc/jsc5.html#MintsT88
http://dblp.uni-trier.de/db/indices/a-tree/t/Tyugu:Enn.html
http://dblp.uni-trier.de/db/journals/scp/scp2.html#MintsT82
http://dblp.uni-trier.de/db/journals/scp/scp2.html#MintsT82
http://dblp.uni-trier.de/db/indices/a-tree/t/Tyugu:Enn.html

	GRIGORI MINTS AND COMPUTER SCIENCE
	1.Coming to Tallinn
	2.Structural synthesis in the beginning 
	3.Completeness of structural synthesis
	4.It can be a propositional logic
	5.Specifications as types
	6.Induction in a propositional language 
	7.Propositional logic programming and more synthesis
	8.Concluding remarks
	9.References


