
Estonian Theory Days, Koke, Estonia

Designated Verifier Signatures:
Attacks, New Definitions and Constructions

Helger Lipmaa
Helsinki University of Technology, Finland

Guilin Wang and Feng Bao
Institute of Infocomm Research, Singapore

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

1

Outline

• Motivation for DVS

• Attacks on Some Previous Constructions

• New Security Notions

• Our Own Construction

• Conclusion

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

2

Outline

• Motivation for DVS

• Attacks on Some Previous Constructions

• New Security Notions

• Our Own Construction

• Conclusion

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

3

Motivation

I w4nt 2 read s0me b00k.
But I h4ve 2 b a subscr1b3r!
Th1s 1s ok, I c4n s1gn my request
But 1 do not w4nt Sl1ck to show
the s1gnatur3 2 oth3rs!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

4

Motivation

I w4nt 2 read s0me b00k.
But I h4ve 2 b a subscr1b3r!
Th1s 1s ok, I c4n s1gn my request
But 1 do not w4nt Sl1ck to show
the s1gnatur3 2 oth3rs!

My fr1end Markus sa1d I can
us3 des1nated ver1f1er s1gnatures!

s1gnatures, the s1gnatures are
S1nce Desmond can s1mulate such

non−transferable.

Hej! I am Markus.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

5

More applications?

• E-voting: Signy is a voter, Desmond is a tallier. Desmond gets to know
voter is Signy but cannot prove it to anybody else.

• Also related to privacy-preserving data-mining:

? Desmond knows Signy is a loyal customer; Signy gets bonus

? Desmond can add information about Signy in the database and pro-
cess it later

? Desmond can’t prove to anybody else that the database is correct but
he trusts himself!

• Etc etc etc

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

6

Thus spake Markus to Signy:

Signy does
Public keyyS = gxS

Public keyyD = gxD

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

7

Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Public keyyD = gxD

Signy does

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

8

Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Public keyyD = gxD

Signy does

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

9

Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Public keyyD = gxD

Signy does

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

10

Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Signy does

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

11

Thus spake Markus to Signy:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Signy does

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gz−(h+w)xS=gr

, mzß−(h+w)︸ ︷︷ ︸
mz−(h+w)xS=mr

)

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

12

Thus spake Markus to Desmond:

Public keyyS = gxS

Public keyyD = gxD

Chooseany s
Generate randomz, α, β ← Zq

Seth← H(gwyt
D, gzy−β

S , mzs−β)
Setw ← β − h, t← (α− w)x−1

D

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gzy−β

S

, mzs−(h+w)︸ ︷︷ ︸
mzs−β

)

Signatureσ = (s;w, t, h, z)

Desmond does

Das ist ja Korrekt!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

13

Thus spake Markus to both:

• If Signy signs: s = mxS , thus (g, yS, m, s) is a DDH tuple.

? (g, yS, m, s) = (g, ga, gb, gab) for some a, b

• Signy proves in NIZK that (g, yS, m, s) is a DDH tuple.

• If Desmond simulates: s is chosen randomly, thus (g, yS, m, s) is not a
DDH tuple with very high probability, 1− 1

q

? c = gwyt
D for which Desmond knows the trapdoor xD

? Desmond “simulates” proof by using the trapdoor for any s ∈ Zp

• Signy can disavow, w.h.p. 1− 1
q , by proving that s 6= mxS

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

14

Thus spake Markus to both:

• To generate a valid σ ← (s;w, t, h, z) you must know either xS or xD

• Thus Desmond knows σ was generated by Signy

? Since Desmond did not generate it himself

• Any third party doesn’t know whether σ was generated by Signy or
Desmond

And Signy was very happy and Desmond coverted in snow.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

15

But Desmond met Guilin and Guilin spake to him:

Heh−heh!
No plobrem!
I wirr bleak that!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

16

But Desmond met Guilin and Guilin spake to him:

Generate randomw, t, r 6= r ← Zq

Seth← H(gwyt
D, gr, mr)

Setz ← r + (h + w)xS
Sets← mxS ·m(r−r)/(h+w)

Public keyyS = gxS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Verify thath = H(gwyt
D, gzy−(h+w)

S︸ ︷︷ ︸
gz−(r−r)=gr

, mz(s)−(h+w)︸ ︷︷ ︸
mz−(h+w)xS−(r−r)=mr

)

Signy can also do this!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

17

But Desmond met Guilin and Guilin spake to him:

• Verification succeeds, thus Desmond accepts it as Signy’s signature

• However, since s 6= mxS , Signy can later disavow it!

