
Teooriapäevad Kokel February 6, 2005

Hash Functions

that Avoid Computational Shortcuts

Ahto Buldas

University of Tartu / Tallinn University of Technology / Cybernetica AS

Teooriapäevad Kokel February 6, 2005

Computations and Trees

h: {0,1}k × {0,1}k → {0,1}k – a binary operation.
Th(x1, . . . , xN) – a tree with leaves x1, . . . , xN . Each non-leaf vertex rep-
resents an h-operation. Each variable xi represents an element of {0,1}k.

Def. A family of trees Th
k (v1, . . . , vN(k)) (where vi ∈ {0,1}k are fixed) is

said to be hard to compute if for every poly-time adversary A the following
success probability is negligible:

Pr[h← F, r ← A(1k, h): r = Th
k (v1, . . . , vN(k))] .

Def. (Shortcut-Freeness): A function family h: {0,1}2k → {0,1}k is
shortcut-free if every tree family Th

k (v1, . . . , vN) with]{v1, . . . , vN} =

2k/kO(1) is hard to compute.

2

Teooriapäevad Kokel February 6, 2005

Not every function is shortcut-free ...

For example, if h(x, y) = x ⊕ y and T⊕k is the complete binary tree with
2k leaves that represent all possible k-bit strings. This tree is called a
complete Merkle tree.

001 010 011000 100 101 110 111

001 001

000

001 001

000

000

We know that T⊕k (0, . . . ,2k − 1) = 0k, without doing any computations!

3

Teooriapäevad Kokel February 6, 2005

Hash Functions and Hash Trees

Let h = {hk: {0,1}2k → {0,1}k}k∈N be a poly-time computable family
of functions that is chosen according to a distribution F.

Def. (Collision-Resistance of h). For every poly-time adversary A:

Pr[h← F, (x1, x2)← A(1k, h): x1 6= x2, h(x1) = h(x2)] = k−ω(1) .

Nice overview on security properties of hash functions: see the recent
paper by Rogaway and Shrimpton.

A conventional way to think is that cryptographic hash functions are short-
cut free, mainly because they are often modelled as random oracles.

In principle, it is not excluded that shortcuts are possible in the case of
cryptographic hash functions and this would affect the security of applica-
tions (like the time-stamping schemes currently in use).

4

Teooriapäevad Kokel February 6, 2005

Hash-Tree Applications: Secure Registry

Service provider

Publisher
(trusted)

(untrusted)

Request Certificate

x1 x2 x3 x4 x5 x6 x7

rt rt+1

y1

y2

z1

x2 c2 = (2;x1, z1)

Verifying a certificate: Compute y2 = Fh(x2; c2) = h(h(x1, x2), z1),
obtain rt, and check if y2 = rt.

5

Teooriapäevad Kokel February 6, 2005

Back-Dating Attack

Publisher
(trusted)

(malicious)

...

(State information)

?

r

Service provider A

Successful forgery: Fh(x; c) = r

z2

x

z1

zm

c

r = ym

”New” x Certificate c

a

r ← T h(x1, . . . , xN)

A2A1

Hash Chain

Def. (Chain-Resistance of h). For every poly-time A = (A1, A2) and for ev-
ery poly-sampleable distributionD with Rényi entropy H2(D) = ω(log k):

Pr[(r, a)← A1(1
k), x← D, c← A2(x, a):Fh(x, c) = r] = k−ω(1).

6

Teooriapäevad Kokel February 6, 2005

How to Construct Chain-Resistant Functions?

A recent negative result (Buldas et al, 2004):
”h is collision-resistant ⇒ h is chain-resistant” cannot be proved in a
(conventional) black-box way.

It is an open question whether chain-resistant functions can be constructed
(in a black-box way) from the collision-resistant ones.

First result of this work: If h: {0,1}2k → {0,1}k is collision-resistant and
shortcut-free, then h is chain-resistant.

Still no idea how to construct shortcut-free functions...

Second result of this work (a tiny step towards shortcut-freeness): We
construct a hash-function for which the complete Merkle tree is hard to
compute.

7

Teooriapäevad Kokel February 6, 2005

Proof of the First Result (a Sketch)

Let A = (A1, A2) be a chain-finding adversary for h (a collision-resistant
hash function) with success probability

δ(k) = Pr[(r, a)← A1(1
k), x← D, c← A2(x, a):Fh(x, c) = r] 6= k−ω(1).

We show that with high probability, there is a tree Th
k (v1, . . . , vN) = r with

]{v1, . . . , vN} = 2k/kO(1). Collision-resistance is essential in this step!

Putting all trees Th
k together, we obtain a tree-family which is computable

with non-negligible probability. Hence, h is not shortcut-free.

