Inductive Cyclic Data Structures

Makoto Hamana

Department of Computer Science,
Gunma University, Japan

(Joint with Tarmo Uustalu and Varmo Vene)

1st, Febrary, 2009

http://www.cs.gunma-u.ac.jp/ "hamana/

T his Work

> How to inductively capture cylces

> Intend to apply it to functional programming

Introduction

> Terms are a convenient and concise representation of
inductive data structures in functional programming

(i) Representable by inductive datatypes
(ii) pattern matching, structural recursion
(iii) Reasoning: structural induction

(iv) Initial algebra property

> But ...

Introduction

> How about cyclic data structures?

--
ﬂﬂﬂﬂﬂ
-

O1
A 4
®»

‘4

L4

> How can we represent this data in functional programming?

> Give up to use pattern matching, composition, structural recursion and

structural induction

> Not inductive (usually believed so)

T his Work

» Cyclic Data Structures
(i) Syntax: p-terms
(ii) Implementation: nested datatypes in Haskell
(iii) Semantics: domains and traced categories

(iv) Application: A syntax for Arrows with loops

Idea

> A syntax of fixpoint expressions by p-terms is widely used

> Consider the simplest case: cyclic lists

A 2
5 P 6

> This is representable by
px.cons(5, cons(6, x))

> But: not the unique representation

px. py.cons(5, cons(6, x))
px.cons(5, py.cons(6, pz.x))
px.cons(5, cons(6, pax.cons(5,cons(6,x))))

All are the same in the equational theory of u-terms.

> Thus: structural induction is not available

Idea

> p-term may have free variable considered as a dangling pointer

cons(6, x)

v

6

“incomplete” cyclic list

> To obtain the unique representation of cyclic and incomplete cyclic lists,
always attach exactly one p-binder in front of cons:

pxy.cons(5, pxs.cons(6,xy))
seen as uniform addressing of cons-cells

No axioms

Inductive

v V. VvV V

Initial algebra for abstract syntax with variable binding

by Fiore, Plotkin and Turi [LICS'1999]
7

Cyclic Signature and Syntax

> Cyclic signature X
nil®, cons(m, —)(1) for each m € Z

T,y Fx

x F py.cons(6,)

- pax.cons(5, py.cons(6, x))

> De Bruijn notation:
- cons(5, cons(6, 72))

> Construction rules:

1<i<mn fFE ey n41kt; ---n+1kFt

n T2 nt f(ty,...,tr)

Cyclic Lists as Initial Algebra

>

F: category of finite cardinals and all functions between them
Def. A binding algebra is an algebra of signature functor on Set”

E.g. the signature functor X : Set” — Set" for cyclic lists

A=14+7Z X A(—+1)

The presheaf of variables: V(n) =n

The initial V4+3-algebra (C, in: V4+XC — C)

Cn) 2n+14+2ZxC(n+1) for each n € N
C'(n): represents the set of all incomplete cyclic lists possibly containing
free variables {1,...,n}

C'(0): represents the set of all complete (i.e. no dangling pointers) cyclic
lists

Cyclic Lists as Initial Algebra

> Examples

12 € C(2)
cons(6,72) € C(1)
cons(5, cons(6,72)) € C(0)

> Destructor:

tail : C(n) — C(n+ 1)
tail(cons(m,t)) =t

> Idioms in functional programming: map, fold

> How to follow a pointer: translation into semantical structures

10

Cyclic Data Structures as Nested Datatypes

> Haskell implementation
> T he initial algebra characterisation induces implementation
> Explains the work [Ghani, Hamana, Uustalu and Vene, TFP'006]

> Inductive datatype indexed by natural numbers

data Zero
datalncrn = One|Sn
data CList n = Ptrn
| Nil
| ConsInt (CList (Incr n))
> cf. Cn)=2n+1+ZxC(n+1)
> Examples
Ptr (S One) :: CList (Incr (Incr Zero))
Cons 6 (Ptr (S One)) :: CList (Incr Zero)

Cons 5 (Ptr (Cons 6 (S One))) :: CList Zero
11

Cyclic Lists to Haskell's Internally Cyclic Lists

> Translation

tra :: CListn — [[Int]] — [Int]

tra Nil ps = []
tra(Consaas) ps = letx = a: (traas(z:ps)) inx
tra (Ptr 1) ps = nth ¢ ps

> The accumulating parameter ps keeps a newly introduced pointer x by let

v
5

——6

> Example
tra (Cons 5 (Cons 6 (Ptr (S One)))) []

= 5:6:5:6:5:6:5:6:5:6: ---

> Makes a true cycle in the heap memory, due to graph reduction
> Dereference operation is very cheap

> Better: semantic explanation — to more nicely understand tra
12

Domain-theoretic interpretation

> Semantics of cyclic structures has been traditionally given as their infinite
expansion in a cpo

> Fits into nicely our algebraic setting

> CPppPoO : cpos and strict continuous functions
Cppo : cpos and continuous functions

13

Domain-theoretic interpretation

> Let X be the cyclic signature for lists
nil®, cons(m, —)(1) for each m € Z.
> The signature functor 37 : Cppo; — Cppo, is defined by
(X)) =1, @ Z,1, X1

> The initial Xi-algebra D is a cpo of all finite and infinite possibly partial
lists

