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Finite automaton: definitions

An automaton A = (Q,%, F, I, F) is a mathematical model

for a finite state machine where () is a set of states,

Y is an input alphabet, £ C () X X X () is a set of transitions,
I C (@ is a set of initial states and F' C () is a set of final states.

Given an input of symbols, it goes through a series of states

according to its transition function.

A word w = ajas...a, is accepted by A if there is a sequence of
transitions (qo,a1,q1), (q1,a2,q2), .-+, (Gn_1, @n, qn) such that qg € I
and q, € F.

The set of all words accepted by A is the language of A, denoted by
L(A).



Automata: determinism vs nondeterminism

L(A) = {01,011, 0111, ...} U {10, 100, 1000, ...}
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Bideterministic automaton

A bideterministic automaton is deterministic and co-deterministic.




State complexity

The number of states of the minimal deterministic finite
automaton (DFA) for a given language can be exponentially

larger than the number of states in a minimal nondeterministic
automaton (NFA).

The minimal DFA is unique but there may be several minimal
NFAs.

Many cases where the maximal blow-up of size when

converting an NFA to DFA does not occur.

Some sufficient conditions have been identified which imply
that the deterministic and nondeterministic state complexities

are the same.



Transition complexity

While the state-minimal DFA is also minimal with respect to

the number of transitions, this is not necessarily the case with
NFAs.

Even allowing one more state in an NFA can produce a

considerable reduction in the number of transitions.

The number of transitions may be even a better measure for
the size of an NFA than the number of states.

Furthermore, allowing e-transitions in an NFA (e-NFAs) it is

possible to have automata with even less transitions than
NFAs.



Bideterministic automata: minimality results

A bideterministic automaton is a minimal DFA (easy, by

Brzozowski’s DFA minimization algorithm: given an automaton
A, minimal DFA is obtained by Det(Rev(Det(Rev(A)))))

A bideterministic automaton is a unique state-minimal NFA
(HT-Ukkonen 2003)

A bideterministic automaton is a transition-minimal NFA (HT
2004)

The necessary and sufficient conditions for a bideterministic
automaton to be a unique transition-minimal NFA (HT 2007)

More generally: a bideterministic automaton is a
transition-minimal e-NFA (HT 2007).



Universal automaton

A factorization of a regular language L is a maximal couple (with
respect to the inclusion) of languages (U, V') such that UV C L.

The universal automaton of L is Uy = (Q, %, E, I, F) where
() is the set of factorizations of L,
I={U,V)eQ|ecU},

F={UV)eQ|UCL}

E={(U,V),a, U, V")) eQxaxQ|UaCU'}.

Fact: universal automaton of the language L is a finite automaton

that accepts L.



Automaton morphism and the universal
automaton

Let A=(Q,%, E,I,F)and A" = (Q',%, E',I', F') be two NFAs.
Then a mapping u from @ into ) is a morphism of automata if
and only if p € I implies pu € I', p € F implies pu € F’, and
(p,a,q) € E implies (pu,a,qu) € E’ for all p,q € Q and a € X.

Known properties:

e Let A be a trim automaton that accepts L. Then there exists

an automaton morphism from A into Uy,.

e In particular, the minimal DFA and all state-minimal NFAs

accepting L are subautomata of Up.

e At least one transition-minimal NFA is a subautomaton of Uy.



Bideterministic automata: universal and minimal

It can be shown that any bideterministic automaton is the

universal automaton for the given language.

Therefore any state-minimal NFA of a bideterministic language is a

subautomaton of the bideterministic automaton.

But no strict subautomaton of the minimal DFA can accept the
language, therefore bideterministic automaton is the only
state-minimal NFA for that language.

Similarly, a bideterministic automaton is a transition-minimal NFA

(but not necessarily unique).
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Uniqueness of transition minimality

A bideterministic automaton is not necessarily the only

transition-minimal NFA for the corresponding language.

The necessary and sufficient conditions for the unique

transition-minimality are given by the following theorem:

Theorem. A trim bideterministic automaton
A=(Q,X,E,{q},{qr}) is a unique transition-minimal NFA if
and only if the following three conditions hold:

(ii) indegree(qg) > 0 or outdegree(qp) = 1,

(111) indegree(qs) =1 or outdegree(qs) > 0.

11



Automaton morphism for a bideterministic
language

Let A be a bideterministic automaton and let A’ be another

automaton accepting the same language.

Since A = Upa), there exists an automaton morphism p from A
into A.

Proposition. p s surjective.

Proposition.  There is a transition (p,a,q) of A if and only if
there is a transition (p’,a,q") of A" such that p'u = p and ¢'n = q.

Based on these propositions, it is easy to see that p defines an

automaton transformation from A’ to A.
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Unambiguous ¢-NFA

S. John (2003, 2004) has developed a theory to reduce the number

of transitions of e-NFAs.

Let A be an e-NFA (Q, X, E, I, F') where E is partitioned into two
subrelations Fy, = {(p,a,q) | (p,a,q) € E,a € ¥} and

E.={(p,eq) | (p,e,q) € E}.

The automaton A is unambiguous if and only if for each w € L(A)
there is exactly one path that yields w (without considering

e-transitions).
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Slices

Let L C X* be a regular language, U,V C X", a € X..

We call (U,a,V) a slice of L if and only if U £ (), V # () and
UaV C L.

Let S be the set of all slices of L.

A partial order on S is defined by:
(U1,a,V1) < (Us,a, Va) if and only if Uy C Uy and Vi C V5.

