
Inductive Cyclic Data Structures

Makoto Hamana

Department of Computer Science,

Gunma University, Japan

(joint with Tarmo Uustalu and Varmo Vene)

1st, Febrary, 2009

http://www.cs.gunma-u.ac.jp/˜hamana/

1

This Work

B How to inductively capture cylces

B Intend to apply it to functional programming

2

Introduction

B Terms are a convenient and concise representation of

inductive data structures in functional programming

(i) Representable by inductive datatypes

(ii) pattern matching, structural recursion

(iii) Reasoning: structural induction

(iv) Initial algebra property

B But ...

3

Introduction

B How about cyclic data structures?

B How can we represent this data in functional programming?

B Give up to use pattern matching, composition, structural recursion and

structural induction

B Not inductive (usually believed so)

4

This Work

I Cyclic Data Structures

(i) Syntax: µ-terms

(ii) Implementation: nested datatypes in Haskell

(iii) Semantics: domains and traced categories

(iv) Application: A syntax for Arrows with loops

5

Idea

B A syntax of fixpoint expressions by µ-terms is widely used

B Consider the simplest case: cyclic lists

B This is representable by
µx.cons(5, cons(6, x))

B But: not the unique representation

µx.µy.cons(5, cons(6, x))

µx.cons(5, µy.cons(6, µz.x))

µx.cons(5, cons(6, µx.cons(5, cons(6, x))))

All are the same in the equational theory of µ-terms.

B Thus: structural induction is not available

6

Idea

B µ-term may have free variable considered as a dangling pointer

cons(6, x)

“incomplete” cyclic list

B To obtain the unique representation of cyclic and incomplete cyclic lists,

always attach exactly one µ-binder in front of cons:

µx1.cons(5, µx2.cons(6, x1))

B seen as uniform addressing of cons-cells

B No axioms

B Inductive

B Initial algebra for abstract syntax with variable binding

by Fiore, Plotkin and Turi [LICS’1999]
7

Cyclic Signature and Syntax

B Cyclic signature Σ

nil(0), cons(m, −)(1) for each m ∈ Z

x, y ` x

x ` µy.cons(6, x)
` µx.cons(5, µy.cons(6, x))

B De Bruijn notation:

` cons(5, cons(6, ↑2))

B Construction rules:

1 ≤ i ≤ n

n `↑i

f (k) ∈ Σ n + 1 ` t1 · · · n + 1 ` tk

n ` f(t1, . . . , tk)

8

Cyclic Lists as Initial Algebra

B F: category of finite cardinals and all functions between them

B Def. A binding algebra is an algebra of signature functor on SetF

B E.g. the signature functor Σ : SetF → SetF for cyclic lists

ΣA = 1 + Z× A(− + 1)

B The presheaf of variables: V(n) = n

B The initial V+Σ-algebra (C, in : V+ΣC → C)

C(n) ∼= n + 1 + Z× C(n + 1) for each n ∈ N

B C(n): represents the set of all incomplete cyclic lists possibly containing

free variables {1, . . . , n}
B C(0): represents the set of all complete (i.e. no dangling pointers) cyclic

lists

9

Cyclic Lists as Initial Algebra

B Examples

↑2 ∈ C(2)

cons(6, ↑2) ∈ C(1)

cons(5, cons(6, ↑2)) ∈ C(0)

B Destructor:

tail : C(n) → C(n + 1)

tail(cons(m, t)) = t

B Idioms in functional programming: map, fold

B How to follow a pointer: translation into semantical structures

10

Cyclic Data Structures as Nested Datatypes

B Haskell implementation

B The initial algebra characterisation induces implementation

B Explains the work [Ghani, Hamana, Uustalu and Vene, TFP’06]

B Inductive datatype indexed by natural numbers

data Zero

data Incr n = One | S n

data CList n = Ptr n

| Nil

| Cons Int (CList (Incr n))

B cf. C(n) ∼= n + 1 + Z× C(n + 1)

B Examples

Ptr (S One) :: CList (Incr (Incr Zero))
Cons 6 (Ptr (S One)) :: CList (Incr Zero)
Cons 5 (Ptr (Cons 6 (S One))) :: CList Zero

11

Cyclic Lists to Haskell’s Internally Cyclic Lists

B Translation

tra :: CList n → [[Int]] → [Int]
tra Nil ps = []
tra (Cons a as) ps = let x = a : (tra as (x : ps)) in x

tra (Ptr i) ps = nth i ps

B The accumulating parameter ps keeps a newly introduced pointer x by let

B Example
tra (Cons 5 (Cons 6 (Ptr (S One)))) []
⇒ 5 : 6 : 5 : 6 : 5 : 6 : 5 : 6 : 5 : 6 : · · ·

B Makes a true cycle in the heap memory, due to graph reduction

B Dereference operation is very cheap

B Better: semantic explanation – to more nicely understand tra
12

Domain-theoretic interpretation

B Semantics of cyclic structures has been traditionally given as their infinite

expansion in a cpo

B Fits into nicely our algebraic setting

B Cppo⊥: cpos and strict continuous functions

Cppo : cpos and continuous functions

13

Domain-theoretic interpretation

B Let Σ be the cyclic signature for lists

nil(0), cons(m, −)(1) for each m ∈ Z.

