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Names and variables are everywhere. . .

int fib(int n) {
if (n <= 1)
return(1);

else {
int n1, n2;
n1 = fib(n-1); n2 = fib(n-2);
return(n1+n2);

}
}

int main(int ac, char *av[]) {
int n;
n = atoi(av[1]);
printf("Fibonacci(%d) is %d\n", n, fib(n));

}

Many different uses of atomic symbols.
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. . . but with several and different uses

Names are important for handling conceptual complexity

by decomposing a task into named subtasks

by hiding irrelevant details (of code, data, terms, types. . . )

by parametrizing other phrases

. . .

We will call names, variables. . . , atomic terms or atoms.
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Names and variables in programming languages

In programming languages, names and variables are governed by
well-known “laws”, or principles. First and foremost:

The Abstraction principle

The phrases of any semantically meaningful syntactic class may be
named.

Any construct (or better, any meaning) may be named.
Consequence: use different names for different meanings.
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Names and variables in programming languages

The Qualification Principle

Any semantically meaningful syntactic class may admit local
definition.

qualification = abstraction restricted to local scope
Consequence: names have a scope!

The Parameterization Principle

The phrases of any semantically meaningful syntactic class may be
parameters.

parameterization = “λ-abstraction principle”
Consequence: meaning of formal parameters can be bound to that
of actual parameters.
Does this contradict Abstraction Principle?
No, they are just different kinds of names!
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Names and variables in logics

Γ ` A

Γ ` ∀x .A
∀R x not free in Γ

Γ,A[t/x ] ` B

Γ,∀x .A ` B
∀L

Name x = placeholder to be replaced ⇒ similar to formal
parameters in parameterization principle.
Here, the name does not carry any meaning on its own — and
actually, the type x is ranging over may be empty.
But also, consider the role of axioms in proof theory:

EM : A ∨ ¬A

EM is a name for something we assume to exist and to match the
right specification ⇒ similar to definitions in abstraction principle
Names = syntactic device to denote semantic objects.
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π-calculus [Milner et al 1992]: executive summary

Slogan: take names seriously!

The π-calculus is a process calculus (=small language intended to
be a model) for communicating systems where mobility is modeled
through name passing

In the π-calculus we can:

Create new channels (which are names)

Do I/O over channels (synchronous and asynchronous)
including passing channels over channels

Define processes recursively

Fork new processes

We cannot (but we can simulate):

pass processes over channels

define procedures and λ-abstractions
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π-calculus: syntax

Terms are only names a, b, x , y . . . - subject of
communications

Processes P,Q, . . . - components of a system

Processes are defined as follows:

0 the process that does nothing
āb.P the process that outputs b on channel a (and then does P)
a(x).P the process that inputs x on channel a (and then does P{x})
P|Q the process made of subprocesses P and Q running concur-

rently
!P the process that behaves like unboundedly many copies of P
νx .P the process that creates a new channel x (and then does

P{x}) - useful for private interactions

x is bound in a(x).P and νx .P.
Processes are taken up-to α-equivalence.
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π-calculus: operational semantics

Dynamics of the calculus is given in terms of a structural
congruence and a reaction relation. Some rules:

νx .0 ≡ 0 νx .νy .P ≡ νy .νxP

(νx .P)|Q ≡ νx .(P|Q) x 6∈ FN(Q)

āb.P|a(x).Q → P|Q{b/x}
P → Q

P|R → Q|R
P ≡ P ′ P ′ → Q ′ Q ′ ≡ Q

P → Q
P → Q

νx .P → νx .Q
(x fresh)

α-conversion of bound variables can be used to generate fresh
names.
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Example: how a process can learn an hidden name

(νx .āx .P)|a(y).Q ≡ (νx .āx .P|a(y).Q)

→ νx .P|Q{x/y}
What if x is free in Q? Just convert it to something not free in Q:

(νx .āx .P)|a(y).Q ≡ (νz .āz .P{z/x})|a(y).Q

≡ (νz .āz .P{z/x}|a(y).Q)

→ νz .P{z/x}|Q{z/y}
Semantically equivalent to the previous one.