The set of maximal slices of L is defined by
Smaz = {(U,a,V) € S| there is no (U’,a,V’) € S with
(U,a,V) < (U, a,V")}.
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Transition-minimal unambiguous -NFA

Let S” C S be a finite slicing of L. In order to read an automaton
Ag out of §’, each slice from S’ is transformed into a transition of
Ags, and these transitions are connected via states and
e-transitions using a follow-relation — which is defined by:
(U1,a,V1) — (Us, b, V3) if and only if Uya C U and bV, C V)

Theorem (S. John).  The three following statements are
equivalent for languages L C X if the slicing Syar of L induces an
unambiguous e-NFA Ag

1) L is accepted by an e-NFA

2) L = L(Ag/) for some finite slicing S’ C S

3) Smaz S finite

Furthermore, |Spmaz| < |5’ < |Exl.

Corollary (S. John). An unambiguous e-NFA Ag,__ has the
minimum number of non-e-transitions.
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Transition slice

For each non-e-transition ¢ of an automaton A, we define the
transition slice of t to be the slice (U, I(t), Vi) of L(A) where

— U, is the set of strings yielded by the paths from an initial state

to the source state of ¢,

— [(t) is the label of ¢, and
— V; is the set of strings yielded by the paths from the target state

of t to an accepting state.
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A bideterministic automaton is a
transition-minimal e-NFA

Lemma. For a bideterministic automaton A, let t1 and ty be two
different transitions of A, with the same label a € X and with the
corresponding transition slices (Ug,,a, V) and (Ug,,a,Vi,). Then

UtlﬂUtQZ(b anthlﬂVtQ:(Z).

Proposition. FEach transition slice of a bideterministic

automaton A is maximal.

Theorem. A bideterministic automaton A has the minimum

number of transitions among all e-NFAs accepting L(A).
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Multitape automaton model

Let us assume that a function tape : QQ — {1,...,n} associates every

state of the automaton with a certain tape.

An n-tape automaton is given by a six-tuple (Q, tape, >, E, I, F))
where () is a finite set of states with a partition into the sets
Q1,...,Qn so that Q; = {q € Q |tape(q) =i} fori =1,....n,

Y} is an input alphabet, F C Q x (X U{[,]}) x @ is a set of
transitions, I C (@ is a set of initial states and F' C () is a set of

final states.
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Bideterministic multitape automata

L ={(ab,a), (bc,a)}
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Strongly bideterministic automata

Let g € Q and i € {1,...,n}. A transition is called a future
transition for the state ¢ and tape 7 if it is the first transition

involving this tape on some path that starts from q.

We call a deterministic multitape automaton strongly deterministic
if forallg € @, alli € {1,...,n} and all a € X U{][, ]} there is at most

one future transition for the state ¢ and tape ¢ with the label a.

An automaton is strongly bidetermainistic if it is strongly

deterministic and so is its reversal automaton.

Goal: to show that a strongly bideterministic automaton is both

state- and transition-minimal.
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Strongly bideterministic automata

Let A = (Q,tape, X, E, I, F) be an n-tape automaton.

Let us consider one-tape automata A;, A, ..., A,, such that each
A, =(Q, %, E;,I,F),i=1,...,n, is obtained from A by replacing
all transitions that do not involve tape 7, by e-transitions, and by
discarding the state-tape associations. Then F; = E; U E;_ where
E;.. ={(p,a,q) | (p,a,q) € E,p € Q;} and

Ei. ={(p,e,q) | (p,a,q) € E,pc Q\ Qs}.

Clearly, each A; is a one-tape e-NFA accepting the language
L(A;) = {|w;] | (w1, ..., w;, ..., wy,) € L(A)}.

In the following, our goal is to show that if A is strongly
bideterministic then each A; has a minimum number of

non-e-transitions among all e-NFAs for the language L(A;).
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Bideterministic multitape automata
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Strongly bideterministic automata

Let A be a strongly bideterministic n-tape automaton with

A1, Ao, ..., A, being the corresponding one-tape e-NFAs.
The following results hold for all ¢ € {1,...,n}.
Lemma. FEvery A; is unambiguous.

Lemma. Consider any A;. Let t' and t” be two different
transitions of A;, with the same label [(t") = 1(t") = a € ¥ and with
the corresponding transition slices (Uy,a, Vi) and (Upr,a, Vir).
Then Uy NUpr =0 and Vi NV = 0.

Lemma. For any A;, every transition slice of A; is maximal.

Proposition. FEvery A; has the minimum number of

non-e-transitions among all e-NFAs accepting L(A;).
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Strongly bideterministic multitape automata are
transition-minimal

Proposition. A strongly bideterministic multitape automaton A

has the minimum number of transitions.

Proof. Let us consider an n-tape automaton A and the
corresponding one-tape e-NFAs A, Ao, ..., A,,. Suppose that A is
not transition-minimal. Let A’ be a transition-minimal n-tape
automaton accepting the same language with corresponding
one-tape e-NFAs A}, A5, ..., Al . Clearly, L(A}) = L(A;),i=1,...,n.
Obviously, there must be some j € {1,...,n} such that A’ has less
non-e-transitions than A;. Thus, A; cannot be

non-e-transition-minimal which is a contradiction.
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Further issues

There may exist several different strongly bideterministic

multitape automata that accept a given language.

However, it is clear that they all must have the same number of
transitions since the corresponding A;-s have the same number

of non-e-transitions.

State minimality of strongly bideterministic multitape

automata.

Automaton transformations between different strongly

bideterministic multitape automata.

Automaton transformations that produce strongly

bideterministic multitape automata.
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