And Desmond was not so happy anymore.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

18

Quick fix:

Public keyyS = gxS

Generates← mxS

Generate randomw, t, r ← Zq

Seth← H(gwyt
D, gr, mr, pkS, pkD, s)

Setz ← r + (h + w)xS

Public keyyD = gxD

Signatureσ = (s;w, t, h, z)

Signy does

Verify thath = H(gwyt
D, gzy−(h+w)

S , mzs−(h+w), PKS, PKD, s)

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

19

Then, Signy met some other people

• Steinfeld, Bull, Wang and Pieprzyk said: use a bilinear pairing 〈·, ·〉

? 〈ba, dc〉 = 〈b, d〉ac

• Signy signs m: s = 〈mxS , yD〉 = 〈m, g〉xSxD

• Desmond simulates: s = 〈mxD, yS〉 = 〈m, g〉xSxD

• Here, Signy cannot disavow since s = s

And Signy was happy again and kissed Pieprzyk.

I like this job!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

20

However, Desmond met Guilin again

Guilin spake to Desmond:

• Signy can compute ySD := gxSxD and publish it

• Then anybody can sign m as s = 〈m, ySD〉 = 〈m, g〉xSxD

• Thus Signy can delegate her subscription to your library, without revealing
her public key

And Desmond wanted to cry.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

21

And so forth and so forth

• Signy and Desmond met many wise men who proposed better and better
designated verifier signature schemes.

• However, Guilin broke them all!

• Sad story, eh?

• Signy even thought about never reading a book again!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

22

What went wrong?

• [JSI1996]: disavowability claimed but does not exist

• [SBWP2003] and some other schemes were delegatable

⇒ propose a modification that is unforgeable

? Use as tight reductions as possible

? . . . and as weak trust model as possible

⇒ Eliminate disavowal or make it “secure”

• Non-delegatability was never considered before

⇒ Define non-delegatability and propose a non-delegatable scheme

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

23

Unforgeability

Consider the next game:

• Choose random key pairs for Signy and Desmond

• Give the Forger both public keys, an oracle access to Signy’s signing al-
gorithm, Desmond’s simulation algorithm and the hash function

• Forger returns a message m and a signature σ

Forger is successful if verification on (m, σ) succeeds and he never asked a
sign/simul query on m that returned σ

Scheme is (τ, qh, qs, ε)-unforgeable ⇐⇒ no (τ, qh, qs)-forger has success
probability > ε

Forger runs in time τ , does qh queries to hash function and qs queries to either signing or simulation algorithm

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

24

Non-Transferability

• A scheme is perfectly non-transferable if signatures generated by Signy
and Desmond come from the same distribution.

? Perfectly non-transferable schemes cannot have disavowal protocols!

? As we showed, JSI is perfectly non-transferable!

• A scheme is computationally non-transferable if signatures generated by
Signy and Desmond come from distributions that are computationally in-
distinguishable.

? Computationally non-transferable schemes may have a trapdoor that
can be used for constructing disavowal protocols

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

25

Non-Delegatability

Requirement: if Forger produces valid signatures with probability > κ then he
knows either the secret key of Signy or the secret key of Desmond

We require there exists a knowledge extractor such that

• If a Forger produces a valid signature σ on m w.p. ε > κ

then knowledge extractor, given (m, σ) and oracle access to Forger on
the memory state that results in producing (m, σ), produces one of the
two secret keys in time τ

ε−κ.

Then the scheme is (τ, κ)-non-delegatable.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

26

Outline

• Motivation for DVS

• Attacks on Some Previous Constructions

• New Security Notions

• Our Own Construction

• Conclusion

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

27

Underlying Idea of Our Scheme

• If Signy signs: she proves that her public key (g1, g2, y1S = g
xS
1 , y2S =

g
xS
2) is a DDH tuple.

• We again employ c = gwyt
D (trapdoor commitment) for which Desmond

knows the trapdoor xD, thus the proof is designated-verifier.

