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THE ESSENCE OF DATAFLOW PROGRAMMING

Motivation

e Following Moggi and Wadler, it is standard in programming and
semantics to analyze various notions of computation with an effect as
monads.

e But there is a need for both finer and more permissive mathematical
abstractions to uniformly describe the numerous function-like
concepts encountered in programming.

e Some proposals: Lawvere theories (Power, Plotkin), Freyd categories
(Power, Robinson).
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THE ESSENCE OF DATAFLOW PROGRAMMING

¢ In functional programming, Hughes invented Freyd categories
independently of Power, Robinson under the name of arrow types and
has been promoting them an abstraction especially handy in
programming with signals/flows.

e This has been picked up; there is by now both a library and specialized
syntax for arrows in Haskell, as well as an arrows-based library for
functional reactive programming.

e But what about comonads? They have not found extensive use (some
examples by Brookes and Geva, Kieburtz, but mostly artificial).
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This talk

e Thesis: Used properly, comonads are exactly the right tool for
programming signal/flow functions, accounting both for general signal
functions and for causal ones (where the output at a given time can
only depend on the input until that time).

e This extends Moggi’s modular approach to language semantics to
languages for implicit context based paradigms such as intensional
programming in Lucid or synchronous dataflow programming in
Lustre/Lucid Synchrone: context relying functions are interpreted as
pure functions via a comonad translation.

For such languages, Moggi-style accounts have not been available thus
far.
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Outline

e Monads, monads in programming and semantics
e Freyd categories/arrow types and programming with stream functions
e Comonads for programming with stream functions, semantics

e A distributive law for programming with partial-stream functions,
semantics
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Monads

¢ A monad (in the Kleisli format) on a category C is given by a mapping
T :|C| — |C| together with a |Cl-indexed family n of maps g4 : A - TA
(unit), and an operation —* taking every map k: A — TB in C to a map
k* : TA — TB (extension operation) such that

— foranyk: A —» TB,k* ong =k,
- NA™ = id7y,
— foranyk: A —> TB,{:B — TC, ({* ok)* = {* o k*.
e Any monad (T, n —*) defines a category Ct where |C7| = |C| and
Cr(A,B) =C(A,TB), (id7)4 = na, £ ork = £* ok (Kleisli category) and

an identity-on-objects functor | : C — Ct where Jf = npo f for
f:A—B.
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e In programming and semantics, monads are used to model notions of

computation with an effect; TA is the type of computations of values of
A.

An function with an effect from A to B is a map A — B in the Kleisli
category, i.e., a map A — TB in the base category.
e Some examples applied in semantics:
- TA = MaybeA = A + 1, error (partiality), TA = A 4 E, exceptions,
- TA = E = A, environment,
— TA = ListA = uX.1 + A X X, non-determinism,
- TA =S5 = AXS, state,
- TA = (A = R) = R, continuations,
- TA = uX.A+ (U = X), interactive input,
- TA = uX.A+VxX = AXListV, interactive output,
- TA = uX.A + FX, the free monad over F,
- TA = vX.A + FX, the free completely iterative monad over F.
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Monads in Haskell

e The monad class is defined in the Prelude:

class Monad t where
return :: a -> t a
>>=) :::ta->C(@->tb) >1thb

e The error monad:

instance Monad Maybe where

return a = Just a
Just a >=k =k a
Nothing >>= k = Nothing

errorM :: Maybe a
errorM = Nothing

handleM :: Maybe a -> Maybe a -> Maybe a
Nothing ‘handleM‘ d = d
Just a ‘handleM® = Just a
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e The non-determinism monad:

instance Monad [] where
return a = [a]
[] >>= f = []

