
Order Preserving
Embeddings

James Chapman
Institute of Cybernetics, Tallinn

Joint work with Peter Morris, original idea due to
Altenkirch, Hofmann and Streicher. It was shown to me

by Conor McBride

This work in context
• I am interested in:

• Semantics of programming languages based on
lambda-calculus.

• Formalised in type theoretic theorem provers
such as Agda, Epigram and Coq

• In these systems:

• Proofs and programs are the same

• The types of programs can express their
specifications

What’s the problem?

• Doing these things in detail, as you are
forced to do in a theorem prover, makes it
very important to use appropriate
representations of things

• The greater the level of detail, the greater
the choice of representation

• A general problem for formal mathematics
and programming language semantics

Finite sets
data Fin : Nat -> Set where
 fzero : Fin (suc n)
 fsuc : Fin n -> Fin (suc n)

Example usage:
safe_lookup : Fin n -> Array X n -> X

 Fin zero

 Fin (suc zero)

 Fin (suc (suc zero)fzerofsuc fzero

fzero

Pictorial enumeration of the first three instances:

Untyped Lambda calculus

data Lam : Nat -> Set where
 var : Fin n -> Lam n
 λ : Lam (suc n) -> Lam n
 app : Lam n -> Lam n -> Lam n

The well-scoped lambda terms

Example expressions:

λ (var fzero) -- identity function
λ (λ (var (fsuc fzero))) -- ‘K’ combinator

What can you go from
here?

• Define syntactic operations:

• Weakening, substitution, etc.

• Implement an evaluator/normaliser

• Extend it:

• Data types, effects, annotate with simple
or dependent types, etc.

Implementing Weakening

weak : Lam n -> Lam (suc n)
weak (var x) = var (fsuc x)
weak (app t u) = app (weak t) (weak u)
weak (λ t) = λ ? -- we’re stuck

We need to generalise from adding a new variable at the
end of the context to an arbitrary position

Weakening adds a fresh variable at the ‘zero’ position and
increments the rest

Thinning: A solution?
0
1
2
3

0
1
2
3
4

new variable

tlam : Fin (suc n) -> Lam n -> Lam (suc n)
tlam x (var y) = var (tvar x y)
tlam x (app t u) = app (tlam x t) (tlam x u)
tlam x (λ t) = λ (tlam (fsuc x) t)

We implement it for terms as follows:

Ordinary weakening for terms is now easy:
weak : Lam n -> Lam (suc n)
weak t = tlam fzero t

A better solution: Order
Preserving Embeddings

0

1

2

3

0

1

2

3

4

5

data OPE : Nat -> Nat -> Set where
 done : OPE zero zero
 skip : OPE m n -> OPE m (suc n)
 keep : OPE m n -> OPE (suc m) (suc n)

The identity OPE (id : OPE n n) is recursively defined

The weakening OPE is a now easy to define:

oweak : OPE n (suc n)
oweak = skip id

OPEs

olam : OPE m n -> (Lam m -> Lam n)
olam f (var x) = var (ovar x)
olam f (app t u) = app (olam f t) (olam f u)
olam f (λ t) = λ (olam (keep f) t)

We can easily define the following operation lifting an OPE
to a function on lambda expressions

Action of OPEs

Ordinary weakening for terms is now easy:

weak : Lam n -> Lam (suc n)
weak t = olam oweak t

OPEs form a category
• The objects are natural numbers: 0, 1, ...

• The morphisms are OPEs: f, g, ...

• For every object n an OPE id : OPE n n

• For every f : OPE l m and g : OPE m n
there is an operation • such that
f • g : OPE l n

• and the following properties hold:

• f • id = f and id • f = f

• f • (g • h) = (f • g) • h

Why is this a good
representation?

• Avoids reasoning about functions, first
order structures are easier to deal with

• Avoids junk, captures only what we want

• Simple (elegant?) algebraic structure

Big-step Normalisation

• Central part of my thesis:

• based on “Big-step Normalisation” by
Altenkirch and Chapman

• Published (soon!) in Special issue of
Journal of Functional Programming. 2009.
Eds. C. McBride and T. Uustalu

• Big win: simplified reasoning about
weakenings; avoids problematic reasoning
about context extensions.

Dependent types

• OPEs are helpful here for well-typed
terms, as even defining variables requires
reference to weakening.

• If we implement weakening by referring to
variables we quickly get into a knot.

• OPEs avoid this and the fact the form a
category become an integral part of the
definition.

