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Finite automaton: definitions

An automaton A = (Q, Σ, E, I, F ) is a mathematical model

for a finite state machine where Q is a set of states,

Σ is an input alphabet, E ⊆ Q × Σ × Q is a set of transitions,

I ⊆ Q is a set of initial states and F ⊆ Q is a set of final states.

Given an input of symbols, it goes through a series of states

according to its transition function.

A word w = a1a2...an is accepted by A if there is a sequence of

transitions (q0, a1, q1), (q1, a2, q2), ..., (qn−1, an, qn) such that q0 ∈ I

and qn ∈ F .

The set of all words accepted by A is the language of A, denoted by

L(A).
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Automata: determinism vs nondeterminism

L(A) = {01, 011, 0111, ...} ∪ {10, 100, 1000, ...}
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Bideterministic automaton

A bideterministic automaton is deterministic and co-deterministic.
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State complexity

• The number of states of the minimal deterministic finite

automaton (DFA) for a given language can be exponentially

larger than the number of states in a minimal nondeterministic

automaton (NFA).

• The minimal DFA is unique but there may be several minimal

NFAs.

• Many cases where the maximal blow-up of size when

converting an NFA to DFA does not occur.

• Some sufficient conditions have been identified which imply

that the deterministic and nondeterministic state complexities

are the same.
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Transition complexity

• While the state-minimal DFA is also minimal with respect to

the number of transitions, this is not necessarily the case with

NFAs.

• Even allowing one more state in an NFA can produce a

considerable reduction in the number of transitions.

• The number of transitions may be even a better measure for

the size of an NFA than the number of states.

• Furthermore, allowing ǫ-transitions in an NFA (ǫ-NFAs) it is

possible to have automata with even less transitions than

NFAs.
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Bideterministic automata: minimality results

• A bideterministic automaton is a minimal DFA (easy, by

Brzozowski’s DFA minimization algorithm: given an automaton

A, minimal DFA is obtained by Det(Rev(Det(Rev(A)))))

• A bideterministic automaton is a unique state-minimal NFA

(HT–Ukkonen 2003)

• A bideterministic automaton is a transition-minimal NFA (HT

2004)

• The necessary and sufficient conditions for a bideterministic

automaton to be a unique transition-minimal NFA (HT 2007)

• More generally: a bideterministic automaton is a

transition-minimal ǫ-NFA (HT 2007).
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Universal automaton

A factorization of a regular language L is a maximal couple (with

respect to the inclusion) of languages (U, V ) such that UV ⊆ L.

The universal automaton of L is UL = (Q, Σ, E, I, F ) where

Q is the set of factorizations of L,

I = {(U, V ) ∈ Q | ǫ ∈ U},

F = {(U, V ) ∈ Q | U ⊆ L},

E = {((U, V ), a, (U ′, V ′)) ∈ Q × a × Q | Ua ⊆ U ′}.

Fact: universal automaton of the language L is a finite automaton

that accepts L.
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Automaton morphism and the universal

automaton

Let A = (Q, Σ, E, I, F ) and A′ = (Q′, Σ, E′, I ′, F ′) be two NFAs.

Then a mapping µ from Q into Q′ is a morphism of automata if

and only if p ∈ I implies pµ ∈ I ′, p ∈ F implies pµ ∈ F ′, and

(p, a, q) ∈ E implies (pµ, a, qµ) ∈ E′ for all p, q ∈ Q and a ∈ Σ.

Known properties:

• Let A be a trim automaton that accepts L. Then there exists

an automaton morphism from A into UL.

• In particular, the minimal DFA and all state-minimal NFAs

accepting L are subautomata of UL.

• At least one transition-minimal NFA is a subautomaton of UL.
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Bideterministic automata: universal and minimal

It can be shown that any bideterministic automaton is the

universal automaton for the given language.

Therefore any state-minimal NFA of a bideterministic language is a

subautomaton of the bideterministic automaton.

But no strict subautomaton of the minimal DFA can accept the

language, therefore bideterministic automaton is the only

state-minimal NFA for that language.

Similarly, a bideterministic automaton is a transition-minimal NFA

(but not necessarily unique).
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Uniqueness of transition minimality

A bideterministic automaton is not necessarily the only

transition-minimal NFA for the corresponding language.

