
Structural polymorphism in Generic Haskell

Andres Löh

andres@cs.uu.nl

5 February 2005

Overview

About Haskell

Genericity and other types of polymorphism

Examples of generic functions

Generic Haskell

Overview

About Haskell

Genericity and other types of polymorphism

Examples of generic functions

Generic Haskell

Haskell
I Haskell is a statically typed, pure functional language with

lazy evaluation.
I Functions are defined by pattern matching.

factorial 0 = 1
factorial n = n · factorial (n− 1)

I Every function has a type that usually can be inferred by
the compiler.

factorial :: Int → Int

I Functions with multiple arguments are written in curried
style.

and :: Bool → Bool → Bool
and True True = True
and = False

Haskell
I Haskell is a statically typed language.
I Functions are defined by pattern matching.

factorial 0 = 1
factorial n = n · factorial (n− 1)

I Every function has a type that usually can be inferred by
the compiler.

factorial :: Int → Int

I Functions with multiple arguments are written in curried
style.

and :: Bool → Bool → Bool
and True True = True
and = False

Haskell
I Haskell is a statically typed language.
I Functions are defined by pattern matching.

factorial 0 = 1
factorial n = n · factorial (n− 1)

I Every function has a type that usually can be inferred by
the compiler.

factorial :: Int → Int

I Functions with multiple arguments are written in curried
style.

and :: Bool → Bool → Bool
and True True = True
and = False

Haskell
I Haskell is a statically typed language.
I Functions are defined by pattern matching.

factorial 0 = 1
factorial n = n · factorial (n− 1)

I Every function has a type that usually can be inferred by
the compiler.

factorial :: Int → Int

I Functions with multiple arguments are written in curried
style.

and :: Bool → Bool → Bool
and True True = True
and = False

Haskell
I Haskell is a statically typed language.
I Functions are defined by pattern matching.

factorial 0 = 1
factorial n = n · factorial (n− 1)

I Every function has a type that usually can be inferred by
the compiler.

factorial :: Int → Int

I Functions with multiple arguments are written in curried
style.

and :: Bool → Bool → Bool
and True True = True
and = False

User-defined datatypes

I New datatypes can be defined in Haskell using the data
construct:

data Nat = Zero | Succ Nat

The expression Succ (Succ (Succ Zero)) represents the
number 3.

I Functions are often defined recursively, by induction on
the structure of a datatype:

plus :: Nat → Nat → Nat
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

User-defined datatypes

I New datatypes can be defined in Haskell using the data
construct:

data Nat = Zero | Succ Nat

The expression Succ (Succ (Succ Zero)) represents the
number 3.

I Functions are often defined recursively, by induction on
the structure of a datatype:

plus :: Nat → Nat → Nat
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

Haskell datatypes

Haskell’s data construct is extremely flexible.

data TimeInfo = AM | PM | H24
data Package = P String Author Version Date
data Maybe α = Nothing | Just α
data [α] = [] | α : [α]
data Tree α = Leaf α | Node (Tree α) (Tree α)

Common structure:
I parametrized over a number of arguments
I several constructors / alternatives
I multiple fields per constructor
I possibly recursion

Haskell datatypes

Haskell’s data construct is extremely flexible.

data TimeInfo = AM | PM | H24
data Package = P String Author Version Date
data Maybe α = Nothing | Just α
data [α] = [] | α : [α]
data Tree α = Leaf α | Node (Tree α) (Tree α)

Common structure:
I parametrized over a number of arguments
I several constructors / alternatives
I multiple fields per constructor
I possibly recursion

Haskell datatypes

Haskell’s data construct is extremely flexible.

data TimeInfo = AM | PM | H24
data Package = P String Author Version Date
data Maybe α = Nothing | Just α
data [α] = [] | α : [α]
data Tree α = Leaf α | Node (Tree α) (Tree α)

Common structure:
I parametrized over a number of arguments
I several constructors / alternatives
I multiple fields per constructor
I possibly recursion

Haskell datatypes

Haskell’s data construct is extremely flexible.

data TimeInfo = AM | PM | H24
data Package = P String Author Version Date
data Maybe α = Nothing | Just α
data [α] = [] | α : [α]
data Tree α = Leaf α | Node (Tree α) (Tree α)

