The essence of datatlow programming

Tarmo UustALU
Varmo VENE

Teooriapdevad Kokel?, 4.-6.2.2005

THE ESSENCE OF DATAFLOW PROGRAMMING

Motivation

e Following Moggi and Wadler, it is standard in programming and
semantics to analyze various notions of computation with an effect as
monads.

e But there is a need for both finer and more permissive mathematical
abstractions to uniformly describe the numerous function-like
concepts encountered in programming.

e Some proposals: Lawvere theories (Power, Plotkin), Freyd categories
(Power, Robinson).

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

¢ In functional programming, Hughes invented Freyd categories
independently of Power, Robinson under the name of arrow types and
has been promoting them an abstraction especially handy in
programming with signals/flows.

e This has been picked up; there is by now both a library and specialized
syntax for arrows in Haskell, as well as an arrows-based library for
functional reactive programming.

e But what about comonads? They have not found extensive use (some
examples by Brookes and Geva, Kieburtz, but mostly artificial).

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

This talk

e Thesis: Used properly, comonads are exactly the right tool for
programming signal/flow functions, accounting both for general signal
functions and for causal ones (where the output at a given time can
only depend on the input until that time).

e This extends Moggi’s modular approach to language semantics to
languages for implicit context based paradigms such as intensional
programming in Lucid or synchronous dataflow programming in
Lustre/Lucid Synchrone: context relying functions are interpreted as
pure functions via a comonad translation.

For such languages, Moggi-style accounts have not been available thus
far.

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

Outline

e Monads, monads in programming and semantics
e Freyd categories/arrow types and programming with stream functions
e Comonads for programming with stream functions, semantics

e A distributive law for programming with partial-stream functions,
semantics

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

Monads

¢ A monad (in the Kleisli format) on a category C is given by a mapping
T :|C| — |C| together with a |Cl-indexed family n of maps g4 : A - TA
(unit), and an operation —* taking every map k: A — TB in C to a map
k* : TA — TB (extension operation) such that

— foranyk: A —» TB,k* ong =k,
- NA™ = id7y,
— foranyk: A —> TB,{:B — TC, ({* ok)* = {* o k*.
e Any monad (T, n —*) defines a category Ct where |C7| = |C| and
Cr(A,B) =C(A,TB), (id7)4 = na, £ ork = £* ok (Kleisli category) and

an identity-on-objects functor | : C — Ct where Jf = npo f for
f:A—B.

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

e In programming and semantics, monads are used to model notions of

computation with an effect; TA is the type of computations of values of
A.

An function with an effect from A to B is a map A — B in the Kleisli
category, i.e., a map A — TB in the base category.
e Some examples applied in semantics:
- TA = MaybeA = A + 1, error (partiality), TA = A 4 E, exceptions,
- TA = E = A, environment,
— TA = ListA = uX.1 + A X X, non-determinism,
- TA =S5 = AXS, state,
- TA = (A = R) = R, continuations,
- TA = uX.A+ (U = X), interactive input,
- TA = uX.A+VxX = AXListV, interactive output,
- TA = uX.A + FX, the free monad over F,
- TA = vX.A + FX, the free completely iterative monad over F.

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

Monads in Haskell

e The monad class is defined in the Prelude:

class Monad t where
return :: a -> t a
>>=) :::ta->C(@->tb) >1thb

e The error monad:

instance Monad Maybe where

return a = Just a
Just a >=k =k a
Nothing >>= k = Nothing

errorM :: Maybe a
errorM = Nothing

handleM :: Maybe a -> Maybe a -> Maybe a
Nothing ‘handleM‘ d = d
Just a ‘handleM® = Just a

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

e The non-determinism monad:

instance Monad [] where
return a = [a]
[] >>= f = []

