Wreath product of set-valued functors and tensor multiplication

Valdis Laan

January 30, 2004, Kokõ

Wreath product of monoids and acts

Def. 1 (Act) Let **A** be a monoid. A nonempty set M is called a *left* \mathbf{A} -act (notation $\mathbf{A}M$), if there is a mapping $\mathbf{A} \times M \to M$, $(k,m) \mapsto km$, such that

- 1. $k_1(k_2m)=(k_1k_2)m$ for every $k_1,k_2\in \mathbf{A}$ and $m\in M$;
- 2. 1m = m for every $m \in M$.

Def. 2 (WP of monoids) Let A,B be monoids and $_{\bf B}N$ a left ${\bf B}$ -act. On the set ${\bf A}^N\times {\bf B}$ we define a multiplication by

$$(\Psi, g)(\Phi, f) = (f\Psi * \Phi, gf),$$

 $\Phi,\Psi:N o\mathbf{A}$, $f,g\in\mathbf{B}$, where

$$(f\Psi * \Phi)(n) = \Psi(fn)\Phi(n)$$

for every $n \in N$. With this multiplication $\mathbf{A}^N \times \mathbf{B}$ becomes a monoid, which is called the *wreath product* of \mathbf{A} and \mathbf{B} through $\mathbf{B}N$ and denoted $\mathbf{A} \operatorname{wr}^N \mathbf{B}$.

Def. 3 (WP of acts) Let A, B be monoids and AM, BN left acts. Then $M \times N$ becomes a left $(A \text{ wr}^N B)$ -act if we define

$$(\Phi, f)(m, n) = (\Phi(n)m, fn),$$

 $\Phi: N \to \mathbf{A}, \ f \in \mathbf{B}, \ m \in M, n \in N.$ This act is called the *wreath product* of acts $_{\mathbf{A}}M$ and $_{\mathbf{B}}N$ and is denoted by $M \operatorname{wr} N$.

Theorem 4 (Normak) M wr N is pullback flat iff $_{\bf A}M$ and $_{\bf B}N$ are pullback flat and

- A is right collapsible, or
- A is left reversible and for all $f_1, f_2 \in \mathbf{B}$, $n \in N$ with $f_1 n = f_2 n$ there exists $g \in \mathbf{B}$ such that $f_1 g = f_2 g$ and $gN = \{n\}$, or
- for all $f_1, f_2 \in \mathbf{B}$, $n_1, n_2 \in N$ with $f_1n_1 = f_2n_2$ there exist $g_1, g_2 \in \mathbf{B}$ such that $f_1g_1 = f_2g_2$ and $g_1N = \{n_1\}, g_2N = \{n_2\}.$

Wreath product of categories

Def. 5 (WP of categories) Given small categories A and B and a functor $B: B \to \mathbf{Set}$, the *(discrete)* wreath product $A \operatorname{wr}^B B$ is a category defined as follows:

- **WP1** The objects of \mathbf{A} wr $^B\mathbf{B}$ are pairs (α, b) , where b is an object of \mathbf{B} and $\alpha: B(b) \to \mathsf{Ob}(\mathbf{A})$ is a mapping.
- **WP2** A morphism $(\Phi, f) : (\alpha, b) \to (\alpha', b')$ of $\mathbf{A} \operatorname{wr}^B \mathbf{B}$ has $f : b \to b'$ a morphism of \mathbf{B} and $\Phi = (\Phi_n)_{n \in B(b)}$ where $\Phi_n : \alpha(n) \to (\alpha' \circ B(f))(n)$ in \mathbf{A} .
- **WP3** If $(\Phi, f) : (\alpha, b) \to (\alpha', b')$ and $(\Psi, g) : (\alpha', b') \to (\alpha'', b'')$ are morphisms of \mathbf{A} wr $^B \mathbf{B}$, then $(\Psi, g) \circ (\Phi, f) = (^f \Psi * \Phi, g \circ f) : (\alpha, b) \to (\alpha'', b''),$ where

$$(f\Psi * \Phi)_n = \Psi_{B(f)(n)} \circ \Phi_n.$$

for every $n \in B(b)$.

