
Reasoning about non-terminating programs

Keiko Nakata
Institute of Cybernetics, Tallinn

(Joint work with Tarmo U.)

1 Feburary 2009

Summary of the talk

I will introduce some operational semantics for the While
language, inductively defined as well as coinductively defined,
to reason about terminating as well as non-terminating program
executions.

Motivation and goal

There are many interesting terminating programs.
There are interesting non-terminating programs, e.g. server
programs.

Our goal is to design a logic which can talk about

- whether an execution is definitely terminating or definitely
non-terminating,

- observational behaviour of non-terminating executions,
e.g. a program execution alternately prints “hello” and “bye”
infinitely often.

- secure information flow analysis on non-terminating
executions

The While language

Integers i ::= 1 | 2 | 3 | . . .
Expressions a ::= i | x | a + a | a− a | a < a | . . .
Statements s ::= skip | x := a | s; s

| if a then s else s | while (a) {s}
States σ ∈ Vars→ Int

σ ` a ⇓ v means a evaluates to v under σ.
E.g. (x : 1, y : 2) ` x + y ⇓ 3

σ ` a ⇓ tt means a evaluates to a truth value, i.e. non-zero.
E.g. (x : 1) ` x < 3 ⇓ tt

σ ` a ⇓ ff means a evaluates to a false value, i.e. zero.
E.g. (x : 1) ` x > 3 ⇓ ff

Operational semantics (inductively defined)

s : σ → σ′ means an execution of s transfers σ to σ′.

skip : σ → σ

σ ` a ⇓ v
x := a : σ → σ[x 7→ v]

s1 : σ → σ′ s2 : σ′ → σ′′

s1; s2 : σ → σ′′

σ ` a ⇓ tt s1 : σ → σ′

if a then s1 else s2 : σ → σ′
σ ` a ⇓ ff s2 : σ → σ′

if a then s1 else s2 : σ → σ′

σ ` a ⇓ ff
while (a) {s} : σ → σ

σ ` a ⇓ tt
s : σ → σ′ while (a) {s} : σ′ → σ′′

while (a) {s} : σ → σ′′

An example

while (x < 3) {y := y ∗ y ; x := x + 1}

s′ : (1,2)→ (2,4)

s′ : (2,4)→ (3,16) s : (3,16)→ (3,16)

s : (2,4)→ (3,16)

s : (x : 1, y : 2)→ (3,16)

where s abbreviates while (x < 3) {y := y ∗ y ; x := x + 1}
and s′ abbreviates y := y ∗ y ; x := x + 1.

Operational semantics (coinductively defined)

s :: σ → σ′ means an execution of s transfers σ to σ′.

skip :: σ → σ

σ ` a ⇓ v
x := a :: σ → σ[x 7→ v]

s1 :: σ → σ′ s2 :: σ′ → σ′′

s1; s2 :: σ → σ′′

σ ` a ⇓ tt s1 :: σ → σ′

if a then s1 else s2 :: σ → σ′
σ ` a ⇓ ff s2 :: σ → σ′

if a then s1 else s2 :: σ → σ′

σ ` a ⇓ ff
while (a) {s} :: σ → σ

σ ` a ⇓ tt
s :: σ → σ′ while (a) {s} :: σ′ → σ′′

while (a) {s} :: σ → σ′′

Inductive semantics vs coinductive semantics

The two semantics differ in derivation trees they admit.

- Inductive semantics demands complete derivation trees.

⇒We can only construct finite trees, which represent finite
executions.

- Coinductive semantics needs derivation trees that can be built
on demand, or lazily.

⇒We can construct potentially infinitely growing trees lazily,
thus coinductive semantics can express both finite and infinite
executions.

Ref. We can program with infinite lists, i.e. streams, in Haskell,
but not in OCaml (unless we use the lazy/force operators).

Coinductive semantics

The coinductive semantics characterizes both terminating and
non-terminating execution.

It permits all derivation trees that the inductive semantics
permits and more.

An example (1)

while (true) {x := 1}

x := 1 :: (1)→ (1)

x := 1 :: (1)→ (1)

. . .

s :: (x : 1)→ (1)

s :: (1)→ (1)

s :: (x : 1)→ (1)

where s abbreviates while (true) {x := 1}.

Reminder:
σ ` a ⇓ tt

s :: σ → σ′ while (a) {s} :: σ′ → σ′′

while (a) {s} :: σ → σ′′

An example of diverging execution (2)

while (true) {x := x + 1}

x := 1 :: (1)→ (2)

x := 1 :: (2)→ (3)

x := 1 :: (i)→ (i + 1) s :: (i + 1)→ (?)
. . .

s :: (3)→ (?)

s :: (2)→ (?)

s :: (x : 1)→ (?)

where s abbreviates while (true) {x := x + 1}.