The necessary and sufficient conditions for the unique

transition-minimality are given by the following theorem:

Theorem. A trim bideterministic automaton

A = (Q, Σ, E, {q0}, {qf}) is a unique transition-minimal NFA if

and only if the following three conditions hold:

(i) q0 6= qf ,

(ii) indegree(q0) > 0 or outdegree(q0) = 1,

(iii) indegree(qf ) = 1 or outdegree(qf ) > 0.
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Automaton morphism for a bideterministic

language

Let A be a bideterministic automaton and let A′ be another

automaton accepting the same language.

Since A = UL(A), there exists an automaton morphism µ from A′

into A.

Proposition. µ is surjective.

Proposition. There is a transition (p, a, q) of A if and only if

there is a transition (p′, a, q′) of A′ such that p′µ = p and q′µ = q.

Based on these propositions, it is easy to see that µ defines an

automaton transformation from A′ to A.
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Unambiguous ǫ-NFA

S. John (2003, 2004) has developed a theory to reduce the number

of transitions of ǫ-NFAs.

Let A be an ǫ-NFA (Q, Σ, E, I, F ) where E is partitioned into two

subrelations EΣ = {(p, a, q) | (p, a, q) ∈ E, a ∈ Σ} and

Eǫ = {(p, ǫ, q) | (p, ǫ, q) ∈ E}.

The automaton A is unambiguous if and only if for each w ∈ L(A)

there is exactly one path that yields w (without considering

ǫ-transitions).
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Slices

Let L ⊆ Σ∗ be a regular language, U, V ⊆ Σ∗, a ∈ Σ.

We call (U, a, V ) a slice of L if and only if U 6= ∅, V 6= ∅ and

UaV ⊆ L.

Let S be the set of all slices of L.

A partial order on S is defined by:

(U1, a, V1) ≤ (U2, a, V2) if and only if U1 ⊆ U2 and V1 ⊆ V2.

The set of maximal slices of L is defined by

Smax := {(U, a, V ) ∈ S | there is no (U ′, a, V ′) ∈ S with

(U, a, V ) < (U ′, a, V ′)}.

14



Transition-minimal unambiguous ǫ-NFA

Let S′ ⊆ S be a finite slicing of L. In order to read an automaton

AS′ out of S′, each slice from S′ is transformed into a transition of

AS′ , and these transitions are connected via states and

ǫ-transitions using a follow-relation −→ which is defined by:

(U1, a, V1) −→ (U2, b, V2) if and only if U1a ⊆ U2 and bV2 ⊆ V1

Theorem (S. John). The three following statements are

equivalent for languages L ⊆ Σ∗ if the slicing Smax of L induces an

unambiguous ǫ-NFA ASmax
:

1) L is accepted by an ǫ-NFA

2) L = L(AS′) for some finite slicing S′ ⊆ S

3) Smax is finite

Furthermore, |Smax| ≤ |S′| ≤ |EΣ|.

Corollary (S. John). An unambiguous ǫ-NFA ASmax
has the

minimum number of non-ǫ-transitions.
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Transition slice

For each non-ǫ-transition t of an automaton A, we define the

transition slice of t to be the slice (Ut, l(t), Vt) of L(A) where

– Ut is the set of strings yielded by the paths from an initial state

to the source state of t,

– l(t) is the label of t, and

– Vt is the set of strings yielded by the paths from the target state

of t to an accepting state.
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A bideterministic automaton is a

transition-minimal ǫ-NFA

Lemma. For a bideterministic automaton A, let t1 and t2 be two

different transitions of A, with the same label a ∈ Σ and with the

corresponding transition slices (Ut1 , a, Vt1) and (Ut2 , a, Vt2). Then

Ut1 ∩ Ut2 = ∅ and Vt1 ∩ Vt2 = ∅.

Proposition. Each transition slice of a bideterministic

automaton A is maximal.

Theorem. A bideterministic automaton A has the minimum

number of transitions among all ǫ-NFAs accepting L(A).
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Multitape automaton model

Let us assume that a function tape : Q → {1, ..., n} associates every

state of the automaton with a certain tape.