Wreath product of Set-valued functors

Def. 6 (WP of functors) Given small categories A and B and functors $A: A \rightarrow \mathbf{Set}$ and $B: B \rightarrow \mathbf{Set}$, the *wreath product* A wr B is a functor $A \text{ wr}^B B \rightarrow \mathbf{Set}$, defined as follows:

WF1 For an object
$$(\alpha, b)$$
 of $\mathbf{A} \operatorname{wr}^B \mathbf{B}$, $(A \operatorname{wr} B)(\alpha, b) = \{(l, n) \mid n \in B(b), l \in A(\alpha(n))\}.$

WF2 If $(\Phi, f) : (\alpha, b) \to (\alpha', b')$ is a morphism of $\mathbf{A} \operatorname{wr}^B \mathbf{B}$ and $(l, n) \in (A \operatorname{wr} B)(\alpha, b)$ then $(A \operatorname{wr} B)(\Phi, f)(l, n) = (A(\Phi_n)(l), B(f)(n)).$

$$(\alpha,b)$$
 \longrightarrow $(A \operatorname{wr} B)(\alpha,b) \ni (l,n)$ (Φ,f) $(A \operatorname{wr} B)(\Phi,f)$ $(A \operatorname{wr} B)(\alpha',b') \ni (A(\Phi_n)(l),B(f)(n))$

Limits and colimits

Let $F : \mathbf{D} \to \mathbf{A}$ be a functor and denote $I = \mathsf{Ob}(\mathbf{D})$.

 $(L,(p_i)_{i\in I}) = \lim F:$

 $(L,(s_i)_{i\in I})=\operatorname{colim} F$:

Lemma 7 If **D** is a small category, I = Ob(D) and $F : D \rightarrow \mathbf{Set}$ is a functor then

 $\lim F = \{(x_i)_{i \in I} \mid x_i \in F(i), \forall d: j \to i \text{ in } \mathbf{D} F(d)(x_j) = x_i\},$ with the obvious projections.

A zig-zag connecting objects c and c' in a category \mathbf{C} :

$$c \xrightarrow{f_1} b_1 \xleftarrow{g_1} a_1 \xrightarrow{f_2} b_2 \xleftarrow{g_2} \dots \xrightarrow{f_n} b_n \xleftarrow{g_n} c'.$$

If there is a zig-zag connecting two objects, we say that these objects are *connected*. Connectedness is an equivalence relation on the set of objects of a small category \mathbf{C} , we denote it by \sim and the equivalence class of an object c by [c].

Lemma 8 If C is a small category and $F: C \rightarrow \mathbf{Set}$ is a functor then

$$colim F = Ob(el(F))/\sim,$$

where the injections $s_c : F(c) \to \operatorname{colim} F, c \in \operatorname{Ob}(\mathbf{C}),$ are defined by

$$s_c(x) = [(c, x)],$$

where $x \in F(c)$ and [(c,x)] is the equivalence class of $(c,x) \in Ob(el(F))$ by \sim .

Preservation of limits

Let $(L,(p_i)_{i\in I})$ be the limit of a functor $F: \mathbf{D} \to \mathbf{A}$, where $I = \mathsf{Ob}(\mathbf{D})$. A functor $G: \mathbf{A} \to \mathsf{Set}$ preserves it if $(G(L),(G(p_i))_{i\in I})$ is the limit of GF.

Category of elements of a functor

Consider a functor $J: \mathbb{C} \to \mathsf{Set}$. The *category of* elements of J (denoted by $\mathsf{el}(J)$) has:

- objects: pairs $(c, x), c \in \mathsf{Ob}(\mathbf{C}), x \in J(c),$
- morphisms $(c,x) \longrightarrow (c',x')$ are C-morphisms $f: c \to c'$ such that J(f)(x) = x'.

