Compactness properties of acts over semigroups

Peeter Normak

peeter.normak@tlu.ee

Two partly overlapping communities

Although the objects of study - automata and acts over semigrous - are similar, communities studying them are quite different.

The plan

- 1. Represent the finite deterministic (FD) automata in algebraic form.
- 2. Formulate a classification problem of FD automata/input monoids.
- 3. Generalize the representation to acts over arbitrary monoids.
- 4. Demonstrate the classification of monoids by example of equational compactness.
- 5. List some open problems.

Automata

A finite (deterministic) automaton:

 $\mathsf{M}=\mathsf{M}(\mathsf{Q},\Sigma,\delta,\mathsf{q}_0,\mathsf{F}),\,\delta:\mathsf{Q}\times\Sigma\to\mathsf{Q},\,\mathsf{q}_0\in\mathsf{Q},\,\mathsf{F}\subseteq\mathsf{Q},\,|\mathsf{Q}|,|\Sigma|<\infty.$

Mapping δ can be iteratively extended to Σ^* , the set of all words over the alphabet Σ :

 $\delta(q,\epsilon)=q, \delta(q,wa)=\delta(\delta(q,w),a), q \in Q, w \in \Sigma^*, a \in \Sigma, \epsilon - empty word.$

Language accepted by M:

 $\mathsf{L} = \mathsf{L}(\mathsf{M}) = \{ \mathsf{w} \in \Sigma^* \, \big| \, \delta(\mathsf{q}_0, \mathsf{w}) \in \mathsf{F} \}.$

Action congruences on Σ^*

Define a binary operation • on Σ^* : $w_1 \bullet w_2 = w_1 w_2, \forall w_1, w_2 \in \Sigma^*$.

 (Σ^*, \bullet) is a free semigroup with the generating set Σ and empty word ε as the identity element.

Define binary relations ρ and σ on Σ^* :

$$w_1 \rho w_2 \Leftrightarrow \delta(q, w_1) = \delta(q, w_2)$$
 for all $q \in Q$,

 $W_1 \sigma W_2 \Leftrightarrow \delta(q_0, W_1) = \delta(q_0, W_2).$

 ρ is a congruence and σ is a right congruence on Σ^* with $\rho \subseteq \sigma$. Therefore Σ^*/ρ is a semigroup **S** with identity (a monoid).

Algebraic notation

Assuming that all elements of Q can be reached from q_0 we get that Q and the factor set Σ^*/σ can be identified: $Q = \Sigma^*/\sigma$.

Instead of input alphabet Σ , we can consider the input monoid $S=\Sigma^*/\rho$.

The automaton $M(Q, \Sigma, \delta, q_0, F)$ can be written in the form

M=M(Σ*/σ,S,δ',<u>ε</u>,<u>L</u>).

In the language of mathematics/algebra:

M is a cyclic (generated by a single element <u>ε</u>) act over monoid S together with a distinguished subset N(= <u>L</u>).
Here both M and S are finite.

Back to automata: classification

Any automaton $M(Q,\Sigma,\delta,q_0,F)$ determines uniquely a congruence ρ on Σ^* by $w_1\rho w_2 \Leftrightarrow \delta(q,w_1) = \delta(q,w_2)$ for all $q \in Q$:

M☆ρ=ρ(M).

Consider the class Aut-S, $S=\Sigma^*/\rho$, of all automata that have S as its input monoid; assign M Aut-S.

In fact Aut-S={X $\rho \subseteq \rho(X)$ }.

- A classification problem: having fixed a monoid S, describe the elements of Aut-S (find characterizing properties of automata from Aut-S).
- The opposite problem: having fixed a property of automata in Aut-S, find out what properties should have the input monoid S of these automata.

Generalization: an act over a monoid

Definition. Let S be an arbitrary monoid and let M be a set. S is called a *right action on* M (equivalently, M is a right S-act) if there exists a mapping $M \times S \rightarrow M$ such that $m\epsilon = m$ and m(st) = (ms)t for all $m \in M$ and $s,t \in S$.

Differences from classical automata case:

- 1. S is not necessarily finite nor finitely generated: the input alphabet of corresponding automaton can be infinite.
- 2. M is not necessarily finite nor finitely generated: the corresponding automaton can have more than one initial state generators of M.

Any subset of M of elements having certain property can be considered as a set of final states.

Some typical problems

Description of the structure of S-acts: find conditions for an S-act for having a certain property. Example: equationally compact act.

Homological characterization of monoids: having fixed a certain property P of S-acts, find conditions for monoid S so that all S-acts would have the property P. Example: equational compactness.

Decomposition of S-acts: find conditions under which an S-act that has certain property P, can be presented as a composition of "smaller" S-acts each of which has property P.

Finite versus infinite

An attempt in 1980-ies in Estonia to marry theory and practice.

A possible solution: compactness properties.

A property is called *a compactness property* if from the fact that certain conditions are fulfilled for arbitrary finite subsets of certain set, it follows that these conditions are fulfilled for the whole set.

Examples: equational compactness and its generalizations, congruence compactness.

Equational compactness

(Polynomial) equations on a right S-act M:

xs = yt, xs = xt, xs = a, where $s,t \in S$, $a \in M$, x,y are variables.

Definition. An S-act M is called *equationally compact* if every system of polynomial equations (with constants from M) has a solution in M provided that every finite subsystem has a solution in M.

Example: All finite acts are equationally compact.

Negative example: M - a set of natural numbers; S = (N,•) - monoid of natural numbers; {x₁=x₂•2, x₂=x₃•2, x₃=x₄•2, ...} is not solvable.

Generalizations of equational compactness

Type of system of equations	Term
Finite number of variables	f-equational compactness
Only one variable	1-equational compactness
No constants	Weak equational compactness
Every maximal connected subsystem contains constants	c-equational compactness

Example: M - a set of natural numbers; S = (N,•) - monoid of natural numbers; M is both f-equationally compact and 1-equationally compact.

Injectivity

An S-act M is called injective if for any homomorphism $\varphi: X \to M$ and any monomorphism $\iota: X \to Y$ there exists a unique homomorphism $\psi: Y \to M$ such that the following diagram

is commutative.

Non-formal description of injectivity: if M simulates an act X then it simulates any bigger act containing X as well.

Theorem. An act is equationally compact \Leftrightarrow it is injective in relation to pure embeddings.

Homological description of monoids

Definition. A monoid S is called right *absolutely f-equationally compact* if all right S-acts are f-equationally compact.

Theorem. The following conditions on a monoid **S** are equivalent:

- 1) S is right absolutely f-equationally compact;
- 2) S is right absolutely 1-equationally compact;
- 3) All right ideals of S are finitely generated and for every right congruence ρ of S and every finite set {s₁,..., s_k}⊆ S there exist an element u∈ S and a finitely generated subcongruence ψ⊆ρ such that (s_i,s_iu)∈ρ for every i and ρ⊆ψ^u∪ρ^u | J, where J is the right ideal of S generated by the set {s₁,...,s_k}.

Here $s\psi^{u}t \Leftrightarrow su\psi tu$.

Dependences between properties

Some open problems

- 1. Description of classes *AEq-Comp*, *Ac-Eq-Com* and *AW-Eq-Comp*.
- 2. Description of monoids over which two subclasses of absolutely injective monoids coincide.
- **3**. Find conditions for an equationally compact act to be congruence compact or *vice versa*.
- 4. Description of (commutative) monoids over which all congruence compact acts are equationally compact.
- 5. Description of self-equationally compact monoids.