(a : as) >=f = f a ++ (as >>=)

deadlockL :: [a]
deadlockL = []

choicel :: [a] -> [a] -> [a]
as® ‘choicelL‘ asl = as® ++ asl

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

Monadic semantics

e Syntax:

type Var = String

data Tm = VVar | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm |
| Tm :== Tm |
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for Maybe
| Error | Tm ‘Handle‘ Tm
-- specific for []
| Deadlock | Tm ‘Choice‘ Tm

e Semantic categories:
data Val t = I Int | B Bool | F (Val t -> t (Val t))

type Env t = [(Var, Val t)]

envl :: Env t
env0 = []

Tarmo UusTtaLu, VARMO VENE

10

THE ESSENCE OF DATAFLOW PROGRAMMING

e Evaluation:

class Monad t => MonadEv t where
ev :: Tm -> Env t -> t (Val t)

ev :: MonadEv t => Tm -> Env t -> t (Val t)
_ev (V x) env = return (unsafelookup x env)
_ev (L xe) env = return (F (\ a > ev e ((x, a) : env)))
_ev (e :@e’) env =ev e env >=\ (F £) >
ev e’ env >>= \ a ->
fa
_ev (N n) env = return (I n)
_ev (e® :+ el) env = ev e® env >>=\ (I n®) ->
ev el env >=\ (I nl) ->
return (I (n® + nl))

ev TT env = return (B True)

_ev FF env = return (B False)

_ev (Not e) env = ev e env >>= \ (B b) >
return (B (not b))

_ev (If e ed el) env = ev e env >=\ (B b) >
if b then ev e® env else ev el env

Tarmo UusTtaLu, VARMO VENE 11

THE ESSENCE OF DATAFLOW PROGRAMMING

e Evaluation cont’d:

instance MonadEv Maybe where
ev Error env = errorM
ev (e® ‘Handle‘ el) env = ev e® env ‘handleM‘ ev el env
ev e env = _ev e env

testM :: Tm -> Maybe (Val Maybe)
testM = ev e env0®

instance MonadEv [] where
ev Deadlock env = deadlockL
ev (e® ‘Choice’ el) env = ev e0® env ‘choicelL’ ev el env
ev e env = _ev e env

testL :: Tm -> [Val []]
testlL = ev e env®

Tarmo UusTtaLu, VARMO VENE

12

THE ESSENCE OF DATAFLOW PROGRAMMING

Freyd categories / arrow types

e Freyd categories are a generalization of Kleisli categories of strong
monads.

e A symmetric premonoidal category is the same as a symmetric
monoidal category except that the tensor is not required not be
bifunctorial, only functorial in each of its two arguments separately. A
map f : A — B of such a category is called central if the two
composites A® C — B® D agree and the two composites
C®A — D®B agree for everymap ¢: C — D.

A Freyd category over a Cartesian category C is a symmetric
premonoidal category K together with an identity-on-objects functor
J : C — K that preserves the symmetric premonoidal structure of C on
the nose and also preserves centrality.

Tarmo UusTtaLu, VARMO VENE 13

THE ESSENCE OF DATAFLOW PROGRAMMING

e Freyd categories a.k.a. arrow types in Haskell (as in Control. Arrow):

class Arrow r where
pure :: (a ->b) ->r ab
(>>>) ::rab->rbc->rac
first :: rab ->r (a, c) (b, ©)

e Kleisli arrows as arrows:

newtype Kleisli t a b = Kleisli (a -> t b)

instance Monad t => Arrow (Kleisli t) where
pure f = Kleisli (return . f)
Kleisli k >>> Kleisli 1 = Kleisli ((>>= 1) . k)
first (Kleisli k) = Kleisli (\ (a, c) ->
k a>=\Db -> return (b, c))

Tarmo UusTtaLu, VARMO VENE

14

THE ESSENCE OF DATAFLOW PROGRAMMING

e The general stream functions arrow type (to model transformers of
signals in discrete time):

data Stream a = a :< Stream a -- coinductive

zipS :: Stream a -> Stream b -> Stream (a, b)
zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs

newtype SF a b = SF (Stream a -> Stream b)

instance Arrow SF where
pure £ = SF (mapS f)
SF k >> SF 1 = SF (1 . k)
first SF k = SF (uncurry zipS . (\ (as, ds) -> k as, ds) . unzipS)

e Delay:

fbySF :: a -> SF a a
fbySF a0 = SF (\ as -> a0 :< as)

