

Design and construction of an underwater robot

Deivid Pugal

Supervisors:

Alvo Aabloo and Maarja Kruusmaa

Institute of Technology, Univeristy of Tartu, Estonia

The Task

To build electronics, motion control and sensor system for an environmental monitoring underwater vehicle.

The vehicle:

- is towed behind a boat
- must know distance from the bottom
- must control buoyancy
- must control orientation
- must be able to process measurement data

Buoyancy Control

 The buoyancy and orientation can be changed by controlling ballast tanks at both sides of the vehicle.

Mechanical structure and Pneumatics

1-pressure equalizing valve

2-air inlet

3-input valves

4-output valves

5-rubber tanks

6-compressed air tank

The solution

4-layer system of components:

- OMAP5912 (ARM + DSP)
- MSP microprocessor
- PIC microprocessors
- Controllers

Communication

Sonars

- At least 2 sonars needed
- Are used for measuring distances from the bottom of the sea
- Tried to modify SRF08 sonars unsuccessful

Servos

Driven by PWM signals from MSP processor

For moving fins

Valves

- Controlled by PIC processor
- For buoyancy regulation

Future work

- Finding appropriate sonars
- Field tests and vehicle control algorithms.
- Software for ARM+DSP processor

Thank you

This work is supported by

- Environmental Investment Centre
- Institute of Technology, University of Tartu
- Netbell Ltd
- Estonian Scientific Foundation