(a : as) >=f = f a ++ (as >>= )

deadlockL :: [a]
deadlockL = []

choicel :: [a] -> [a] -> [a]
as® ‘choicelL‘ asl = as® ++ asl
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Monadic semantics

e Syntax:

type Var = String

data Tm = VVar | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm |
| Tm :== Tm |
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for Maybe
| Error | Tm ‘Handle‘ Tm
-- specific for []
| Deadlock | Tm ‘Choice‘ Tm

e Semantic categories:
data Val t = I Int | B Bool | F (Val t -> t (Val t))

type Env t = [(Var, Val t)]

envl :: Env t
env0 = []
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e Evaluation:

class Monad t => MonadEv t where
ev :: Tm -> Env t -> t (Val t)

ev :: MonadEv t => Tm -> Env t -> t (Val t)
_ev (V x) env = return (unsafelookup x env)
_ev (L xe) env = return (F (\ a > ev e ((x, a) : env)))
_ev (e :@e’) env =ev e env >=\ (F £) >
ev e’ env >>= \ a ->
fa
_ev (N n) env = return (I n)
_ev (e® :+ el) env = ev e® env >>=\ (I n®) ->
ev el env >=\ (I nl) ->
return (I (n® + nl))

ev TT env = return (B True )

_ev FF env = return (B False)

_ev (Not e) env = ev e env >>= \ (B b) >
return (B (not b))

_ev (If e ed el) env = ev e env >=\ (B b) >
if b then ev e® env else ev el env
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e Evaluation cont’d:

instance MonadEv Maybe where
ev Error env = errorM
ev (e® ‘Handle‘ el) env = ev e® env ‘handleM‘ ev el env
ev e env = _ev e env

testM :: Tm -> Maybe (Val Maybe)
testM = ev e env0®

instance MonadEv [] where
ev Deadlock env = deadlockL
ev (e® ‘Choice’ el) env = ev e0® env ‘choicelL’ ev el env
ev e env = _ev e env

testL :: Tm -> [Val []]
testlL = ev e env®
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Freyd categories / arrow types

e Freyd categories are a generalization of Kleisli categories of strong
monads.

e A symmetric premonoidal category is the same as a symmetric
monoidal category except that the tensor is not required not be
bifunctorial, only functorial in each of its two arguments separately. A
map f : A — B of such a category is called central if the two
composites A® C — B® D agree and the two composites
C®A — D®B agree for everymap ¢: C — D.

A Freyd category over a Cartesian category C is a symmetric
premonoidal category K together with an identity-on-objects functor
J : C — K that preserves the symmetric premonoidal structure of C on
the nose and also preserves centrality.
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e Freyd categories a.k.a. arrow types in Haskell (as in Control. Arrow):

class Arrow r where
pure :: (a ->b) ->r ab
(>>>) ::rab->rbc->rac
first :: rab ->r (a, c) (b, ©)

e Kleisli arrows as arrows:

newtype Kleisli t a b = Kleisli (a -> t b)

instance Monad t => Arrow (Kleisli t) where
pure f = Kleisli (return . f)
Kleisli k >>> Kleisli 1 = Kleisli ((>>= 1) . k)
first (Kleisli k) = Kleisli (\ (a, c) ->
k a>=\Db -> return (b, c))
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e The general stream functions arrow type (to model transformers of
signals in discrete time):

data Stream a = a :< Stream a -- coinductive

zipS :: Stream a -> Stream b -> Stream (a, b)
zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs

newtype SF a b = SF (Stream a -> Stream b)

instance Arrow SF where
pure £ = SF (mapS f)
SF k >> SF 1 = SF (1 . k)
first SF k = SF (uncurry zipS . (\ (as, ds) -> k as, ds) . unzipS)

e Delay:

fbySF :: a -> SF a a
fbySF a0 = SF (\ as -> a0 :< as)
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Comonads

e Comonads are the formal dual of monads.

e A comonad on a category C is given by a mapping D : |C| — |C]
together with a |Cl|-indexed family ¢ of maps €4 : DA — A (counit),
and an operation —" taking every map k : DA — B in C to a map
k' : DA — DB (coextension operation) such that

— forany k: DA — B, ¢ okt =k,

.I._.
— &4’ =ldpy,
— forany k: DA — B,{: DB — C, (Co k")t = (T o k.

e Any comonad (D, ¢ —1) defines a category (Cp where |Cp| = |C| and
Cp(A,B) = C(DA,B), (idp)a = €4, Lop k = € o k' (coKleisli category)
and an identity-on-objects functor | : C — Cp where Jf = f o ¢4 for
f:A—B.
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THE ESSENCE OF DATAFLOW PROGRAMMING

e Comonads should be usable to model notions of value in a context; DA
would be the type of contextually situated values of A.