Tarmo UusTtaLu, VARMO VENE 15

THE ESSENCE OF DATAFLOW PROGRAMMING

Comonads

e Comonads are the formal dual of monads.

e A comonad on a category C is given by a mapping D : |C| — |C]
together with a |Cl|-indexed family ¢ of maps €4 : DA — A (counit),
and an operation —" taking every map k : DA — B in C to a map
k' : DA — DB (coextension operation) such that

— forany k: DA — B, ¢ okt =k,

.I._.
— &4’ =ldpy,
— forany k: DA — B,{: DB — C, (Co k")t = (T o k.

e Any comonad (D, ¢ —1) defines a category (Cp where |Cp| = |C| and
Cp(A,B) = C(DA,B), (idp)a = €4, Lop k = € o k' (coKleisli category)
and an identity-on-objects functor | : C — Cp where Jf = f o ¢4 for
f:A—B.

Tarmo UusTtaLu, VARMO VENE

16

THE ESSENCE OF DATAFLOW PROGRAMMING

e Comonads should be usable to model notions of value in a context; DA
would be the type of contextually situated values of A.

A context-relying function from A to B would be a map A — B in the
coKleisli category, i.e., a map DA — B in the base category.
e Some examples:
— DA = A X E, the product comonad,
— DA = StrA = vX.A X X, the streams comonad,
- DA = vX.A X FX, the cofree comonad over F,

— DA = uX.A X FA, the cofree recursive comonad over F.

Tarmo UusTtaLu, VARMO VENE 17

THE ESSENCE OF DATAFLOW PROGRAMMING

Comonads in Haskell

e The basic implementation:

class Comonad d where
counit :: d a -> a
cobind :: (da ->b) ->da->db

e The product comonad:

data With e a = a :- e

instance Comonad (With e) where
counit (a :- _) = a
cobind k d@(_ :- e) =k d :- e

e The streams comonad:

data Stream a = a :< Stream a

instance Comonad Stream where
counit (a (< _) = a
cobind k d@(_ :< as) = k d :< cobind k as

-- coinductive

Tarmo UusTtaLu, VARMO VENE

18

THE ESSENCE OF DATAFLOW PROGRAMMING

Comonads for general and causal stream functions

e Streams (signals in discrete time) are naturally isomorphic to functions
from natural numbers: StrA = Nat = A.

e General stream functions StrA — StrB are thus in natural bijection
with maps StrA X Nat — B.

e Hence the values of A in context for general stream functions are
StrPosA = StrA X Nat = LVSA = ListA X A X StrA.

A time point partitions a stream into its past (a list), present (a value)
and future (a stream).

e The values of A in context for causal stream functions are
LVA = ListA x A = uX.A x MaybeX.

This is the cofree recursive comonad over the Maybe functor.

Tarmo UusTtaLu, VARMO VENE 19

THE ESSENCE OF DATAFLOW PROGRAMMING

e Streams and isomorphism of streams to functions from naturals:

data Stream a = a :< Stream a -- coinductive
str2fun :: Stream a -> Int -> a
fun2str :: (Int -> a) -> Stream a

e Streams with a marked position: values in a context for general stream
functions:

data StrPos a = SP (Stream a) Int

instance Comonad StrPos where
counit (SP as i) = str2fun as i
cobind k (SP as i) = SP (fun2str (\ 1’ -> k (SP as 1i’))) 1

runSP :: (StrPos a -> b) -> Stream a -> Stream b
runSP k as = runSP’ k as 0

runSP’ k as 1i = k (SP as 1) :< runSP’ k as (1 + 1)