Reminder:
σ ` a ⇓ tt

s :: σ → σ′ while (a) {s} :: σ′ → σ′′

while (a) {s} :: σ → σ′′

Non-determinism

We can deduce, for any integer i ,
while (true) {x := x + 1} :: (x : 1)→ (i)

The post state is deterministic for terminating executions,
but is non-deterministic for non-terminating executions.

A program may reach any state after an infinite execution.

Because the program cannot reach such a state!

The coinductive semantics might not be informative enough to
talk about interesting properties of non-terminating executions.

Operational semantics with traces

We extend our operational semantics with traces, or sequences
of states.

States σ ∈ Vars→ Int
Traces τ ::= () | σ :: τ

x := 1; y := x + 1; x := x + y

x := 1; y := x + 1; x := x + y :: (0,0)→ [(0,0); (1,0); (1,2); (3,2)]

Operational semantics with traces (1)
inductively defined

s : σ → τ means execution of s starting at σ goes through τ .

s : τ � τ ′ means s transfers τ to τ ′, i.e. τ followed by execution
of s yields τ ′.

Operational semantics with traces (2)
inductively defined

s : σ → τ
s : [σ] � τ

s : τ � τ ′

s : σ :: τ � σ :: τ ′

skip : σ → [σ]

σ ` a ⇓ v
x := a : σ → [σ; (σ[x 7→ v])]

s1 : σ → τ s2 : τ � τ ′

s1; s2 : σ → τ ′

σ ` a ⇓ tt s1 : σ :: [σ] � τ

if a then s1 else s2 : σ → τ ′
σ ` a ⇓ ff s2 : σ :: [σ] � τ

if a then s1 else s2 : σ → τ

σ ` a ⇓ ff
while (a) {s} : σ → σ :: [σ]

σ ` a ⇓ tt
s : σ :: [σ] � τ while (a) {s} : τ � τ ′

while (a) {s} : σ → τ ′

An example

x := 1; y := x + 1; x := x + y

y := x + 1 : (1,0)→ [(1,0); (1,2)]

x := x + y : (1,2) � [(1,2); (3,2)]

x := x + y : [(1,0); (1,2)] � [(1,0); (1,2); (3,2)]

s′ : (1,0)→ [(1,0); (1,2); (3,2)]

x := 1 : (0,0)→ [(0,0); (1,0)]

s′ : (1,0)→ [(1,0); (1,2); (3,2)]

s′ : [(0,0); (1,0)] � [(0,0); (1,0); (1,2); (3,2)]

s : (x : 0, y : 0)→ [(0,0); (1,0); (1,2); (3,2)]

where s abbreviates x := 1; y := x + 1; x := x + y
and s′ abbreviates y := x + 1; x := x + y

Operational semantics with traces
(coinductively defined)

s :: σ → τ

s :: [σ] � τ

s :: τ � τ ′

s :: σ :: τ � σ :: τ ′

skip :: σ → [σ]

σ ` a ⇓ v
x := a :: σ → [σ; (σ[x 7→ v])]

s1 :: σ → τ s2 :: τ � τ ′

s1; s2 :: σ → τ ′

σ ` a ⇓ tt s1 :: σ :: [σ] � τ

if a then s1 else s2 :: σ → τ ′
σ ` a ⇓ ff s2 :: σ :: [σ] � τ

if a then s1 else s2 :: σ → τ

σ ` a ⇓ ff
while (a) {s} :: σ → σ :: [σ]

σ ` a ⇓ tt
s :: σ :: [σ] � τ while (a) {s} :: τ � τ ′

while (a) {s} :: σ → τ ′

Examples

The coinductive semantics permits all derivation trees that the
inductive semantics permits and more.

while (true) {x := 1}

while (true) {x := 1} :: (x : 1)→ [(1); (1); (1); (1); . . .]

while (true) {x := x + 1}
while (true) {x := x + 1} :: (x : 1)→ [(1); (1); (2); (2); (3); (3); . . .]

Determinism

For terminating executions traces are deterministic.

For non-terminating executions traces are deterministic up to
the bisimulation relation,
i.e. traces are deterministic up to finite observations.

Design issues

- skip preserves traces, or skip is an identity of sequential
composition.

for all s, skip; s :: τ � τ ′ if and only if s :: τ � τ ′

- Checking conditionals increases traces by one.

while (true) {skip} :: (1)→ [(1); (1); (1); . . .]

On going work

We are designing an axiomatic semantics for the coinductive
operational semantics with traces.

Thank you for your attention.