Common structure:
I parametrized over a number of arguments
I several constructors / alternatives
I multiple fields per constructor
I possibly recursion

Haskell datatypes

Haskell’s data construct is extremely flexible.

data TimeInfo = AM | PM | H24
data Package = P String Author Version Date
data Maybe α = Nothing | Just α
data [α] = [] | α : [α]
data Tree α = Leaf α | Node (Tree α) (Tree α)

Common structure:
I parametrized over a number of arguments
I several constructors / alternatives
I multiple fields per constructor
I possibly recursion

Haskell datatypes

Haskell’s data construct is extremely flexible.

data TimeInfo = AM | PM | H24
data Package = P String Author Version Date
data Maybe α = Nothing | Just α
data [α] = [] | α : [α]
data Tree α = Leaf α | Node (Tree α) (Tree α)

Common structure:
I parametrized over a number of arguments
I several constructors / alternatives
I multiple fields per constructor
I possibly recursion

Overview

About Haskell

Genericity and other types of polymorphism

Examples of generic functions

Generic Haskell

Parametric polymorphism

Haskell allows to express functions that work on all datatypes
in a uniform way.

id :: ∀α.α → α
id x = x

swap :: ∀α β.(α, β) → (β, α)
swap (x, y) = (y, x)

head :: ∀α.[α] → α
head (x : xs) = x

We can take the head of a list of Packages, or swap a tuple of two
Trees.

When are two values equal?

It is easy to define an equality function for a specific datatype.

I Both values must belong to the same alternative.
I The corresponding fields must be equal.

When are two values equal?

It is easy to define an equality function for a specific datatype.

I Both values must belong to the same alternative.
I The corresponding fields must be equal.

They must belong to the same alternative

data TimeInfo = AM | PM | H24
(= =)TimeInfo :: TimeInfo → TimeInfo → Bool
AM = =TimeInfo AM = True
PM = =TimeInfo PM = True
H24 = =TimeInfo H24 = True

= =TimeInfo = False

The corresponding fields must be equal

data Package = PD String Author Version Date

(= =)Package :: Package → Package → Bool

(PD n c v d) = =Package (PD n′ c′ v′ d′) = n = =String n′

∧ c = =Author c′

∧ v = =Version v′

∧ d = =Date d′

Equality for parametrized datatypes

data Maybe α = Nothing | Just α

(= =)Maybe :: ∀α.(α → α → Bool) → (Maybe α → Maybe α → Bool)
(= =)Maybe (= =)α Nothing Nothing = True
(= =)Maybe (= =)α (Just x) (Just x′) = x = =??? x′

(= =)Maybe (= =)α = False

I We can define the equality for parametrized datatypes, but
for that, we must know the equality function(s) for the
argument(s).

I The equality function depends on itself.

Equality for parametrized datatypes

data Maybe α = Nothing | Just α

(= =)Maybe :: ∀α.(α → α → Bool) → (Maybe α → Maybe α → Bool)
(= =)Maybe (= =)α Nothing Nothing = True
(= =)Maybe (= =)α (Just x) (Just x′) = x = =α x′

(= =)Maybe (= =)α = False

I We can define the equality for parametrized datatypes, but
for that, we must know the equality function(s) for the
argument(s).

I The equality function depends on itself.

Equality for parametrized datatypes

data Maybe α = Nothing | Just α

(= =)Maybe :: ∀α.(α → α → Bool) → (Maybe α → Maybe α → Bool)
(= =)Maybe (= =)α Nothing Nothing = True
(= =)Maybe (= =)α (Just x) (Just x′) = x = =α x′

(= =)Maybe (= =)α = False

I We can define the equality for parametrized datatypes, but
for that, we must know the equality function(s) for the
argument(s).

I The equality function depends on itself.

Equality for parametrized datatypes

data Maybe α = Nothing | Just α

(= =)Maybe :: ∀α.(α → α → Bool) → (Maybe α → Maybe α → Bool)
(= =)Maybe (= =)α Nothing Nothing = True
(= =)Maybe (= =)α (Just x) (Just x′) = x = =α x′

(= =)Maybe (= =)α = False

I We can define the equality for parametrized datatypes, but
for that, we must know the equality function(s) for the
argument(s).

