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Essence

Semantics of a programming language gives a meaning to every cor-
rect syntactic object of the language.
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Trace semantics

Trace semantics is a semantics in which the meaning of a pro-
gram/statement/declaration is an execution trace depending on the val-
ues of some initial parameters.

– Sets of possible execution traces in the case of non-deterministic
semantics.
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Standard semantics

Standard semantics is a semantics in which the meaning of syn-
tactic objects closely reflects the corresponding real world processes
desirably occurring in the implementations of the language.

– The level of abstraction may vary.

– In standard trace semantics, components of traces are normally
indexed with natural numbers.
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Strict vs lazy semantics� In strict semantics, executing an erroneous part of code leads to
the same error as when executing this part separately.� Lazy semantics has facilities to overcome parts of code producing
an error when executed separately.
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Program slicing
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An example

sum := 0;

prod := 1;

i := 0;

while i < n do (

i := i + 1;

sum := sum + i;

prod := prod * i); �! sum := 0;

i := 0;

while i < n do (

i := i + 1;

sum := sum + i;);

Criterion:f(";sum)g, where" denotes the end point.
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An attempt to define

LetP be a program andX the set of all variables in it.

A slicing criterion is a setC � V (
fgP )� X .

A slice of P w.r.t. C is any programQ where

– all statements occur also inP in the same order,

– for every(p; Z) 2 C, programQ computes the same sequence
of values as programP for program pointp and variableZ.
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Semantic anomaly

If the original program loops then we might have slices whichexecute
the program points in the criterion more times than the original pro-
gram.

For example, for criterionf("; fxg)g where" is the end vertex, we get

a := 1;
x := 0

�!
x := 0

while true do ;
x := 0

�!
x := 0

So-calledsemantic anomaly.
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Observations� The definition refers to a trace semantics. . .� Implicitly, the standard semantics was assumed. . .� Using a lazier non-standard semantics would help!
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Transfinite semantics
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Essence

Transfinite semantics is a semantics according to which computa-
tion may continue after an infinite number of steps from some limit
state determined somehow by the infinite computation performed.
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Traces

In transfinite trace semantics, the execution traces are transfinite se-
quences.

– The states in the transfinite list are normally indexed with ordinal
numbers.s0; s1; s2; : : : : : : s!; s!+1; : : : s!�2; s!�2+1; : : : : : : s!2 ; s!2+1; : : :

– The body of every loop is repeated at most! times during one
execution.
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The old example

while true do ;

x := 0

�!

x := 0

In transfinite semantics, the semantic anomaly does not arise.
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Infinitely deep recursion

Consider declaration

proc p() is call p():

Where to jump from the infinite black hole?

3 Transfinite semantics 18

Observations� It would be natural to unload infinitely deep recursion levelby level
starting from infinity. . .� Every part of a transfinite computation must have a first element. . .� We need a more general kind of semantics!
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Fractional semantics
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Essence

Fractional semantics is a trace semantics where trace components
correspond to rational numbers.

– Transfinite trace semantics can be expressed as fractional.

– Rational numbers enable also infinite decreasing sequences.

– Intervals of rationals are statically associated with codefrag-
ments.
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Example: assignments and composition

The execution trace of

z := x ; (x := y ; y := z)

at state (x 7! 1;y 7! 2;z 7! 0)

is0 7! h(x 7! 1;y 7! 2;z 7! 0) j [z := x ; (x := y ; y := z)℄i;12 7! h(x 7! 1;y 7! 2;z 7! 1) j [x := y ; y := z℄i;34 7! h(x 7! 2;y 7! 2;z 7! 1) j [y := z℄i;1 7! h(x 7! 2;y 7! 1;z 7! 1) j ["℄i:
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Example: loop

If the second assignment is replaced withW = while z > 0 do z := z - 1

then, on the same initial state, the execution trace is as follows:0 7! h(x 7! 1;y 7! 2;z 7! 0) j [z := x ; (W ; y := z)℄i;12 7! h(x 7! 1;y 7! 2;z 7! 1) j [W ; y := z℄i;58 7! h(x 7! 1;y 7! 2;z 7! 1) j [(z := z - 1 ; W ) ; y := z℄i;1116 7! h(x 7! 1;y 7! 2;z 7! 0) j [W ; y := z℄i;34 7! h(x 7! 1;y 7! 2;z 7! 0) j [y := z℄i;1 7! h(x 7! 1;y 7! 0;z 7! 0) j ["℄i:
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Comments� Placing of runs of other parts of the code on the trace remained
unchanged.� This would be the case even if the initial state was changed.� Accommodating transfinite traces goes as easily.

– Every countable set of ordinals can be order-preservingly
mapped into any non-trivial interval of rationals.



4 Fractional semantics 24

Examples: infinite loops� The components of the execution trace of

while true do "

are numbered by ordinals0; 1; 2; 3; : : : andw in transfinite semantics
and by0; 12 ; 34 ; 78 ; : : : and1 in lazy fractional semantics.� The components of double infinite loop

while true do while true do "

are indexed by ordinals from0 to w2 in transfinite semantics and as
shown below in lazy fractional semantics.0 1
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Example: simple infinite recursion

Define procedurep by declaration

proc p() is call p():
Its lazy fractional semantics results in the following domain construc-
tion process and final domain:0 1

– Two infinite sequences — one ascending and another descending
— are both converging to13 .
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Example: a more complicated recursion

Define procedureq by declaration

proc q() is (call q() ; call q())

Its lazy fractional semantics results in the following domain construc-
tion process:0 1
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Comments� Each step adds twice more points than the previous since the number
of calls doubles every level.� The fixpoint domain forms a fractal structure.

– A rational number between0 and1 belongs to it iff its octal
representation is finite and each its digit after octal pointis
either1 or 3 except for the last one which can be also2 or 4.

– The set of all possible limits of converging sequences of ratio-
nals in this set is uncountable.
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Lazy fractional semantics

It is partially possible to compute the lazy fractional semantics in lazy
functional language Haskell.

– The definition of the semantics in Haskell directly follows the
mathematical specification.� No tricks!
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Conclusion
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Conclusion� Fractional semantics. . .

– provides a natural framework for accommodating transfinite
executions;

– removes the principal obstacle of handling recursion using
transfinite semantics;

– shows that transfinite computations in the case of while-loop
are analogues to fractal computations in the case of recursion;

– associates parts of code statically with index intervals.� However, the work in the case of recursion is still in progress.

– Currently, I do not know how to define lazy fractional seman-
tics for some important cases.