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

e Delay (“followed by”) operation:

fbySP :: a -> StrPos a -> a
fbySP a (SP as 0) = a
fbySP _ (SP as (i + 1)) = str2fun as i

e Summation:

sumSP :: Num a => StrPos a -> a
sumSP (SP as 0) = str2fun as 0
sumSP (SP as (1 + 1)) = str2fun as (i + 1) + sumSP (SP as i)

e Compression (non-causal!):

compress :: StrPos a -> (a, a)
compress (SP as 1) = (str2fun as (2 * 1), str2fun as (2 * i + 1))

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

e List-value pairs, values in a context for causal stream functions:

data List a = Nil | List a :> a -- 1inductive
data LV a = List a := a

instance Comonad LV where

counit (_ := a) = a
cobind k d@(az := _) = cobindP k az := k d where
cobindP k Nil = Nil

cobindP k (az :> a) = cobindP k az :> k (az := a)

runlLV :: (LV a -> b) -> Stream a -> Stream b
runlLV k (a :< as) = runlLV’ k Nil a as

runlV’ k az a (a’ :< as’)
=k (az := a) :< runLV’ k (az :> a) a’ as’

Tarmo UusTtaLu, VARMO VENE 22

THE ESSENCE OF DATAFLOW PROGRAMMING

e A feedback resolution combinator:

feedback :: (List (a, b) -> a -> b) -> (LV a -> b)
feedback k d = k abz a
where (abz := (a, _))
cobind (pair counit (feedback k)) d

e Feedbacks can be run directly:

runbase :: (List (a, b) -> a -> b) -> Stream a -> Stream b
runbase k (a :< as) = runbase’ k Nil a as

runbase’ k abz a (a’ :< as’)
= b :< runbase’ k (abz :> (a, b)) a’ as’

where b = k abz a

Tarmo UusTtaLu, VARMO VENE

23

THE ESSENCE OF DATAFLOW PROGRAMMING

e Feedbacks can also be composed directly:

compbase :: (List (a, b) -> a -> b)
-> (List ((a, b), ¢) -> (a, b) -> ©)
-> List (a, (b, c)) -> a -> (b,)
compbase k 1 e a

= let
e’ = fmap (\ (a, (b, c©)) -> (a, b)) e
e’’’ = fmap (\ (a, (b, ©)) -> ((a, b), c)) e
b =ke’a
c =1¢e’7 (a, b)
in (b, ©)

Tarmo UusTtaLu, VARMO VENE 24

THE ESSENCE OF DATAFLOW PROGRAMMING

e Delay:
fbyLV :: a -> LV a -> a
fbyLV a® (Nil = _) = ab
fbyLV _ ((_ > a’) :=_) = a’

e Summation directly and with feedback:

sumLV :: Num a => LV a -> a
sumLV (Nil = a) = a
sumLV ((az’ :> a’) := a) = sumLV (az’ := a’) + a

sumbase : Num a => List (a, a) -> a -> a
sumbase Nil a = a
sumbase (_ :> (_, b)) a=Db + a

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

Comonadic semantics of a dataflow language

e Comonads with zipping:

class Comonad d => ComonadZip d where
czip :: da->db ->d (a, b)

instance ComonadZip LV where
czip (az := a) (bz :=b) = czipP az bz := (a, b)
where czipP Nil Nil = Nil
czipP (az :> a) (bz :> b) = czipP az bz :> (a, b)

Tarmo UusTtaLu, VARMO VENE

26

THE ESSENCE OF DATAFLOW PROGRAMMING

e Syntax:

type Var = String

data Tm = VVar | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm |
| Tm :== Tm |
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for LV
| Fby Tm Tm

e Semantic domains:
data Val d = I Int | B Bool | F (d (Val d) -> Val d)

type Env d = d [(Var, Val d)]

envl :: Int -> Env LV
envd n = envOP n := []
where envOP O = Nil
envOP (n + 1) = envOP n :> []