A context-relying function from A to B would be a map A — B in the
coKleisli category, i.e., a map DA — B in the base category.
e Some examples:
— DA = A X E, the product comonad,
— DA = StrA = vX.A X X, the streams comonad,
- DA = vX.A X FX, the cofree comonad over F,

— DA = uX.A X FA, the cofree recursive comonad over F.
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Comonads in Haskell

e The basic implementation:

class Comonad d where
counit :: d a -> a
cobind :: (da ->b) ->da->db

e The product comonad:

data With e a = a :- e

instance Comonad (With e) where
counit (a :- _) = a
cobind k d@(_ :- e) =k d :- e

e The streams comonad:

data Stream a = a :< Stream a

instance Comonad Stream where
counit (a (< _) = a
cobind k d@(_ :< as) = k d :< cobind k as

-- coinductive
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Comonads for general and causal stream functions

e Streams (signals in discrete time) are naturally isomorphic to functions
from natural numbers: StrA = Nat = A.

e General stream functions StrA — StrB are thus in natural bijection
with maps StrA X Nat — B.

e Hence the values of A in context for general stream functions are
StrPosA = StrA X Nat = LVSA = ListA X A X StrA.

A time point partitions a stream into its past (a list), present (a value)
and future (a stream).

e The values of A in context for causal stream functions are
LVA = ListA x A = uX.A x MaybeX.

This is the cofree recursive comonad over the Maybe functor.
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THE ESSENCE OF DATAFLOW PROGRAMMING

e Streams and isomorphism of streams to functions from naturals:

data Stream a = a :< Stream a -- coinductive
str2fun :: Stream a -> Int -> a
fun2str :: (Int -> a) -> Stream a

e Streams with a marked position: values in a context for general stream
functions:

data StrPos a = SP (Stream a) Int

instance Comonad StrPos where
counit (SP as i) = str2fun as i
cobind k (SP as i) = SP (fun2str (\ 1’ -> k (SP as 1i’))) 1

runSP :: (StrPos a -> b) -> Stream a -> Stream b
runSP k as = runSP’ k as 0

runSP’ k as 1i = k (SP as 1) :< runSP’ k as (1 + 1)
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e Delay (“followed by”) operation:

fbySP :: a -> StrPos a -> a
fbySP a (SP as 0) = a
fbySP _ (SP as (i + 1)) = str2fun as i

e Summation:

sumSP :: Num a => StrPos a -> a
sumSP (SP as 0) = str2fun as 0
sumSP (SP as (1 + 1)) = str2fun as (i + 1) + sumSP (SP as i)

e Compression (non-causal!):

compress :: StrPos a -> (a, a)
compress (SP as 1) = (str2fun as (2 * 1), str2fun as (2 * i + 1))
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e List-value pairs, values in a context for causal stream functions:

data List a = Nil | List a :> a -- 1inductive
data LV a = List a := a

instance Comonad LV where

counit (_ := a) = a
cobind k d@(az := _) = cobindP k az := k d where
cobindP k Nil = Nil

cobindP k (az :> a) = cobindP k az :> k (az := a)

runlLV :: (LV a -> b) -> Stream a -> Stream b
runlLV k (a :< as) = runlLV’ k Nil a as

runlV’ k az a (a’ :< as’)
=k (az := a) :< runLV’ k (az :> a) a’ as’
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e A feedback resolution combinator:

feedback :: (List (a, b) -> a -> b) -> (LV a -> b)
feedback k d = k abz a
where (abz := (a, _))
cobind (pair counit (feedback k)) d

e Feedbacks can be run directly:

runbase :: (List (a, b) -> a -> b) -> Stream a -> Stream b
runbase k (a :< as) = runbase’ k Nil a as

runbase’ k abz a (a’ :< as’)
= b :< runbase’ k (abz :> (a, b)) a’ as’

where b = k abz a
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e Feedbacks can also be composed directly:

compbase :: (List (a, b) -> a -> b)
-> (List ((a, b), ¢) -> (a, b) -> ©)
-> List (a, (b, c)) -> a -> (b, )
compbase k 1 e a