There is a forgetful functor E_J : $\operatorname{el}(J) \to \mathbf{C}$,

$$E_J(c,x) = c$$
, $E_J(f) = f$,

and a functor $E_J^{\mathsf{op}}: \mathsf{el}(J)^{\mathsf{op}} \to \mathbf{C}^{\mathsf{op}}.$

Tensor products

We are interested in the situation where \mathbf{C} is small, $\mathbf{A} = \operatorname{Fun}(\mathbf{C}^{\operatorname{op}},\operatorname{Set}),\ J:\mathbf{C} \to \operatorname{\mathbf{Set}},\ \operatorname{and}$ $G = -\otimes J = \operatorname{colim} \circ (-\circ E_J):\operatorname{Fun}(\mathbf{C}^{\operatorname{op}},\operatorname{Set}) \longrightarrow \operatorname{Set}$ is the functor of tensor multiplication by J.

Results

Let D be a small category.

Theorem 9 If the functor $-\otimes (A \text{ wr } B)$ preserves **D**-limits, then the functor $-\otimes B$ preserves **D**-limits.

- **Theorem 10** 1. If the functor $-\otimes (A \operatorname{wr} B)$ preserves \mathbf{D} -limits of representables, then the functor $-\otimes A$ preserves \mathbf{D} -limits of representables.
 - 2. If the functor $-\otimes (A \operatorname{wr} B)$ preserves \mathbf{D} -limits of representables, then the functor $-\otimes B$ preserves \mathbf{D} -limits of representables.

If $a \in \mathsf{Ob}(\mathbf{A})$ and $b \in \mathsf{Ob}(\mathbf{B})$, then $\delta_a^b : B(b) \to \mathsf{Ob}(\mathbf{A})$ denotes the constant mapping on a. If $b \in \mathsf{Ob}(\mathbf{B})$ and $k : a \to a'$ is a morphism in \mathbf{A} , then denoting

$$\Gamma^k = (k)_{n \in B(b)}$$

we have $(\Gamma^k, \mathbf{1}_b) : (\delta_a^b, b) \to (\delta_{a'}^b, b)$ in $\mathbf{A} \operatorname{wr}^B \mathbf{B}$.

(*) For every functor $T: \mathbf{D} \to \operatorname{Fun}((\mathbf{A} \operatorname{wr}^B \mathbf{B})^{\operatorname{op}}, \mathbf{Set})$, every morphism $(\Lambda, f): (\delta_a^b, b) \to (\delta_a^{b'}, b')$ in $\mathbf{A} \operatorname{wr}^B \mathbf{B}$ (that is, $f: b \to b'$ in \mathbf{B} and $\Lambda = (\Lambda_n)_{n \in B(b)}$ where $\Lambda_n: a \to a$ for every $n \in B(b)$) and every $i \in I = \operatorname{Ob}(\mathbf{D})$

$$T_i\left((\Lambda, f)^{\mathsf{op}}\right) = T_i\left((\Gamma^{1_a}, f)^{\mathsf{op}}\right).$$

(**) For every functor $T: \mathbf{D} \to \operatorname{Fun}((\mathbf{A} \operatorname{wr}^B \mathbf{B})^{\operatorname{op}}, \mathbf{Set})$, every morphism $k: a \to a$ in \mathbf{A} and every object $b \in \operatorname{Ob}(\mathbf{B})$

$$T_i\left((\Gamma^k, 1_b)^{\mathsf{op}}\right) = 1_{T_i(\delta_a^b, b)}.$$

Theorem 11 Suppose that $Ob(A) = \{a\}$ and $A wr^B B$ satisfies (*) and (**). If $-\otimes A$ and $-\otimes B$ preserve D-limits, then $-\otimes (A wr B)$ preserves D-limits.

References

- 1 G. Kelly, *On clubs and doctrines*, in Proceedings of Sydney Category Theory Seminar 1972/1973, G. Kelly, editor, volume 420 of Lecture Notes in Mathematics, Springer-Verlag.
- 2 M. Kilp, U. Knauer, A. V. Mikhalev, *Monoids, Acts and Categories*, Walter de Gruyter, Berlin New York, 2000.
- 3 P. Normak, Strong flatness and projectivity of the wreath product of acts, in Abelevy Gruppy i Moduli, Tomsk, 1982.
- 4 M. Barr, Ch. Wells, *Electronic supplement to Category Theory for Computing Science*, http://www.cwru.edu/artsci/math/wells/pub/papers.html