I The equality function depends on itself.

Equality isn’t parametrically polymorphic

I We know intuitively what it means for two Packages to be
equal.

I We also know what it means for two Trees, Maybes or
TimeInfos to be equal.

I However, it is impossible to give a parametrically
polymorphic definition for equality:

(= =) :: ∀α.α → α → Bool
x = = y = ???

I This is a consequence of the Parametricity Theorem
(Reynolds 1983).

Equality isn’t parametrically polymorphic

I We know intuitively what it means for two Packages to be
equal.

I We also know what it means for two Trees, Maybes or
TimeInfos to be equal.

I However, it is impossible to give a parametrically
polymorphic definition for equality:

(= =) :: ∀α.α → α → Bool
x = = y = ???

I This is a consequence of the Parametricity Theorem
(Reynolds 1983).

Overloading or ad-hoc polymorphism

I We have seen that we can define specific equality functions
for many datatypes, following the intuitive algorithm that
two values are equal iff

• both values belong to the same alternative,
• the corresponding fields are equal.

I A parametrically polymorphic equality function is
impossible, because equality needs to access the structure
of the datatypes to perform the comparison.

I Haskell allows to place functions that work on different
types into a type class.

I Then, we can use the same name (= =) for all the specific
equality functions.

Overloading or ad-hoc polymorphism

I We have seen that we can define specific equality functions
for many datatypes, following the intuitive algorithm that
two values are equal iff

• both values belong to the same alternative,
• the corresponding fields are equal.

I A parametrically polymorphic equality function is
impossible, because equality needs to access the structure
of the datatypes to perform the comparison.

I Haskell allows to place functions that work on different
types into a type class.

I Then, we can use the same name (= =) for all the specific
equality functions.

Overloading or ad-hoc polymorphism

I We have seen that we can define specific equality functions
for many datatypes, following the intuitive algorithm that
two values are equal iff

• both values belong to the same alternative,
• the corresponding fields are equal.

I A parametrically polymorphic equality function is
impossible, because equality needs to access the structure
of the datatypes to perform the comparison.

I Haskell allows to place functions that work on different
types into a type class.

I Then, we can use the same name (= =) for all the specific
equality functions.

Overloading or ad-hoc polymorphism

I We have seen that we can define specific equality functions
for many datatypes, following the intuitive algorithm that
two values are equal iff

• both values belong to the same alternative,
• the corresponding fields are equal.

I A parametrically polymorphic equality function is
impossible, because equality needs to access the structure
of the datatypes to perform the comparison.

I Haskell allows to place functions that work on different
types into a type class.

I Then, we can use the same name (= =) for all the specific
equality functions.

Type classes

A type class defines a set of datatypes that support common
operations:

class Eq α where (= =) :: α → α → Bool

A type can be made an instance of the class by defining the
class operations:

instance Eq TimeInfo where (= =) = (= =)TimeInfo

instance Eq Package where (= =) = (= =)Package

instance Eq α ⇒ Eq [α] where (= =) = (= =)[] (= =)

The dependency of equality turns into an instance constraint.

Type classes

A type class defines a set of datatypes that support common
operations:

class Eq α where (= =) :: α → α → Bool

A type can be made an instance of the class by defining the
class operations:

instance Eq TimeInfo where (= =) = (= =)TimeInfo

instance Eq Package where (= =) = (= =)Package

instance Eq α ⇒ Eq [α] where (= =) = (= =)[] (= =)

The dependency of equality turns into an instance constraint.

Type classes

A type class defines a set of datatypes that support common
operations:

class Eq α where (= =) :: α → α → Bool

A type can be made an instance of the class by defining the
class operations:

instance Eq TimeInfo where (= =) = (= =)TimeInfo

instance Eq Package where (= =) = (= =)Package

instance Eq α ⇒ Eq [α] where (= =) = (= =)[] (= =)

The dependency of equality turns into an instance constraint.

Type classes

A type class defines a set of datatypes that support common
operations:

class Eq α where (= =)α :: α → α → Bool

A type can be made an instance of the class by defining the
class operations:

instance Eq TimeInfo where (= =)TimeInfo = (= =)TimeInfo

instance Eq Package where (= =)Package = (= =)Package

instance Eq α ⇒ Eq [α] where (= =)[] = (= =)[] (= =)α

The dependency of equality turns into an instance constraint.