= let
e’ = fmap (\ (a, (b, c©)) -> (a, b)) e
e’’’ = fmap (\ (a, (b, ©)) -> ((a, b), c)) e
b =ke’a
c =1¢e’7 (a, b)
in (b, ©)
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e Delay:
fbyLV :: a -> LV a -> a
fbyLV a® (Nil = _) = ab
fbyLV _ ((_ > a’) :=_) = a’

e Summation directly and with feedback:

sumLV :: Num a => LV a -> a
sumLV (Nil = a) = a
sumLV ((az’ :> a’) := a) = sumLV (az’ := a’) + a

sumbase : Num a => List (a, a) -> a -> a
sumbase Nil a = a
sumbase (_ :> (_, b)) a=Db + a
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Comonadic semantics of a dataflow language

e Comonads with zipping:

class Comonad d => ComonadZip d where
czip :: da->db ->d (a, b)

instance ComonadZip LV where
czip (az := a) (bz :=b) = czipP az bz := (a, b)
where czipP Nil Nil = Nil
czipP (az :> a) (bz :> b) = czipP az bz :> (a, b)
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e Syntax:

type Var = String

data Tm = VVar | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm |
| Tm :== Tm |
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for LV
| Fby Tm Tm

e Semantic domains:
data Val d = I Int | B Bool | F (d (Val d) -> Val d)

type Env d = d [(Var, Val d)]

envl :: Int -> Env LV
envd n = envOP n := []
where envOP O = Nil
envOP (n + 1) = envOP n :> []
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e Evaluation:

clas

ev .

ev
_ev

_ev

_ev
_ev

ev
_ev
_ev

_ev

ev ..

s ComonadZip d => ComonadEv d where
Tm -> Env d -> Val d

ComonadEv d => Tm -> Env d -> Val d

(V x) env = unsafelookup x (counit env)

(Lxe)env=F (\d->ev e (cobind (repair . counit) (czip d env)))
where repair (a, g) = (x, a)

(e :@ e’) env = case ev e env of

F £f -> £ (cobind (ev e’) env)

(Nn) env=1In
(e® :+ el) env = case ev e® env of
I n® -> case ev el env of
I nl >I (nl + n2)

TT env = B True
FF env = B False
(Not e) env = case ev e env of
B b ->B (not b)

(If e e® el) env = case ev e env of
Bb ->if b then ev e® env else ev el env
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e Evaluation cont’d:

instance ComonadEv LV where
ev (e® ‘Fby‘ el) env = ev e env ‘fbyLV‘ cobind (ev el) env
ev e env = _ev e env

testLV :: Tm -> Int -> LV (Val LV)
testLV e n = cobind (ev e) (env0® n)

e Examples:
pos = Rec (L "pos" (N ® ‘Fby‘ (V "pos" :+ N 1)))

sums = L "x" (Rec (L "sumx" (V "x" :+#+ (N O ‘Fby‘ V "sumx"))))
diff = L "x" (V "x" :- (NO® ‘Fby* V "x"))
fact = Rec (L "fact" (N 1 ‘Fby‘ (V "fact" :* (pos :+ N 1))))

fibo = Rec (L "fibo" (N ® ‘Fby‘ (V "fibo" :+ (N 1 ‘Fby*‘ V "fibo"))))
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Distributive laws

e Given a comonad (D, ¢ ") and a monad (T, n, —*) on a category C, a
distributive law of D over T is a natural transformation A with
components DTA — TDA subject to four coherence conditions.