8

Teooriapäevad Kokel February 6, 2005

Proof of the Second Result (a Sketch)

Let h: {0,1}∗ → {0,1}k be a collision-resistant hash function.

•We construct a new hash H = Ph: {0,1}2n → {0,1}n, where n = 6k

• The root of the complete Merkle tree MH contains (with high probability)
a collision for h

• Hence, the root of MH must be hard to compute, because h is collision-
free!

Main idea of the construction:
• Massive iteration of H can be used to compute global minima and max-
ima of certain (cleverly chosen) functions fh: {0,1}k → {0,1}k

• Global minimum (maximum) operation can be used to invert h

• Inverting h can be used to find collisions for h

9

Teooriapäevad Kokel February 6, 2005

How to find global minimum for a function F?

001 010 011000 100 101 110 111

µ00 = min{F (000), F (001)} µ11 = min{F (110), F (111)}µ10 = min{F (100), F (101)}
µ01 = min{F (010), F (011)}

µ0 = min{µ00, µ01} µ1 = min{µ10, µ11}

µ = min{µ0, µ1} = minx F (x)

Define: H(x‖b1, y‖b2)
def .
=











min{F(x), F(y)}‖1 if b1 = b2 = 0

min{x, y}‖1 if b1 = b2 = 1

1k+1 otherwise.
Then MH

k+1(0, . . . ,2k+1 − 1) = minx F(x).

10

Teooriapäevad Kokel February 6, 2005

Inverting f by using max and min

For any f : {0,1}k → {0,1}k define functions Fmin
f and Fmax

f of type

{0,1}2k → {0,1}k as follows:

Fmin
f (x, y) =

{

1k if f(x) 6= y
x if f(x) = y

Fmax
f (x, y) =

{

0k if f(x) 6= y
x if f(x) = y

Let y ∈ {0,1}k be a fixed bitstring. It is clear that

min
x

Fmin
f (x, y) =

{

1k if y 6∈ f({0,1}k)

min f−1(y) if y ∈ f({0,1}k)

and

max
x

Fmax
f (x, y) =

{

0k if y 6∈ f({0,1}k)

max f−1(y) if y ∈ f({0,1}k)

11

Teooriapäevad Kokel February 6, 2005

Finding collisions for h by using min and max

Take two distinct bit-strings c1, c2 ∈ {0,1}k and try to invert f1(·) =

h(·, c1) and f2(·) = h(·, c2) realtive to x′← {0,1}k. For f1 we obtain

xmin
1 = min

x
Fmin

f1
(x, f1(x

′)), xmax
1 = max

x
Fmax

f1
(x, f1(x

′)) .

With probability 1, f1(x
′) = f(xmin

1) = f(xmax
1).

In case both f1 and f2 are “almost permutations”, i.e.

Pr[|f−1
1 (f1(x

′)) |≥ 2] = k−ω(1) and Pr[|f−1
1 (f1(x

′)) |≥ 2] = k−ω(1)

then with high probability, f1 and f2 can be inverted simultaneously on a
uniformly selected output y ← {0,1}k.

All in all, the probability of finding a collision for h is at least 1
3.

12

Teooriapäevad Kokel February 6, 2005

Construction of H

Let z ∈ {0,1}k and for i = 1,2 define

ϕi,min
z (x) =

{

1k if fi(x) 6= z
x if fi(x) = z.

ϕi,max
z (x) =

{

0k if fi(x) 6= z
x if fi(x) = z.

For i = 1,2 define h
i,min
z : {0,1}2(k+1) → {0,1}k+1 as follows:

hi,min
z (x‖b1, y‖b2) =















min{ϕ
i,min
z (x), ϕ

i,min
z (y)}‖1 if b1 = b2 = 0

min{x, y}‖1 if b1 = b2 = 1

1k+1 otherwise.

hi,max
z (x‖b1, y‖b2) =















min{ϕ
i,max
z (x), ϕ

i,max
z (y)}‖1 if b1 = b2 = 1

min{x, y}‖0 if b1 = b2 = 0

0k+1 otherwise.

Define: Hz = h
1,min
f(z)

× h
1,max
f(z)

× h
2,min
f(z)

× h
2,max
f(z)

× h
1,min
z × h

2,max
z

13

Teooriapäevad Kokel February 6, 2005

Conclusions

There seem to be no easy ways of ”abusing” non-complete hash trees TH

for finding collisions for h in a similar way ...

How to construct H = Ph so that a massive iteration of H always (or with
high probability) gives a collision for h?

Can we find ”natural” (local,statistical,...) properties of h that (together with
collision-resistance) imply chain-resistance.

14