Is this satisfactory?

I We can use an overloaded version of equality on several
datatypes now.

I We had to define all the instances ourselves, in an ad-hoc
way.

I Once we want to use equality on more datatypes, we have
to define new instances.

Let us define the equality function once and for all!

Is this satisfactory?

I We can use an overloaded version of equality on several
datatypes now.

I We had to define all the instances ourselves, in an ad-hoc
way.

I Once we want to use equality on more datatypes, we have
to define new instances.

Let us define the equality function once and for all!

Structural polymorphism

Structural polymorphism (also called generic programming)
makes the structure of datatypes available for the definition

of type-indexed functions!

Generic programming in context

Ad-hoc polymorphism ≈ overloading

Parametric polymorphism

Generic programming in context

Ad-hoc polymorphism ≈ overloading

Structural polymorphism ≈ genericity

Parametric polymorphism

Overview

About Haskell

Genericity and other types of polymorphism

Examples of generic functions

Generic Haskell

Generic equality

(= =) 〈α〉 :: α → α → Bool
(= =) 〈Unit〉 Unit Unit = True
(= =) 〈Sum α β〉 (Inl x) (Inl x′) = (= =) 〈α〉 x x′

(= =) 〈Sum α β〉 (Inr y) (Inr y′) = (= =) 〈β〉 y y′

(= =) 〈Sum α β〉 = False
(= =) 〈Prod α β〉 (x× y) (x′ × y′) = (= =) 〈α〉 x x′ ∧ (= =) 〈β〉 y y′

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

Generic equality

(= =) 〈α〉 :: α → α → Bool
(= =) 〈Unit〉 Unit Unit = True
(= =) 〈Sum α β〉 (Inl x) (Inl x′) = (= =) 〈α〉 x x′

(= =) 〈Sum α β〉 (Inr y) (Inr y′) = (= =) 〈β〉 y y′

(= =) 〈Sum α β〉 = False
(= =) 〈Prod α β〉 (x× y) (x′ × y′) = (= =) 〈α〉 x x′ ∧ (= =) 〈β〉 y y′

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

Generic equality

(= =) 〈α〉 :: α → α → Bool
(= =) 〈Unit〉 Unit Unit = True
(= =) 〈Sum α β〉 (Inl x) (Inl x′) = (= =) 〈α〉 x x′

(= =) 〈Sum α β〉 (Inr y) (Inr y′) = (= =) 〈β〉 y y′

(= =) 〈Sum α β〉 = False
(= =) 〈Prod α β〉 (x× y) (x′ × y′) = (= =) 〈α〉 x x′ ∧ (= =) 〈β〉 y y′

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

Generic equality

(= =) 〈α〉 :: α → α → Bool
(= =) 〈Unit〉 Unit Unit = True
(= =) 〈Sum α β〉 (Inl x) (Inl x′) = (= =) 〈α〉 x x′

(= =) 〈Sum α β〉 (Inr y) (Inr y′) = (= =) 〈β〉 y y′

(= =) 〈Sum α β〉 = False
(= =) 〈Prod α β〉 (x× y) (x′ × y′) = (= =) 〈α〉 x x′ ∧ (= =) 〈β〉 y y′

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

Generic equality

(= =) 〈α〉 :: α → α → Bool
(= =) 〈Unit〉 Unit Unit = True
(= =) 〈Sum α β〉 (Inl x) (Inl x′) = (= =) 〈α〉 x x′

(= =) 〈Sum α β〉 (Inr y) (Inr y′) = (= =) 〈β〉 y y′

(= =) 〈Sum α β〉 = False
(= =) 〈Prod α β〉 (x× y) (x′ × y′) = (= =) 〈α〉 x x′ ∧ (= =) 〈β〉 y y′

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

Generic functions

A function that is defined for the Unit, Sum, and Prod types is
“generic” or structurally polymorphic.

I It works automatically for “all” datatypes.
I Datatypes are implicitly deconstructed into a

representation that involves Unit, Sum, and Prod.
I Primitive or abstract types might require special cases in

the definition.