A distributive law of D over T defines a category Cp r where
ICp1l=1Cl,Cpr1(A,B) =C(DA,TB), (ildpT)a =140 €4,
toprk=1"0oAgo k" fork: DA — TB, £ : DB — TC (call it the biKleisli
category), with inclusions to it from both the coKleisli category of D
and Kleisli category of T.
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A distributive law for causal partial-stream functions

e The type of partial streams (clocked signals in discrete time) over a
type A is Str(MaybeA).

o (Strict) causal partial-stream functions are representable as biKleisli
arrows of a distributive law of LV over Maybe.

e Distributive laws in Haskell:

class (Comonad d, Monad t) => Dist d t where
dist :: d (t a) >t (d a)

e A distributive law between LV and Maybe:

instance Dist LV Maybe where
dist (az := Nothing) = Nothing
dist (az := Just a) = Just (filter] az := a)
where filter] Nil = Nil
filter] (az :> Nothing) = filter] az
filter] (az :> Just a) = filter] az :> a
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e Interpreting a biKleisli arrow as a partial-stream function:

runlLVM :: (LV a -> Maybe b) -> Stream (Maybe a) -> Stream (Maybe b)
runLVM k (a’ :< as’) = runLVM’ k Nil a’ as’

runLVM’ k az Nothing (a’ :< as’)

= Nothing :< runLVM’ k az a’ as
runLVM’ k az (Just a) (a’ :< as’)
=k (az := a) :< runLVM’ k (az :> a) a’ as’

e The ‘when’ operation from dataflow languages:

whenlLVM :: LV (a, Bool) -> Maybe a
whenLVM (_ := (a, False)) = Nothing
whenLVM (_ := (a, True)) = Just a
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Distributive law semantics of a clocked dataflow language

e Syntax:

type Var = String

data Tm = VVar | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm |
| Tm :== Tm |
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for LV
| Fby Tm Tm
-- specific for Maybe
| Nosig | Merge Tm Tm

e Semantic domains:

data Val d t I Int | BBool | F (d (Val d t) -> t (Val d t))

type Envd t =d [(Var, Val d t)]

env® :: Int -> Env LV Maybe
envd n = envOP n := []
where envOP O = Nil
envOP (n + 1) = envOP n :> []
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e Evaluation:

clas

ev .

ev
_ev

_ev

_ev
_ev

_ev
_ev
_ev

_ev

ev ..

s Dist d t => DistEv d t where
Tm -> Envdt->t (Val d t)

DistEvd t = Tm -> Envd t ->t (Val d t)

(V x) env = return (unsafelookup x (counit env))

(L x e) env = return (F (\ d -> ev e (cobind (repair . counit) (czip d env))))
where repair (a, g) = (x, a) : ¢

(e :@e’) env =ev e env >=\ (F £) >

dist (cobind (ev e’) env) >>= \ d ->

fd

(N n) env = return (I n)

(e® :+ el) env = ev e® env >=\ (I n®) ->
ev el env >=\ (I nl) ->
return (I (n® + nl))

TT env = return (B True )
FF env = return (B False)
(Not e) env = ev e env >= \ (B b) ->
return (B (not b))
(If e e® el) env = ev e env >>=\ (B b) >
if b then ev e0® env else ev el env
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e Evaluation cont’d:

instance DistEv LV Maybe where
ev (e® ‘Fby‘ el) env = ev e env >>= \ a ->
dist (cobind (ev el) env) >>= \ d ->
return (fbyLV a d)
ev Nosig env = error
ev (e® ‘Merge‘ el) env = ev e env ‘handle’ ev el env

testLVM :: Tm -> Int -> LV (Maybe (Val LV Maybe))
testLVM e n = cobind (ev e) (env® n)

e Example:

sieve = Rec (L "sieve" (L "x" (
If (TT ‘Fby‘ FF)
(v "x")
(V "sieve" :@
(If (Vv "x" ‘Mod‘ (first :@ V "x")) :/= N 0) (V "x") Nosig)))))

sieveMain = sieve :@ (pos :+ N 2)
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Conclusions and future work

e A general framework for signal/flow based programming and for
semantics. Based on a well-understood mathematical
construction—comonad—, allowing generalizations from signal/flow
processing to more sophisticated implicit context based paradigms of
programming.

e Allows for modular simultaneous use of multiple notions of a context
via combinations of multiple comonads (e.g., the multiple dimensions
of Multidimensional Lucid) and for combinations of a context and an
effect via combinations of a comonad and a monad (e.g., the partiality
of Lustre/Lucid Synchrone).

e Allows for principled design of higher-order extensions for intensional
and dataflow languages.

e In progress: From discrete time to continuous time, from clock-tick
based to event based programming with signals.
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