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Motivation

I w4nt 2 read s0me b00k.
But I h4ve 2 b a subscr1b3r!
Th1s 1s ok, I c4n s1gn my request
But 1 do not w4nt Sl1ck to show
the s1gnatur3 2 oth3rs!
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Motivation

I w4nt 2 read s0me b00k.
But I h4ve 2 b a subscr1b3r!
Th1s 1s ok, I c4n s1gn my request
But 1 do not w4nt Sl1ck to show
the s1gnatur3 2 oth3rs!

My fr1end Markus sa1d I can
us3 des1nated ver1f1er s1gnatures!

s1gnatures, the s1gnatures are
S1nce Desmond can s1mulate such

non−transferable.

Hej! I am Markus.
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More applications?

• E-voting: Signy is a voter, Desmond is a tallier. Desmond gets to know
voter is Signy but cannot prove it to anybody else.

• Also related to privacy-preserving data-mining:

? Desmond knows Signy is a loyal customer; Signy gets bonus

? Desmond can add information about Signy in the database and pro-
cess it later

? Desmond can’t prove to anybody else that the database is correct but
he trusts himself!

• Etc etc etc
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Thus spake Markus to Signy:

Signy does
Public keyyS = gxS

Public keyyD = gxD
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Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Public keyyD = gxD

Signy does
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Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Public keyyD = gxD

Signy does
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Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Public keyyD = gxD

Signy does
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Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Signy does
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Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Signy does

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gz−(h+w)xS=gr

, mzß−(h+w)︸ ︷︷ ︸
mz−(h+w)xS=mr

)
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Thus spake Markus to Desmond:

Public keyyS = gxS

Public keyyD = gxD

Chooseany s
Generate randomz, α, β ← Zq

Seth← H(gwyt
D, gzy−β

S , mzs−β)
Setw ← β − h, t← (α− w)x−1

D

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gzy−β

S

, mzs−(h+w)︸ ︷︷ ︸
mzs−β

)

Signatureσ = (s;w, t, h, z)

Desmond does

Das ist ja Korrekt!
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Thus spake Markus to both:

• If Signy signs: s = mxS , thus (g, yS, m, s) is a DDH tuple.

? (g, yS, m, s) = (g, ga, gb, gab) for some a, b

• Signy proves in NIZK that (g, yS, m, s) is a DDH tuple.

• If Desmond simulates: s is chosen randomly, thus (g, yS, m, s) is not a
DDH tuple with very high probability, 1− 1

q

? c = gwyt
D for which Desmond knows the trapdoor xD

? Desmond “simulates” proof by using the trapdoor for any s ∈ Zp

• Signy can disavow, w.h.p. 1− 1
q , by proving that s 6= mxS
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Thus spake Markus to both:

• To generate a valid σ ← (s;w, t, h, z) you must know either xS or xD

• Thus Desmond knows σ was generated by Signy

? Since Desmond did not generate it himself

• Any third party doesn’t know whether σ was generated by Signy or
Desmond

And Signy was very happy and Desmond coverted in snow.
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But Desmond met Guilin and Guilin spake to him:

Heh−heh!
No plobrem!
I wirr bleak that!
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But Desmond met Guilin and Guilin spake to him:

Generate randomw, t, r 6= r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS
Sets← mxS ·m(r−r)/(h+w)

Public keyyS = gxS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gz−(r−r)=gr

, mz(s)−(h+w)︸ ︷︷ ︸
mz−(h+w)xS−(r−r)=mr

)

Signy can also do this!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

17



But Desmond met Guilin and Guilin spake to him:

• Verification succeeds, thus Desmond accepts it as Signy’s signature

• However, since s 6= mxS , Signy can later disavow it!