B The signature functor Σ1 : Cppo⊥ → Cppo⊥ is defined by

Σ1(X) = 1⊥ ⊕ Z⊥⊥ ⊗ X⊥

B The initial Σ1-algebra D is a cpo of all finite and infinite possibly partial

lists

B Define a clone 〈D, D〉 ∈ SetF by

〈D, D〉n = [Dn, D] = Cppo(Dn, D)

B The least fixpoint operator in Cppo: fix(F) =
⊔
i∈N F i(⊥)

B 〈D, D〉 can be a V+Σ-algebra

[[−]] : C −→ 〈D, D〉.
14

Domain-theoretic interpretation

B The unique homomorphism in SetF

[[−]] : C −→ 〈D, D〉
[[nil]]n = λΘ.nil

[[µx.cons(m, t)]]n = λΘ.fix(λx.consD(m, [[t]]n+1(Θ, x))

[[x]]n = λΘ.πx(Θ)

B Example of interpretation

[[µx.cons(5, µy.cons(6, x))]]0(ε) = fix(λx.consD(5, fix(λy.consD(6, πx(x, y)))

= fix(λx.consD(5, consD(6, x))

= cons(5, cons(6, cons(5, cons(6, . . .

tra :: CList a ! [[Int]] ! [Int]

tra Nil ps = []

tra (Cons a as) ps = let x = a : (tra as (x : ps)) in x

tra (Ptr i) ps = nth i ps

15

Interpretation in traced cartesian categories

B A more abstract semantics for cyclic structures in terms of

traced symmetric monoidal categories [Hasegawa PhD thesis, 1997]

B Let C be an arbitrary cartesian category having a trace operator Tr

[[n ` i]] = πi

[[n ` µx.f(t1, . . . , tk)]] = TrD(∆ ◦ [[f]]Σ ◦ 〈[[n + 1 ` t1]], . . . , [[n + 1 ` t1]]〉)

B This categorical interpretation is the unique homomorphism

[[−]] : C −→ 〈D, D〉

to a V+Σ-algebra of clone 〈D, D〉 defined by 〈D, D〉n = C(Dn, D)

B Examples

(i) C = cpos and continuous functions

(ii) C = Freyd category generated by Haskell’s Arrows

16

Application: A New Syntax for Arrows

B Arrows [Hughes’00] are a programming concept in Haskell to make a

program involving complex “wiring”-like data flows easier

B Example: a counter circuit

newtype Automaton b c = Auto (b -> (c, Automaton b c))

counter :: Automaton Int Int

counter = proc reset -> do -- Paterson’s notation [ICFP’01]

rec output <- returnA -< if (reset==1) then 0 else next

next <- delay 0 -< output+1

returnA -< output

17

Application: A New Syntax for Arrows

B Paterson defined an Arrow with a loop operator called ArrowLoop

class Arrow _A => ArrowLoop _A where

loop :: _A (b,d) (c,d) -> _A b c

B Arrow (or, Freyd category)

is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo’06]

B ArrowLoop

is a cartesian-center traced premonoidal category [Benton, Hyland’03]

B Cyclic sharing theory is interpreted

in a cartesian-center traced monoidal category [Hasegawa’97]

B What happens when cyclic terms are interpreted as Arrows with loops?

18

Application: A New Syntax for Arrows

B Term syntax for ArrowLoop

B Example: a counter circuit

B Intended computation

µx.Cond(reset, Const0, Delay0(Inc(x)))

where reset is a free variable

B term :: Syntx (Incr Zero)

term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))

19

Translation from cyclic terms to Arrows with loops

tl :: (Ctx n, ArrowSigStr _A d) => Syntx n -> _A [d] d

tl (Ptr i) = arr (\xs -> nth i xs)

tl (Const0) = loop (arr dup <<< const0 <<< arr (\(xs,x)->()))

tl (Inc t) = loop (arr dup <<< inc <<< tl t <<< arr supp)

tl (Delay0 t) = loop (arr dup <<< delay0 <<< tl t <<< arr supp)

tl (Cond (s,t,u)) = loop (arr dup <<< cond <<< arr(\((x,y),z)->(x,y,z))

<<< (tl s &&& tl t) &&& tl u <<< arr supp)

B This is the same as Hasegawa’s interpretation of cyclic sharing structures

[[n ` i]] = �i

[[n ` �x:f(t1; : : : ; tk)]] = TrD(∆ � [[f]]Σ � h[[n+ 1 ` t1]]; : : : ; [[n+ 1 ` t1]]i)

B Define an Arrow by term

term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))

counter’ :: Automaton Int Int

counter’ = tl term <<< arr (\x->[x])
20

Simulation of circuit

B Let test_input be

(1) reset (by the signal 1),

(2) count +1 (by the signal 0),

(3) reset,

(4) count +1,

(5) count +1, : : :

test_input = [1,0,1,0,0,1,0,1]

run1 = partRun counter test_input -- original

run2 = partRun counter’ test_input -- cyclic term

In Haskell interpreter

> run1

[0,1,0,1,2,0,1,0]

> run2

[0,1,0,1,2,0,1,0]

21

Summary

B Inductive characterisation of cyclic sharing terms

B Semantics

B Implementations in Haskell

B Application of good connections between semantics and

functional programming

22

Next

B How to handle “sharing” has been clarified

B Dependently-typed programming for cyclic sharing structures, in Agda

23