• Desmond simulates this proof by using the trapdoor information

• Signy cannot disavow since there is perfect non-transferability

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

28

And Thus We Spake to Signy:

Public key(y1S = gxS

1 , y2S = gxS

2)
Public key(y1D = gxD

1 , y2D = gxD

2)

Signatureσ = (w, t, h, z)

Signy does

Generate randomw, t, r ← Zq
Seth← H(pkS, pkD, gw

1 yt
1D, gr

1, g
r
2, m)

Setz ← r + (h + w)xS

Verify thath = H(pkS, pkD, gw
1 yr

1D, gz
1y
−(h+w)
1S , gz

2y
−(h+w)
2S , m)

Das ist ja Korrekt!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

29

And Thus We Spake to Desmond:

Chooseany s
Generate randomz, α, β ← Zq

Setw ← β − h, t← (α− w)x−1
D

Public key(y1S = gxS

1 , y2S = gxS

2)
Public key(y1D = gxD

1 , y2D = gxD

2)

Desmond does

Signatureσ = (s;w, t, h, z)

Das ist ja Korrekt!

Verify thath = H(pkS, pkD, gw
1 yr

1D, gz
1y
−(h+w)
1S , gz

2y
−(h+w)
2S , m)

Seth← H(pkS, pkD, gw
1 yt

1D, gz
1y
−β
1S , gz

2y
−β
2S , m)

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

30

Properties of The New Scheme

• Twice longer public keys than in JSI — enables to get tight unforgeability
reductions

? In non-programmable random oracle model

• No disavowal

? Orthogonal to the security requirements of an DVS scheme

• Non-delegatability: proven, but the reduction is not tight

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

31

Unforgeability

Theorem . Let G, |G| = q be a (τ ′, ε)-time DDH group. The proposed
scheme is (τ, qh, qs, ε)-unforgeable in the non-programmable random oracle
model with τ ≤ τ ′−(3.2qs+5.6)texp and ε ≥ ε′+ qsqhq−2+ q−1+ qhq−2.

Proof sketch: Adversary A has to solve DDH on input (g1, g2, y1D, y2D).
Set this to Desmond’s public key, and set Signy’s public key to be equal to a
random DDH tuple (for which A knows the corresponding secret key). Give
A an oracle access to Forger. Answer all hash queries truthfully (but store
them). Answer all signing and simulation queries by following Signy’s algo-
rithm. (Possible since A knows Signy’s secret key.) It comes out that A works
in time and with success probability, claimed above.

Note: This is a tight reduction. In practical setting it means that whenever you
can forge a signature—e.g., 2−80—, you can almost always solve DDH and
in comparable time.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

32

Non-programmable random oracle model
RO model NPRO model
Environment doesn’t have access to the
RO.

Environment has access to the RO.

In the Katz-Wang signature scheme :
adversary does not know signer’s secret
key, and thus cannot create valid signa-
tures without defining a H that just satisfies
the verification equation

In our scheme :
adversary has access to Signy’s secret key,
and can thus create valid signatures with-
out redefining H

Best case proof : shows that for every ad-
versary, there exists a function H such that
the result holds

Average case proof : shows that the result
holds for a randomly chosen function H

But H depends on Forger’s actions and
thus cannot be instantiated in some sense!

H can be chosen in advance

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

33

New Conventional Signature Scheme

• Take the new DVS scheme with assumption that Signy = Desmond.

• That is, Signy signs m by

? Choosing random w, t, r ←R Zq

? Setting h← H(pkS, gw
1 yt

1S, gr
1, gr

2, m)

? Setting z ← r + (h + w)xS and outputting σ = (w, t, h, z)

• New signature scheme with tight security reduction to DDH problem in
NPRO

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

34

Delegatability

Theorem . Let κ ≥ 1/q. Assume that for some message m, Forger can
produce signature in time τ ′ and with probability ε ≥ κ. Then there exists a
knowledge extractor that on input a valid signature σ and on black-box oracle
access to Forger (with an internal state compatible with σ) can produce one of
the two secret keys in expected time τ ≤ (2 + o(1))τ ′/κ.

Note: This is an imprecise reduction. For example, if Forger has advantage
2−30 then Knowledge Extractor works in time 231τ ′, with probability 1.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

35

Conclusions

• And Desmond was happy since only valid subscribers were able to borrow
the books.

? And these subscribers could not delegate their subscriptions!

• And Signy was happy since Desmond could not prove that she borrowed
these books.

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

36

Any questions?

Caveat: This presentation is based on a draft version of the paper!

Koke, ETD 2005, Estonia, 26.01.2005 Designated Verifier Signatures, Helger Lipmaa

37