Notice

Restricted names are not like local parameters; instead, they are
bound variables ranging over fresh (i.e., not used) names.

Notice: Q acquires knowledge, as it receives the name previously
private to P ⇒ P and Q now share a secret.
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Derivation: spi-calculus [Abadi and Gordon 1998]

π-calculus extended with “cryptographic” operations

the objects of communications are terms, not only names:

M,N ::= n | 0 | succ(M) | x | {M}N

Names are essential for representing nonces, keys (and
channels). E.g.: νx .ȳ{M}x .

Processes: as before, plus:

case M of 0 : P succ(x) : Q integer case
case M of {x}N in P shared-key decryption

Semantics: shared key decryption

case {M}N of {x}N in P > P{M/x}
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The point so far

Atomic symbols are fundamental tools for representing
abstract notions of knowledge.

Their behaviour may change, but in general they can be
(locally) created and passed around. (Sometimes also unified
or substituted with terms).

It is important to have general and uniform tools and
methodologies for dealing with these aspects.

Three main fields:

Logics for reasoning with and about names and other atomic
symbols
Semantic model constructions for modelling the knowledge
represented by names
Programming languages for writing programs about data with
(bound) names (consider, e.g., a compiler)
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Logics for reasoning with names

Many logics have been introduced as metalogical specification
systems:

a formalism (metalanguage) equipped with an encoding
methodology

a given object system (e.g., λ-calculus, π-calculus, FOL, . . . )
can be encoded in the metalanguage

as a result, we get a logic for reasoning with and about the
object system

(often) implemented in proof assistants/theorem provers

useful for quick implementations/prototyping
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Logics for reasoning with names

Two general approaches:

Try to extend existing logics without changing syntax and
proof systems

Allows to reuse existing implementations and techniques
Modular and extensible
May be not expressive enough

Develop new, special-purpose logics

customizable to specific expressivity issues
Various degrees of “exotic” aspects: in terms, formulas,
judgments, sequents,. . .
Need to (re-)implement specific proof assistants/theorem
provers
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Logics for names: A non-exhaustive list

FOλN [Miller and McDowell 1997]

Nominal Logics [Gabbay and Pitts 1999,. . . , Cheney 2005]

Theory of Contexts [HMS 1999, 2001,. . . ]

Fresh Logic [Gabbay 2003. . . ]

FOλ∇[Miller and Tiu 2003]

They differ in many aspects, in particular for the intended nature
of (bound) symbols.

FOλN HOL/ToC Nominal Log. Fresh Log. FOλ∇

basic logic FOL HOL FOL FOL/HOL FOL
terms λ-calc λ-calc ν / λ-calc ν λ-calc
formulas standard standard И ν ∇
judgments standard standard standard standard σ B A
sequents standard standard std / typed std / typed typed
model IPA tripos FM-sets FM-sets ?
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HOL + Theory of Contexts

HOL/ToC is a higher order logic over simply typed λ-calculus with
constants, extended with axioms.

Maximum reuse, lowest re-implementation overhead.

HOL/ToC(Σ)

Simple Theory of Types for a given system Σ
+ (Classical) Higher Order Logic
+ Theory of Contexts

The language of terms allow to represent faithfully the object
language, taking care of binders as functions.
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HOL + Theory of Contexts

Each syntactic sort is represented by a distinct type

each term constructors is represented by a (typed) constants

Binders are represented by higher-order constructors: they
take functions as arguments. For instance

nu : (Name → Proc) → Proc

in : Name → (Name → Proc) → Proc

νx .x̄y is represented as nu(λx : Name.out(x , y))
Thus, objects of type Name → Proc (i.e., functions) represent
terms with holes, i.e. term contexts.