Generic functions

A function that is defined for the Unit, Sum, and Prod types is
“generic” or structurally polymorphic.

I It works automatically for “all” datatypes.
I Datatypes are implicitly deconstructed into a

representation that involves Unit, Sum, and Prod.
I Primitive or abstract types might require special cases in

the definition.

Generic functions

A function that is defined for the Unit, Sum, and Prod types is
“generic” or structurally polymorphic.

I It works automatically for “all” datatypes.
I Datatypes are implicitly deconstructed into a

representation that involves Unit, Sum, and Prod.
I Primitive or abstract types might require special cases in

the definition.

Generic functions

A function that is defined for the Unit, Sum, and Prod types is
“generic” or structurally polymorphic.

I It works automatically for “all” datatypes.
I Datatypes are implicitly deconstructed into a

representation that involves Unit, Sum, and Prod.
I Primitive or abstract types might require special cases in

the definition.

Primitive types

I A primitive type is a datatype that can not be
deconstructed because its implementation is hidden or
because it cannot be defined by means of the Haskell data
construct (such as Int, Char, (→), and IO).

I If a generic function is supposed to work for types
containing a primitive type, it has to be defined for this
primitive type.

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

I Abstract types, where the programmer specifically hides
the implementation, are treated in the same way as
primitive types.

Primitive types

I A primitive type is a datatype that can not be
deconstructed because its implementation is hidden or
because it cannot be defined by means of the Haskell data
construct (such as Int, Char, (→), and IO).

I If a generic function is supposed to work for types
containing a primitive type, it has to be defined for this
primitive type.

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

I Abstract types, where the programmer specifically hides
the implementation, are treated in the same way as
primitive types.

Primitive types

I A primitive type is a datatype that can not be
deconstructed because its implementation is hidden or
because it cannot be defined by means of the Haskell data
construct (such as Int, Char, (→), and IO).

I If a generic function is supposed to work for types
containing a primitive type, it has to be defined for this
primitive type.

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

I Abstract types, where the programmer specifically hides
the implementation, are treated in the same way as
primitive types.

Deconstruction into Unit, Sum, Prod

I A value of Unit type represents a constructor with no fields
(such as Nothing or the empty list).

I A Sum represents the choice between two alternatives.
I A Prod represents the sequence of two fields.

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

data Tree α = Leaf α | Node (Tree α) (Tree α)
Tree α ≈ Sum α (Prod (Tree α) (Tree α))

Deconstruction into Unit, Sum, Prod

I A value of Unit type represents a constructor with no fields
(such as Nothing or the empty list).

I A Sum represents the choice between two alternatives.
I A Prod represents the sequence of two fields.

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

data Tree α = Leaf α | Node (Tree α) (Tree α)
Tree α ≈ Sum α (Prod (Tree α) (Tree α))

Using a generic function

The defined equality function can now be used at different
datatypes.

data TimeInfo = AM | PM | H24
data Tree α = Leaf α | Node (Tree α) (Tree α)

(= =) 〈TimeInfo〉 AM H24 False
(= =) 〈TimeInfo〉 PM PM True
(= =) 〈Tree Int〉 (Node (Node (Leaf 2) (Leaf 4))

(Node (Leaf 1) (Leaf 3)))
(Node (Node (Leaf 4) (Leaf 2))

(Node (Leaf 1) (Leaf 3)))
 False

Applications for generic functions

I comparison
• equality
• ordering

I parsing and printing
• read/write a canonical representation
• read/write a binary representation
• read/write XML to/from a typed Haskell value
• compression, encryption

I generation
• generating default values
• enumerating all values of a datatype
• (random) generation of test data

I traversals
• collecting and combining data from a tree
• modifying data in a tree

Applications for generic functions

I comparison
• equality
• ordering

I parsing and printing
• read/write a canonical representation
• read/write a binary representation
• read/write XML to/from a typed Haskell value
• compression, encryption

I generation
• generating default values
• enumerating all values of a datatype
• (random) generation of test data

I traversals
• collecting and combining data from a tree
• modifying data in a tree

Applications for generic functions

I comparison
• equality
• ordering

I parsing and printing
• read/write a canonical representation
• read/write a binary representation
• read/write XML to/from a typed Haskell value
• compression, encryption