And Desmond was not so happy anymore.
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Quick fix:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr, pkS, pkD, s)

Setz ← r + (h + w)xS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Signy does

Verify thath = H(gwyt
D, gzy−(h+w)

S , mzs−(h+w), PKS, PKD, s)
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Then, Signy met some other people

• Steinfeld, Bull, Wang and Pieprzyk said: use a bilinear pairing 〈·, ·〉

? 〈ba, dc〉 = 〈b, d〉ac

• Signy signs m: s = 〈mxS , yD〉 = 〈m, g〉xSxD

• Desmond simulates: s = 〈mxD, yS〉 = 〈m, g〉xSxD

• Here, Signy cannot disavow since s = s

And Signy was happy again and kissed Pieprzyk.

I like this job!
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However, Desmond met Guilin again

Guilin spake to Desmond:

• Signy can compute ySD := gxSxD and publish it

• Then anybody can sign m as s = 〈m, ySD〉 = 〈m, g〉xSxD

• Thus Signy can delegate her subscription to your library, without revealing
her public key

And Desmond wanted to cry.
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And so forth and so forth

• Signy and Desmond met many wise men who proposed better and better
designated verifier signature schemes.

• However, Guilin broke them all!

• Sad story, eh?

• Signy even thought about never reading a book again!
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What went wrong?

• [JSI1996]: disavowability claimed but does not exist

• [SBWP2003] and some other schemes were delegatable

⇒ propose a modification that is unforgeable

? Use as tight reductions as possible

? . . . and as weak trust model as possible

⇒ Eliminate disavowal or make it “secure”

• Non-delegatability was never considered before

⇒ Define non-delegatability and propose a non-delegatable scheme
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Unforgeability

Consider the next game:

• Choose random key pairs for Signy and Desmond

• Give the Forger both public keys, an oracle access to Signy’s signing al-
gorithm, Desmond’s simulation algorithm and the hash function

• Forger returns a message m and a signature σ

Forger is successful if verification on (m, σ) succeeds and he never asked a
sign/simul query on m that returned σ

Scheme is (τ, qh, qs, ε)-unforgeable ⇐⇒ no (τ, qh, qs)-forger has success
probability > ε

Forger runs in time τ , does qh queries to hash function and qs queries to either signing or simulation algorithm
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Non-Transferability

• A scheme is perfectly non-transferable if signatures generated by Signy
and Desmond come from the same distribution.

? Perfectly non-transferable schemes cannot have disavowal protocols!

? As we showed, JSI is perfectly non-transferable!

• A scheme is computationally non-transferable if signatures generated by
Signy and Desmond come from distributions that are computationally in-
distinguishable.

? Computationally non-transferable schemes may have a trapdoor that
can be used for constructing disavowal protocols
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Non-Delegatability

Requirement: if Forger produces valid signatures with probability > κ then he
knows either the secret key of Signy or the secret key of Desmond

We require there exists a knowledge extractor such that

• If a Forger produces a valid signature σ on m w.p. ε > κ

then knowledge extractor, given (m, σ) and oracle access to Forger on
the memory state that results in producing (m, σ), produces one of the
two secret keys in time τ

ε−κ.

Then the scheme is (τ, κ)-non-delegatable.
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Underlying Idea of Our Scheme

• If Signy signs: she proves that her public key (g1, g2, y1S = g
xS
1 , y2S =

g
xS
2 ) is a DDH tuple.

• We again employ c = gwyt
D (trapdoor commitment) for which Desmond

knows the trapdoor xD, thus the proof is designated-verifier.

• Desmond simulates this proof by using the trapdoor information

• Signy cannot disavow since there is perfect non-transferability
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And Thus We Spake to Signy:

Public key(y1S = gxS

1 , y2S = gxS

2 )
Public key(y1D = gxD

1 , y2D = gxD

2 )

Signatureσ = (w, t, h, z)

Signy does

Generate randomw, t, r ← Zq
Seth← H(pkS, pkD, gw

1 yt
1D, gr

1, g
r
2, m)

Setz ← r + (h + w)xS

Verify thath = H(pkS, pkD, gw
1 yr

1D, gz
1y
−(h+w)
1S , gz

2y
−(h+w)
2S , m)

Das ist ja Korrekt!
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And Thus We Spake to Desmond:

Chooseany s
Generate randomz, α, β ← Zq

Setw ← β − h, t← (α− w)x−1
D

Public key(y1S = gxS

1 , y2S = gxS

2 )
Public key(y1D = gxD

1 , y2D = gxD

2 )

Desmond does

Signatureσ = (s;w, t, h, z)

Das ist ja Korrekt!

