
1

Fractional Semantics

Härmel Nestra

Institute of Computer Science

University of Tartu

e-mail:harmel.nestra@ut.ee

2

Outline� Kinds of semantics generally� Motivation of using non-standard semantics: program slicing� Old solution: transfinite semantics� New solution: fractional semantics� Conclusion

1 Semantics generally 3

Semantics generally

1 Semantics generally 4

Essence

Semantics of a programming language gives a meaning to every cor-
rect syntactic object of the language.



1 Semantics generally 5

Trace semantics

Trace semantics is a semantics in which the meaning of a pro-
gram/statement/declaration is an execution trace depending on the val-
ues of some initial parameters.

– Sets of possible execution traces in the case of non-deterministic
semantics.

1 Semantics generally 6

Standard semantics

Standard semantics is a semantics in which the meaning of syn-
tactic objects closely reflects the corresponding real world processes
desirably occurring in the implementations of the language.

– The level of abstraction may vary.

– In standard trace semantics, components of traces are normally
indexed with natural numbers.

1 Semantics generally 7

Strict vs lazy semantics� In strict semantics, executing an erroneous part of code leads to
the same error as when executing this part separately.� Lazy semantics has facilities to overcome parts of code producing
an error when executed separately.

2 Program slicing 8

Program slicing



2 Program slicing 9

An example

sum := 0;

prod := 1;

i := 0;

while i < n do (

i := i + 1;

sum := sum + i;

prod := prod * i); �! sum := 0;

i := 0;

while i < n do (

i := i + 1;

sum := sum + i;);

Criterion:f(";sum)g, where" denotes the end point.

2 Program slicing 10

An attempt to define

LetP be a program andX the set of all variables in it.

A slicing criterion is a setC � V (
fgP )� X .

A slice of P w.r.t. C is any programQ where

– all statements occur also inP in the same order,

– for every(p; Z) 2 C, programQ computes the same sequence
of values as programP for program pointp and variableZ.

2 Program slicing 11

Semantic anomaly

If the original program loops then we might have slices whichexecute
the program points in the criterion more times than the original pro-
gram.

For example, for criterionf("; fxg)g where" is the end vertex, we get

a := 1;
x := 0

�!
x := 0

while true do ;
x := 0

�!
x := 0

So-calledsemantic anomaly.

2 Program slicing 12

Observations� The definition refers to a trace semantics. . .� Implicitly, the standard semantics was assumed. . .� Using a lazier non-standard semantics would help!



3 Transfinite semantics 13

Transfinite semantics

3 Transfinite semantics 14

Essence

Transfinite semantics is a semantics according to which computa-
tion may continue after an infinite number of steps from some limit
state determined somehow by the infinite computation performed.

3 Transfinite semantics 15

Traces

In transfinite trace semantics, the execution traces are transfinite se-
quences.

– The states in the transfinite list are normally indexed with ordinal
numbers.s0; s1; s2; : : : : : : s!; s!+1; : : : s!�2; s!�2+1; : : : : : : s!2 ; s!2+1; : : :

– The body of every loop is repeated at most! times during one
execution.

3 Transfinite semantics 16

The old example

while true do ;

x := 0

�!

x := 0

In transfinite semantics, the semantic anomaly does not arise.



3 Transfinite semantics 17

Infinitely deep recursion

Consider declaration

proc p() is call p():

Where to jump from the infinite black hole?

3 Transfinite semantics 18

Observations� It would be natural to unload infinitely deep recursion levelby level
starting from infinity. . .� Every part of a transfinite computation must have a first element. . .� We need a more general kind of semantics!

4 Fractional semantics 19

Fractional semantics

4 Fractional semantics 20

Essence

Fractional semantics is a trace semantics where trace components
correspond to rational numbers.

– Transfinite trace semantics can be expressed as fractional.

– Rational numbers enable also infinite decreasing sequences.

– Intervals of rationals are statically associated with codefrag-
ments.



4 Fractional semantics 21

Example: assignments and composition

The execution trace of

z := x ; (x := y ; y := z)

at state (x 7! 1;y 7! 2;z 7! 0)

is0 7! h(x 7! 1;y 7! 2;z 7! 0) j [z := x ; (x := y ; y := z)℄i;12 7! h(x 7! 1;y 7! 2;z 7! 1) j [x := y ; y := z℄i;34 7! h(x 7! 2;y 7! 2;z 7! 1) j [y := z℄i;1 7! h(x 7! 2;y 7! 1;z 7! 1) j ["℄i:

4 Fractional semantics 22

Example: loop

If the second assignment is replaced withW = while z > 0 do z := z - 1

then, on the same initial state, the execution trace is as follows:0 7! h(x 7! 1;y 7! 2;z 7! 0) j [z := x ; (W ; y := z)℄i;12 7! h(x 7! 1;y 7! 2;z 7! 1) j [W ; y := z℄i;58 7! h(x 7! 1;y 7! 2;z 7! 1) j [(z := z - 1 ; W ) ; y := z℄i;1116 7! h(x 7! 1;y 7! 2;z 7! 0) j [W ; y := z℄i;34 7! h(x 7! 1;y 7! 2;z 7! 0) j [y := z℄i;1 7! h(x 7! 1;y 7! 0;z 7! 0) j ["℄i:

4 Fractional semantics 23

Comments� Placing of runs of other parts of the code on the trace remained
unchanged.� This would be the case even if the initial state was changed.� Accommodating transfinite traces goes as easily.

– Every countable set of ordinals can be order-preservingly
mapped into any non-trivial interval of rationals.



4 Fractional semantics 24

Examples: infinite loops� The components of the execution trace of

while true do "

are numbered by ordinals0; 1; 2; 3; : : : andw in transfinite semantics
and by0; 12 ; 34 ; 78 ; : : : and1 in lazy fractional semantics.� The components of double infinite loop

while true do while true do "

are indexed by ordinals from0 to w2 in transfinite semantics and as
shown below in lazy fractional semantics.0 1

4 Fractional semantics 25

Example: simple infinite recursion

Define procedurep by declaration

proc p() is call p():
Its lazy fractional semantics results in the following domain construc-
tion process and final domain:0 1

– Two infinite sequences — one ascending and another descending
— are both converging to13 .

4 Fractional semantics 26

Example: a more complicated recursion

Define procedureq by declaration

proc q() is (call q() ; call q())

Its lazy fractional semantics results in the following domain construc-
tion process:0 1



4 Fractional semantics 27

Comments� Each step adds twice more points than the previous since the number
of calls doubles every level.� The fixpoint domain forms a fractal structure.

– A rational number between0 and1 belongs to it iff its octal
representation is finite and each its digit after octal pointis
either1 or 3 except for the last one which can be also2 or 4.

– The set of all possible limits of converging sequences of ratio-
nals in this set is uncountable.

4 Fractional semantics 28

Lazy fractional semantics

It is partially possible to compute the lazy fractional semantics in lazy
functional language Haskell.

– The definition of the semantics in Haskell directly follows the
mathematical specification.� No tricks!

5 Conclusion 29

Conclusion



5 Conclusion 30

Conclusion� Fractional semantics. . .

– provides a natural framework for accommodating transfinite
executions;

– removes the principal obstacle of handling recursion using
transfinite semantics;

– shows that transfinite computations in the case of while-loop
are analogues to fractal computations in the case of recursion;

– associates parts of code statically with index intervals.� However, the work in the case of recursion is still in progress.

– Currently, I do not know how to define lazy fractional seman-
tics for some important cases.