I generation
• generating default values
• enumerating all values of a datatype
• (random) generation of test data

I traversals
• collecting and combining data from a tree
• modifying data in a tree

Applications for generic functions

I comparison
• equality
• ordering

I parsing and printing
• read/write a canonical representation
• read/write a binary representation
• read/write XML to/from a typed Haskell value
• compression, encryption

I generation
• generating default values
• enumerating all values of a datatype
• (random) generation of test data

I traversals
• collecting and combining data from a tree
• modifying data in a tree

Advantages of generic functions

I reusable
I type safe
I simple
I adaptable

Advantages of generic functions

I reusable
I type safe
I simple
I adaptable

Advantages of generic functions

I reusable
I type safe
I simple
I adaptable

Advantages of generic functions

I reusable
I type safe
I simple
I adaptable

Overview

About Haskell

Genericity and other types of polymorphism

Examples of generic functions

Generic Haskell

The Generic Haskell Project

I A research project funded by the NWO (Dutch Research
Organisation) from October 2000 until October 2004.

I Goal: create a language extension for Haskell that supports
generic programming.

I Based on earlier work by Johan Jeuring and Ralf Hinze.
I Project is now finished, but work on Generic Haskell will

continue in Utrecht.
I Results: compared to the original ideas, much easier to

use, yet more expressive.
I The PhD thesis “Exploring Generic Haskell” is a

reasonably complete documentation of the results of the
project.

The Generic Haskell Project

I A research project funded by the NWO (Dutch Research
Organisation) from October 2000 until October 2004.

I Goal: create a language extension for Haskell that supports
generic programming.

I Based on earlier work by Johan Jeuring and Ralf Hinze.
I Project is now finished, but work on Generic Haskell will

continue in Utrecht.
I Results: compared to the original ideas, much easier to

use, yet more expressive.
I The PhD thesis “Exploring Generic Haskell” is a

reasonably complete documentation of the results of the
project.

The Generic Haskell Compiler

I . . . is a preprocessor for the Haskell language.
I It extends Haskell with constructs to define

• type-indexed functions (which can be generic),
• type-indexed datatypes.

I Generic Haskell compiles datatypes of the input language
to isomorphic structural representations using Unit, Sum,
and Prod.

I Generic Haskell compiles generic functions to specialized
functions that work for specific types.

I Generic Haskell compiles calls to generic functions into
calls to the specialisations.

Additional features

I Several mechanisms to define new generic definitions out
of existing ones:

• local redefinition allows to change the behaviour of a
generic function on a specific type locally

• generic abstraction allows to define generic functions in
terms of other generic functions without fixing the type
argument

• default cases allow to extend generic functions with
additional cases for specific types

Additional features

I Several mechanisms to define new generic definitions out
of existing ones:

• local redefinition allows to change the behaviour of a
generic function on a specific type locally

• generic abstraction allows to define generic functions in
terms of other generic functions without fixing the type
argument

• default cases allow to extend generic functions with
additional cases for specific types

Additional features

I Several mechanisms to define new generic definitions out
of existing ones:

• local redefinition allows to change the behaviour of a
generic function on a specific type locally

• generic abstraction allows to define generic functions in
terms of other generic functions without fixing the type
argument

• default cases allow to extend generic functions with
additional cases for specific types

Dependencies

I Generic functions can interact, i.e., depend on one another.
I For instance, equality depends on itself.
I There are generic functions that depend on multiple other

generic functions.
I Dependencies are tracked by the type system in Generic

Haskell.

Type-indexed datatypes

I Generic functions are functions defined on the structure of
datatypes.

I Type-indexed datatypes are datatypes defined on the
structure of datatypes.

I Type-indexed tries are finite maps that employ the shape
of the key datatype to store the values more efficiently.

I The zipper is a data structure that facilitates editing
operations on a datatype.

Type-indexed datatypes

I Generic functions are functions defined on the structure of
datatypes.

I Type-indexed datatypes are datatypes defined on the
structure of datatypes.

I Type-indexed tries are finite maps that employ the shape
of the key datatype to store the values more efficiently.

