Design and construction of an underwater robot

Deivid Pugal

Supervisors: Alvo Aabloo and Maarja Kruusmaa

Institute of Technology, University of Tartu, Estonia
The Task

To build electronics, motion control and sensor system for an environmental monitoring underwater vehicle.
The vehicle:

- is towed behind a boat
- must know distance from the bottom
- must control buoyancy
- must control orientation
- must be able to process measurement data
Buoyancy Control

- The buoyancy and orientation can be changed by controlling ballast tanks at both sides of the vehicle.
Mechanical structure and Pneumatics

1-pressure equalizing valve
2-air inlet
3-input valves
4-output valves
5-rubber tanks
6-compressed air tank
The solution

4-layer system of components:

- OMAP5912 (ARM + DSP)
- MSP microprocessor
- PIC microprocessors
- Controllers
Communication

OMAP

MSP

PICs

Inclinometer compass

RS232

I2c

I2c memory

PWM outputs

DC/servo

Sonars?

Controllers for steppers, valves, vents and etc.
Sonars

- At least 2 sonars needed
- Are used for measuring distances from the bottom of the sea
- Tried to modify SRF08 sonars - unsuccessful
Servos

- Driven by PWM signals from MSP processor
- For moving fins
Valves

- Controlled by PIC processor
- For buoyancy regulation
Future work

- Finding appropriate sonars
- Field tests and vehicle control algorithms.
- Software for ARM+DSP processor
Thank you

This work is supported by

- Environmental Investment Centre
- Institute of Technology, University of Tartu
- Netbell Ltd
- Estonian Scientific Foundation