> Define a clone (D, D) € Set" by
(D,D), = [D™,D]= Cppo(D",D)

> The least fixpoint operator in Cppo: fix(F) = | |,y F*(L)

> (D, D) can be a V4 3X-algebra

[[_]] : 0 — <D7D>

14

Domain-theoretic interpretation

> The unique homomorphism in Set”
[[_]] : 0 — (Dv D>
[nil],, = AO.nil
[z.cons(m, t)],, = AO.fix(Ax.cons®” (m, [t], 1 (©,x))
[2],, = AO.7.(O)

> Example of interpretation
[11z.cons(5, py.cons(6, x))],(e) = fix(Az.cons® (5, fix(Ay.cons® (6, 7 (x, y)))
= fix(\x.cons” (5, cons” (6, x))

= cons(5, cons(6, cons(5, cons(6, . ..

tra :: CLista — [[Int]] — [Int]

tra Nil ps = []
tra(Consaas) ps = letx = a: (traas (x: ps)) inx
tra (Ptr 1) ps = nth i ps

15

Interpretation in traced cartesian categories

> A more abstract semantics for cyclic structures in terms of
traced symmetric monoidal categories [Hasegawa PhD thesis, 1997]

> Let C be an arbitrary cartesian category having a trace operator Tr
[n b px.f(ty,...,te)] = TT'D(A offlso(ln+1Fti],...,[n+ 1 F t1]))

> T his categorical interpretation is the unigue homomorphism
[[—]] : C — (D, D)

to a V+3X-algebra of clone (D, D) defined by (D, D),, = C(D"™, D)

> Examples
(i) C = cpos and continuous functions

(ii) C = Freyd category generated by Haskell's Arrows

16

Application: A New Syntax for Arrows

> Arrows [Hughes'00] are a programming concept in Haskell to make a
program involving complex “wiring' -like data flows easier

l reset

CONST 0 —»[COND "”1 >
— 4 | mc |

next —[DELAY O |« '

> Example: a counter circuit

newtype Automaton b ¢ = Auto (b -> (c, Automaton b c))

counter :: Automaton Int Int
counter = proc reset -> do —-- Paterson’s notation [ICFP’01]
rec output <- returnA -< if (reset==1) then 0 else next
next <- delay 0 -< output+l

returnA -< output

17

Application: A New Syntax for Arrows

> Paterson defined an Arrow with a loop operator called ArrowLoop

class Arrow _A => ArrowLoop _A where
loop :: _A (b,d) (c,d) > _Abc

> Arrow (or, Freyd category)
is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo'06]

> ArrowlLoop
is a cartesian-center traced premonoidal category [Benton, Hyland’'03]

> Cyclic sharing theory is interpreted
in a cartesian-center traced monoidal category [Hasegawa'97]

> What happens when cyclic terms are interpreted as Arrows with loops?

18

Application: A New Syntax for Arrows

> Term syntax for ArrowlLoop

> Example: a counter circuit

l reset

[CONSTO]—»[COND] "“1 >
— 4 | mc |

next—{ DELAY 0 | '

> Intended computation
px.Cond(reset, Const0, DelayO(Inc(x)))

where reset is a free variable

> term :: Syntx (Incr Zero)
term = Cond(Ptr(S One),Const0,DelayO0(Inc(Ptr(S(S One)))))

10

Translation from cyclic terms to Arrows with loops

tl ::

tl
tl
tl
tl
tl

(Ctx n, ArrowSigStr _A d) => Syntx n -> _A [d] d
(Ptr i) = arr (\xs -> nth i xs)
(Const0) = loop (arr dup <<< constO <<< arr (\(xs,x)->(0)))
(Inc t) = loop (arr dup <<< inc <K< tl t <<< arr supp)
(DelayO t) = loop (arr dup <<< delay0 <<< tl t <<< arr supp)

(Cond (s,t,u)) = loop (arr dup

<<< cond <<< arr(\((x,y),z)->(x,y,2))

<K< (tl s &&& tl t) &&& tl1 u <<< arr supp)
> This is the same as Hasegawa’s interpretation of cyclic sharing structures
[n 2] =
[n Fpx.f(ti,... te)] = TrP (Ao [fls o ([n+1 Fti]y-..,[n+ 1 F t1]))
> Define an Arrow by term

term = Cond(Ptr(S One),Const0,DelayO0(Inc(Ptr(S(S One)))))

counter’ :: Automaton Int Int

counter’ = tl term <<< arr (\x->[x])

20

Simulation of circuit

> Let test_input be
(1) reset (by the signal 1),
(2) count +1 (by the signal 0),
(3) reset,
(4) count +1,
(5) count +1, ...

test_input = [1,0,1,0,0,1,0,1]
runl = partRun counter test_input -- original

run2 = partRun counter’ test_input -- cyclic term

In Haskell interpreter

> runl
[0,1,0,1,2,0,1,0]

> run?2
[0,1,0,1,2,0,1,0]
21

Summary

> Inductive characterisation of cyclic sharing terms
> Semantics
> Implementations in Haskell

> Application of good connections between semantics and
functional programming

29

Next

> How to handle “sharing” has been clarified

> Dependently-typed programming for cyclic sharing structures, in Agda

23