Tarmo UusTtaLu, VARMO VENE

27

THE ESSENCE OF DATAFLOW PROGRAMMING

e Evaluation:

clas

ev .

ev
_ev

_ev

_ev
_ev

ev
_ev
_ev

_ev

ev ..

s ComonadZip d => ComonadEv d where
Tm -> Env d -> Val d

ComonadEv d => Tm -> Env d -> Val d

(V x) env = unsafelookup x (counit env)

(Lxe)env=F (\d->ev e (cobind (repair . counit) (czip d env)))
where repair (a, g) = (x, a)

(e :@ e’) env = case ev e env of

F £f -> £ (cobind (ev e’) env)

(Nn) env=1In
(e® :+ el) env = case ev e® env of
I n® -> case ev el env of
I nl >I (nl + n2)

TT env = B True
FF env = B False
(Not e) env = case ev e env of
B b ->B (not b)

(If e e® el) env = case ev e env of
Bb ->if b then ev e® env else ev el env

Tarmo UusTtaLu, VARMO VENE

THE ESSENCE OF DATAFLOW PROGRAMMING

e Evaluation cont’d:

instance ComonadEv LV where
ev (e® ‘Fby‘ el) env = ev e env ‘fbyLV‘ cobind (ev el) env
ev e env = _ev e env

testLV :: Tm -> Int -> LV (Val LV)
testLV e n = cobind (ev e) (env0® n)

e Examples:
pos = Rec (L "pos" (N ® ‘Fby‘ (V "pos" :+ N 1)))

sums = L "x" (Rec (L "sumx" (V "x" :+#+ (N O ‘Fby‘ V "sumx"))))
diff = L "x" (V "x" :- (NO® ‘Fby* V "x"))
fact = Rec (L "fact" (N 1 ‘Fby‘ (V "fact" :* (pos :+ N 1))))

fibo = Rec (L "fibo" (N ® ‘Fby‘ (V "fibo" :+ (N 1 ‘Fby*‘ V "fibo"))))

Tarmo UusTtaLu, VARMO VENE

29

THE ESSENCE OF DATAFLOW PROGRAMMING

Distributive laws

e Given a comonad (D, ¢ ") and a monad (T, n, —*) on a category C, a
distributive law of D over T is a natural transformation A with
components DTA — TDA subject to four coherence conditions.

A distributive law of D over T defines a category Cp r where
ICp1l=1Cl,Cpr1(A,B) =C(DA,TB), (ildpT)a =140 €4,
toprk=1"0oAgo k" fork: DA — TB, £ : DB — TC (call it the biKleisli
category), with inclusions to it from both the coKleisli category of D
and Kleisli category of T.

Tarmo UusTtaLu, VARMO VENE 30

THE ESSENCE OF DATAFLOW PROGRAMMING

A distributive law for causal partial-stream functions

e The type of partial streams (clocked signals in discrete time) over a
type A is Str(MaybeA).

o (Strict) causal partial-stream functions are representable as biKleisli
arrows of a distributive law of LV over Maybe.

e Distributive laws in Haskell:

class (Comonad d, Monad t) => Dist d t where
dist :: d (t a) >t (d a)

e A distributive law between LV and Maybe:

instance Dist LV Maybe where
dist (az := Nothing) = Nothing
dist (az := Just a) = Just (filter] az := a)
where filter] Nil = Nil
filter] (az :> Nothing) = filter] az
filter] (az :> Just a) = filter] az :> a

Tarmo UusTtaLu, VARMO VENE 31

THE ESSENCE OF DATAFLOW PROGRAMMING

e Interpreting a biKleisli arrow as a partial-stream function:

runlLVM :: (LV a -> Maybe b) -> Stream (Maybe a) -> Stream (Maybe b)
runLVM k (a’ :< as’) = runLVM’ k Nil a’ as’

runLVM’ k az Nothing (a’ :< as’)