An n-tape automaton is given by a six-tuple (Q, tape, Σ, E, I, F )

where Q is a finite set of states with a partition into the sets

Q1, ..., Qn so that Qi = {q ∈ Q | tape(q) = i} for i = 1, ..., n,

Σ is an input alphabet, E ⊆ Q × (Σ ∪ {[, ]}) × Q is a set of

transitions, I ⊆ Q is a set of initial states and F ⊆ Q is a set of

final states.
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Bideterministic multitape automata

L = {(ab, a), (bc, a)}
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Strongly bideterministic automata

Let q ∈ Q and i ∈ {1, ..., n}. A transition is called a future

transition for the state q and tape i if it is the first transition

involving this tape on some path that starts from q.

We call a deterministic multitape automaton strongly deterministic

if for all q ∈ Q, all i ∈ {1, ..., n} and all a ∈ Σ∪{[, ]} there is at most

one future transition for the state q and tape i with the label a.

An automaton is strongly bideterministic if it is strongly

deterministic and so is its reversal automaton.

Goal: to show that a strongly bideterministic automaton is both

state- and transition-minimal.
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Strongly bideterministic automata

Let A = (Q, tape, Σ, E, I, F ) be an n-tape automaton.

Let us consider one-tape automata A1, A2, ..., An such that each

Ai = (Q, Σ, Ei, I, F ), i = 1, ..., n, is obtained from A by replacing

all transitions that do not involve tape i, by ǫ-transitions, and by

discarding the state-tape associations. Then Ei = EiΣ ∪ Eiǫ
where

EiΣ = {(p, a, q) | (p, a, q) ∈ E, p ∈ Qi} and

Eiǫ
= {(p, ǫ, q) | (p, a, q) ∈ E, p ∈ Q \ Qi}.

Clearly, each Ai is a one-tape ǫ-NFA accepting the language

L(Ai) = {[wi] | (w1, ..., wi, ..., wn) ∈ L(A)}.

In the following, our goal is to show that if A is strongly

bideterministic then each Ai has a minimum number of

non-ǫ-transitions among all ǫ-NFAs for the language L(Ai).
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Bideterministic multitape automata
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Strongly bideterministic automata

Let A be a strongly bideterministic n-tape automaton with

A1, A2, ..., An being the corresponding one-tape ǫ-NFAs.

The following results hold for all i ∈ {1, ..., n}.

Lemma. Every Ai is unambiguous.

Lemma. Consider any Ai. Let t′ and t′′ be two different

transitions of Ai, with the same label l(t′) = l(t′′) = a ∈ Σ and with

the corresponding transition slices (Ut′ , a, Vt′) and (Ut′′ , a, Vt′′).

Then Ut′ ∩ Ut′′ = ∅ and Vt′ ∩ Vt′′ = ∅.

Lemma. For any Ai, every transition slice of Ai is maximal.

Proposition. Every Ai has the minimum number of

non-ǫ-transitions among all ǫ-NFAs accepting L(Ai).
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Strongly bideterministic multitape automata are

transition-minimal

Proposition. A strongly bideterministic multitape automaton A

has the minimum number of transitions.

Proof. Let us consider an n-tape automaton A and the

corresponding one-tape ǫ-NFAs A1, A2, ..., An. Suppose that A is

not transition-minimal. Let A′ be a transition-minimal n-tape

automaton accepting the same language with corresponding

one-tape ǫ-NFAs A′

1, A
′

2, ..., A
′

n. Clearly, L(A′

i) = L(Ai), i = 1, ..., n.

Obviously, there must be some j ∈ {1, ..., n} such that A′

j has less

non-ǫ-transitions than Aj . Thus, Aj cannot be

non-ǫ-transition-minimal which is a contradiction.
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Further issues

• There may exist several different strongly bideterministic

multitape automata that accept a given language.

However, it is clear that they all must have the same number of

transitions since the corresponding Ai-s have the same number

of non-ǫ-transitions.

• State minimality of strongly bideterministic multitape

automata.

• Automaton transformations between different strongly

bideterministic multitape automata.

• Automaton transformations that produce strongly

bideterministic multitape automata.
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