Freshness is rendered by non-occurrence predicates.
Example: the rule for ν is encoded as

∀x .x 6∈ P(·) ∧ x 6∈ Q(·) ⊃ P(x) → Q(x)

nu(λx .P(x)) → nu(λx .Q(x))
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Axioms of the Theory of Contexts

However not all functions in Name → Proc are suitable (no case
analysis over names is allowed)
And we need to assume something about Name, after all.

Axiomatic approach

Take the needed properties as axioms

Fresh: Fresh : ∀M : A.∃a : Name.a 6∈ M

Extensionality of contexts:

M(x) = N(x)

M = N
x 6∈ FN(M,N)

β-exp : ∀M : A.∀a : Name.∃C : Name → A.C (a) = M ∧ a 6∈ C

Decidability of occurrence: (Not needed in classical logic).

DEC : ∀M ′∀a. a ∈ M ∨ a 6∈ M
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HOL/ToC: pros

Simple

Successfully applied to many nominal calculi: π-calculus,
λ-calculus, Ambients, spi-calculus, . . .

Powerful on propositions: e.g., it allows to derive new
induction principles on the structure of the syntax “up to
α-conversion”

Flexible: not committed to a single meaning of atomic
symbols

Easily implemented in existing proof assistants (e.g., Coq),
without changing anything of the underlying environment
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HOL/ToC: cons

Proposition

The Axiom of Unique Choice (“every functional relation can be
turned into a function”) is inconsistent with the Theory of
Contexts.

Consequences:

Functional language is “poor”: not all functional relations can
be turned into functions ⇒ good for logic programming, not
for functional programming

Cannot be used in logics with AC or AC ! (like, Isabelle/HOL)

Since AC ! holds in any topos, giving a model for HOL with
these axioms is not easy (e.g. Set is not enough!)
(but the theory is consistent: there is a “tripos” model. . . )
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Nominal Logic

NL(Σ)

Simple Theory of Types with special types and constructors
+ First Order Logic with special quantifier
+ Axioms about swapping, freshness. . .

Binders are represented as quotient classes, not as functions.
Special term constructors:

swapping of a and b in M: (a b) ·M,

abstraction of a in M: a.M, of type 〈Name〉τ
Notice that a is not bound in a.M — actually a can be any term.
For instance, for the π-calculus:

Types: Proc , Name, 〈Name〉Proc

Term constructors: in : Name → 〈Name〉Proc → Proc ,
nu : 〈Name〉Proc → Proc . . .

νx .x̄y is represented as nu(x .out(x , y)).
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Nominal Logic: formulas

Formulas: first order logic with a special quantifier Иa:ν.φ.
Intuitive meaning: “φ holds for all/any a”.
Well-formedness of Иa.φ is subject to a freshness condition about
the bound variable:

Σ#a:ν ` φ form

Σ ` Иa:ν.φ form

Thus, the (typing) contexts may contain variables (of names)
subject to freshness informations:

Σ ::= 〈〉 | Σ, x :τ | Σ#a:ν

Σ#a:ν means “a is a variable to be instantiated with names
different from those used in Σ”.
Example: the rule for ν is encoded as

Иa.(P(a) → Q(a))

nu(a.P(a)) → nu(a.Q(a))
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Nominal Logic: axioms. . .

(S1) (a a) · x ≈ x
(S2) (a b) · (a b) · x ≈ x
(S3) (a b) · a ≈ b
(E1) (a b) · c ≈ c
(E2) (a b) · (t u) ≈ ((a b) · t)((a b) · u)
(E3) p(~x) ⊃ p((a b) · ~x)
(E4) (a b) · λx :τ.t ≈ λx :τ.(a b) · t[((a b) · x)/x ]
(F1) a#x ∧ b#x ⊃ (a b) · x ≈ x
(F2) a#b (a:ν, b:ν ′, ν 6= ν ′)
(F3) a#a ⊃ ⊥
(F4) a#b ∨ a ≈ b
(A1) a#y ∧ x ≈ (a b) · y ⊃ 〈a〉x ≈ 〈b〉y
(A2) 〈a〉x ≈ 〈b〉y ⊃ (a ≈ b ∧ x ≈ y) ∨ (a#y ∧ x ≈ (a b) · y)
(A3) ∀y : 〈ν〉τ∃a : ν∃x : τ.y ≈ 〈a〉x
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Nominal Logic:. . . and some special rules