= Nothing :< runLVM’ k az a’ as
runLVM’ k az (Just a) (a’ :< as’)
=k (az := a) :< runLVM’ k (az :> a) a’ as’

e The ‘when’ operation from dataflow languages:

whenlLVM :: LV (a, Bool) -> Maybe a
whenLVM (_ := (a, False)) = Nothing
whenLVM (_ := (a, True)) = Just a

Tarmo UusTtaLu, VARMO VENE 32

THE ESSENCE OF DATAFLOW PROGRAMMING

Distributive law semantics of a clocked dataflow language

e Syntax:

type Var = String

data Tm = VVar | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm |
| Tm :== Tm |
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for LV
| Fby Tm Tm
-- specific for Maybe
| Nosig | Merge Tm Tm

e Semantic domains:

data Val d t I Int | BBool | F (d (Val d t) -> t (Val d t))

type Envd t =d [(Var, Val d t)]

env® :: Int -> Env LV Maybe
envd n = envOP n := []
where envOP O = Nil
envOP (n + 1) = envOP n :> []

Tarmo UusTtaLu, VARMO VENE

33

THE ESSENCE OF DATAFLOW PROGRAMMING

e Evaluation:

clas

ev .

ev
_ev

_ev

_ev
_ev

_ev
_ev
_ev

_ev

ev ..

s Dist d t => DistEv d t where
Tm -> Envdt->t (Val d t)

DistEvd t = Tm -> Envd t ->t (Val d t)

(V x) env = return (unsafelookup x (counit env))

(L x e) env = return (F (\ d -> ev e (cobind (repair . counit) (czip d env))))
where repair (a, g) = (x, a) : ¢

(e :@e’) env =ev e env >=\ (F £) >

dist (cobind (ev e’) env) >>= \ d ->

fd

(N n) env = return (I n)

(e® :+ el) env = ev e® env >=\ (I n®) ->
ev el env >=\ (I nl) ->
return (I (n® + nl))

TT env = return (B True)
FF env = return (B False)
(Not e) env = ev e env >= \ (B b) ->
return (B (not b))
(If e e® el) env = ev e env >>=\ (B b) >
if b then ev e0® env else ev el env

Tarmo UusTtaLu, VARMO VENE

34

THE ESSENCE OF DATAFLOW PROGRAMMING

e Evaluation cont’d:

instance DistEv LV Maybe where
ev (e® ‘Fby‘ el) env = ev e env >>= \ a ->
dist (cobind (ev el) env) >>= \ d ->
return (fbyLV a d)
ev Nosig env = error
ev (e® ‘Merge‘ el) env = ev e env ‘handle’ ev el env

testLVM :: Tm -> Int -> LV (Maybe (Val LV Maybe))
testLVM e n = cobind (ev e) (env® n)

e Example:

sieve = Rec (L "sieve" (L "x" (
If (TT ‘Fby‘ FF)
(v "x")
(V "sieve" :@
(If (Vv "x" ‘Mod‘ (first :@ V "x")) :/= N 0) (V "x") Nosig)))))

sieveMain = sieve :@ (pos :+ N 2)

Tarmo UusTtaLu, VARMO VENE

35

THE ESSENCE OF DATAFLOW PROGRAMMING

Conclusions and future work

e A general framework for signal/flow based programming and for
semantics. Based on a well-understood mathematical
construction—comonad—, allowing generalizations from signal/flow
processing to more sophisticated implicit context based paradigms of
programming.

e Allows for modular simultaneous use of multiple notions of a context
via combinations of multiple comonads (e.g., the multiple dimensions
of Multidimensional Lucid) and for combinations of a context and an
effect via combinations of a comonad and a monad (e.g., the partiality
of Lustre/Lucid Synchrone).

e Allows for principled design of higher-order extensions for intensional
and dataflow languages.

e In progress: From discrete time to continuous time, from clock-tick
based to event based programming with signals.

Tarmo UusTtaLu, VARMO VENE 36