I The zipper is a data structure that facilitates editing
operations on a datatype.

Type-indexed datatypes

I Generic functions are functions defined on the structure of
datatypes.

I Type-indexed datatypes are datatypes defined on the
structure of datatypes.

I Type-indexed tries are finite maps that employ the shape
of the key datatype to store the values more efficiently.

I The zipper is a data structure that facilitates editing
operations on a datatype.

Implementation of Generic Haskell

I Generic Haskell can be obtained from
www.generic-haskell.org.

I The current release (from January 2005) should contain all
the features mentioned in this talk (except for syntactical
differences when using type-indexed types).

Related work

I Scrap your boilerplate (Lämmel and Peyton Jones)
I Pattern calculus (Jay)
I Dependently typed programming (Augustsson, Altenkirch

and McBride, . . .)
I Intensional type analysis (Harper, Morrisett, Weirich)
I GADTs (Cheney and Hinze, Weirich and Peyton Jones)
I Template Haskell (Sheard and Peyton Jones)
I Templates in C++
I Generics in C# and Java
I . . .

Future work

I Generic views, i.e., different structural representations of
datatypes for different sorts of applications.

I Type inference.
I First-class generic functions.
I . . .

Parsing and printing

Many forms of parsing and printing functions can be written
generically. A very simple example is a function to encode a
value as a list of Bits:

data Bit = O | I
encode 〈α〉 :: α → [Bit]
encode 〈Unit〉 Unit = []
encode 〈Sum α β〉 (Inl x) = O : encode 〈α〉 x
encode 〈Sum α β〉 (Inr y) = I : encode 〈β〉 y
encode 〈Prod α β〉 (x× y) = encode 〈α〉 x ++ encode 〈β〉 y
encode 〈Int〉 x = encodeInBits 32 x
encode 〈Char〉 x = encodeInBits 8 (ord x)

Parsing and printing – contd.

data Tree α = Leaf α | Node (Tree α) (Tree α)
data TimeInfo = AM | PM | H24

encode 〈TimeInfo〉 H24
 [I, I]

encode 〈Tree TimeInfo〉 (Node (Leaf AM) (Leaf PM))
 [I, O, O, O, I, O]

Traversals

collect 〈α〉 :: ∀ρ.α → [ρ]
collect 〈Unit〉 Unit = []
collect 〈Sum α β〉 (Inl x) = collect 〈α〉 x
collect 〈Sum α β〉 (Inr y) = collect 〈β〉 y
collect 〈Prod α β〉 (x× y) = collect 〈α〉 x ++ collect 〈β〉 y
collect 〈Int〉 x = []
collect 〈Char〉 x = []

Alone, this generic function is completely useless! It always
returns the empty list.

Traversals

collect 〈α〉 :: ∀ρ.α → [ρ]
collect 〈Unit〉 Unit = []
collect 〈Sum α β〉 (Inl x) = collect 〈α〉 x
collect 〈Sum α β〉 (Inr y) = collect 〈β〉 y
collect 〈Prod α β〉 (x× y) = collect 〈α〉 x ++ collect 〈β〉 y
collect 〈Int〉 x = []
collect 〈Char〉 x = []

Alone, this generic function is completely useless! It always
returns the empty list.

Local redefinition and collect

The function collect is a good basis for local redefinition.

Collect all elements from a tree:

let collect 〈τ〉 x = [x]
in collect 〈Tree τ〉 (Node (Leaf 1) (Leaf 2)

(Leaf 3) (Leaf 4)) [1, 2, 3, 4]

Local redefinition

let (= =) 〈α〉 x y = (= =) 〈Char〉 (toUpper x) (toUpper y)
in (= =) 〈[α]〉 "generic Haskell" "Generic HASKELL"

Generic abstraction

symmetric 〈α〉 x = equal 〈α〉 x (reverse 〈α〉 x)

Type-indexed tries

type FMap 〈Unit〉 val = Maybe val
type FMap 〈Sum α β〉 val = (FMap 〈α〉 val, FMap 〈β〉 val)
type FMap 〈Prod α β〉 val = FMap 〈α〉 (FMap 〈β〉 val)

	About Haskell
	Genericity and other types of polymorphism
	Examples of generic functions
	Generic Haskell