Σ#a:ν : Γ ⇒ φ

Σ : Γ ⇒ φ
Fresh

Σ#a:ν : Γ ⇒ φ

Σ : Γ ⇒ Иa.φ
ИI

Σ : Γ ⇒ Иa.φ Σ#a:ν : Γ, φ⇒ ψ

Σ : Γ ⇒ ψ
ИE

Intersting properties about И:

Иx .¬φ ≡ ¬Иx .φ ∀x .φ ⊃ Иx .φ ⊃ ∃x .φ

24 / 37



Names, variables... Logics Models Conclusions

Nominal Logic: pro and cons

Pros:

First order logic

Good proof theory (enjoys cut elimination, . . . )

Validity is decidable

Model based on (non-standard) set theory

Consistent with AC! (but not AC) ⇒ expressive functional
language (⇒ basis for languages as FreshML and CαML.)

Cons:

“Exotic” quantifier and term constructors (may be confusing
at first)

Typing context with freshness informations

Not easily implemented (must change existing systems to
accomodate permutation axioms and new quantifier)
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The point about Logics

We start having quite several logics for reasoning explicitly
with names and binders.

But none of them is fully satisfactory.

And no general methodology for developing new logics for
different notions of names, has clearly emerged yet.
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Models of varying knowledge

Names and variables represent knowledge which may change.
Changes on knowledge must be reflected coherently on data: e.g,
unification of variables:

x , y ` (x y)
{x/y}−→ x ` (x x)

Functor categories

Take an index category whose object represent degree of
information, and stratify your basic datatypes (e.g. sets, cpo’s,. . . )
and proposition according to this structure.
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Some recurrent index categories (others are possible)

F
finite sets and functions between them. Given a set n, we can

add more symbols w : n → n + 1 (weakening)

permute symbols p : n → n (swapping)

unify symbols c : n + 1 → n (contraction)

These are the laws of standard variables ⇒ F is good for variables

I
Finite sets and injective functions only. We still can add and swap
symbols, but we cannot contract anymore ⇒ I is good for names
like in π-calculus, or locations

P
Finite sets and bijective functions. We can only swap symbols
⇒ P is good for linear variables.
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Example: Presheaves over F

Structure of SetF: there is:

A presheaf of variables Var ∈ SetF, Var = y(1). The action
on objects is Var(n) = n: the set of allocated variables.

Products and coproducts, which are computed pointwise; the
terminal object is the constant functor K1 = y(0): K1(n) = 1.
Exponential and finite powerset functors also.

A dynamic allocation functor δ : SetF → SetF: given
A : F → Set, it is δ(A)n = An+1.

Proposition

( )Var ∼= δ, and hence × Var a δ.

A similar situation holds for I,. . .
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Syntax with variable binders as initial algebras

Using these constructors, we can define endofunctors over SetF.
For instance, for the π-calculus:

Σπ(A) =

0︷︸︸︷
1 +

P|Q︷ ︸︸ ︷
A× A+

x̄y .P︷ ︸︸ ︷
Var × Var × A+

x(y).P︷ ︸︸ ︷
Var × δA+

νx .P︷︸︸︷
δA

Σπ(A)n = 1 + An + An × An + n × n × A + n × An+1

This functor has an initial algebra,

Proc ∼= Σπ(Proc)

which corresponds exactly to the syntax of π-calculus.
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Other kind of atomic symbols

In SetI,SetP we can do pretty the same constructions. In
particular, SetI is used for semantics of names, locations, etc.
Operational semantics of π-calculus proceses can be rendered
as coalgebras in SetI of the “behaviour” functor:

BP , ℘f (

input︷ ︸︸ ︷
N × PN +

output︷ ︸︸ ︷
N × N × P +

bound output︷ ︸︸ ︷
N × δP +

τ︷︸︸︷
P )

(BP)n = ℘f (n × (Pn)
n × Pn+1 + n × n × Pn + n × Pn+1 + Pn).