Verify thath = H(pkS, pkD, gw
1 yr

1D, gz
1y
−(h+w)
1S , gz

2y
−(h+w)
2S , m)

Seth← H(pkS, pkD, gw
1 yt

1D, gz
1y
−β
1S , gz

2y
−β
2S , m)
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Properties of The New Scheme

• Twice longer public keys than in JSI — enables to get tight unforgeability
reductions

? In non-programmable random oracle model

• No disavowal

? Orthogonal to the security requirements of an DVS scheme

• Non-delegatability: proven, but the reduction is not tight
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Unforgeability

Theorem . Let G, |G| = q be a (τ ′, ε)-time DDH group. The proposed
scheme is (τ, qh, qs, ε)-unforgeable in the non-programmable random oracle
model with τ ≤ τ ′−(3.2qs+5.6)texp and ε ≥ ε′+ qsqhq−2+ q−1+ qhq−2.

Proof sketch: Adversary A has to solve DDH on input (g1, g2, y1D, y2D).
Set this to Desmond’s public key, and set Signy’s public key to be equal to a
random DDH tuple (for which A knows the corresponding secret key). Give
A an oracle access to Forger. Answer all hash queries truthfully (but store
them). Answer all signing and simulation queries by following Signy’s algo-
rithm. (Possible since A knows Signy’s secret key.) It comes out that A works
in time and with success probability, claimed above.

Note: This is a tight reduction. In practical setting it means that whenever you
can forge a signature—e.g., 2−80—, you can almost always solve DDH and
in comparable time.
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Non-programmable random oracle model
RO model NPRO model
Environment doesn’t have access to the
RO.

Environment has access to the RO.

In the Katz-Wang signature scheme :
adversary does not know signer’s secret
key, and thus cannot create valid signa-
tures without defining a H that just satisfies
the verification equation

In our scheme :
adversary has access to Signy’s secret key,
and can thus create valid signatures with-
out redefining H

Best case proof : shows that for every ad-
versary, there exists a function H such that
the result holds

Average case proof : shows that the result
holds for a randomly chosen function H

But H depends on Forger’s actions and
thus cannot be instantiated in some sense!

H can be chosen in advance
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New Conventional Signature Scheme

• Take the new DVS scheme with assumption that Signy = Desmond.

• That is, Signy signs m by

? Choosing random w, t, r ←R Zq

? Setting h← H(pkS, gw
1 yt

1S, gr
1, gr

2, m)

? Setting z ← r + (h + w)xS and outputting σ = (w, t, h, z)

• New signature scheme with tight security reduction to DDH problem in
NPRO
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Delegatability

Theorem . Let κ ≥ 1/q. Assume that for some message m, Forger can
produce signature in time τ ′ and with probability ε ≥ κ. Then there exists a
knowledge extractor that on input a valid signature σ and on black-box oracle
access to Forger (with an internal state compatible with σ) can produce one of
the two secret keys in expected time τ ≤ (2 + o(1))τ ′/κ.

Note: This is an imprecise reduction. For example, if Forger has advantage
2−30 then Knowledge Extractor works in time 231τ ′, with probability 1.
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Conclusions

• And Desmond was happy since only valid subscribers were able to borrow
the books.

? And these subscribers could not delegate their subscriptions!

• And Signy was happy since Desmond could not prove that she borrowed
these books.
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Any questions?

Caveat: This presentation is based on a draft version of the paper!
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