Can be generalized further, with index categories which allow
to deal with different kinds of binders/variables at once.
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The point about models

We have good techniques to build models for varying knowledge.
But, what these models are useful for?

For proving soundness of logical systems

HOL/ToC has a model using both SetF (for representing
syntax with variables) and SetI (for meaning of names);

Nominal Logic has a model in the full subcategory of SetI of
pullback preserving functors (the Schanuel topos, or FM-sets)

For justifying and inspire new principles

case analysis, pattern matching with bound variables (useful
for new programming languages like Cαml and FreshML)

induction and recursion over syntax with binders (by initiality).

general forms of substitutions (nice cat theory there)

bisimulation principles (by finality).. . .
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Conclusions

The situation

Names, variables are strong devices to represent abstract
notions of knowledge, used in many contexts: logics,
programming languages, mobility calculi, security. . .

It is important to have strong tools for reasoning and
programming with atomic terms.

But we are on the right way (maybe)

We start having some good logical systems (for some specific
notions of atomic terms), but no general methodology has
emerged yet.

Construction of suitable models is quite streamlined (cf.
[Power Tanaka 2003-05])

New (extensions of) programming languages are on the way
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FOλ∇ [Miller&Tiu, LICS 2003]

Motivated by proof theoretical arguments, rather than semantics.

FOλ∇(Σ)

Simple Theory of Types without special types and constructors
+ First Order Logic with special quantifier
+ Special proof system

Binders are represented as functions, as in HOL/ToC.
But names which are intended to be “fresh” are introduced by a
special quantifier ∇x .φ.
Intuitive meaning: “φ holds uniformly over x”
For instance, for the π-calculus:

νx .x̄y is represented as nu(λx .out(x , y)).
The rule for ν is rendered as

∇x .(P → Q)

ν(λx .P) → ν(λx .Q)
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FOλ∇: syntax

Types: usual simple types: τ ::= o | γ | τ1 → τ2

Terms: usual simply typed λ-calculus: Σ ` t : τ

Object-level datatypes can be represented by adding types and
constructors (even higher-order)

(Basic) Formulas: standard FOL, plus the special quantifier
∇γx .A

Generic Judgments:

A,B ::=

σ︷ ︸︸ ︷
(x1 : τ1, . . . , xn : τn) BB

Think of x1, . . . , xn as locally scoped constants.
Local signature cannot be weakened nor contracted!
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FOλ∇: Proof system (some rules)

Propositional connectives are “stratified” by local signatures:

Σ : Γ, σ B A ⇒ C
Σ : Γ, σ B A ∧ B ⇒ C

∧L1
Σ : Γ ⇒ σ B A Σ : Γ ⇒ σ B B

Σ : Γ ⇒ σ B A ∧ B
∧R

∇ internalizes local signatures into formulas

Σ : Γ, σ B∇γx .B ⇒ C
Σ : Γ, σ, x :γ B B ⇒ C

∇L Σ : Γ ⇒ σ, x :γ B B

Σ : Γ ⇒ σ B∇γx .B
∇R

Compare with quantifiers rules:

Σ, h : |σ| → γ : Γ ⇒ σ B B[(h σ)/x ]

Σ : Γ ⇒ σ B ∀γx .B
∀R

Σ, σ ` t : γ Σ : σ B B[t/x ] ⇒ C
Σ : σ B ∀γx .B ⇒ C

∀L
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FOλ∇: pros and cons

Pros:

First order logic

Good proof theory (enjoys cut elimination, . . . )

Validity is decidable

Cons:

Not easily implemented (must modify existing systems to
accomodate local signatures)

“Exotic” quantifier and term constructors (may be confusing
at first)

Meaning of local symbols different than “fresh names”. In
fact, ∇ is self-dual (like И), but

∀x .φ 6⊃ ∇x .φ 6⊃ ∃x .φ

Model: unknown
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