1 1 Semantics generally 3

Fractional Semantics

Harmel Nestra Semantics generally

Institute of Computer Science
University of Tartu

e-mail:har nel . nestra@it . ee

2 1 Semantics generally 4

Outline

¢ Kinds of semantics generally .
ssence

Motivation of using non-standard semantics: programrgjjci
_ - _ Semantics of a programming language gives a meaning to every [cor-
Old solution: transfinite semantics rect syntactic object of the language.

New solution: fractional semantics

Conclusion

1 Semantics generally 5

Trace semantics

Trace semantics is a semantics in which the meaning of a pfo-

gram/statement/declaration is an execution trace depgioah the val-
ues of some initial parameters.

— Sets of possible execution traces in the case of non-detestii
semantics.

1 Semantics generally 6

Standard semantics

Standard semantics is a semantics in which the meaning of sy
tactic objects closely reflects the corresponding real dvprbcesses
desirably occurring in the implementations of the language

— The level of abstraction may vary.

— In standard trace semantics, components of traces are Ir
indexed with natural numbers.

n-

ma

1 Semantics generally 7

Strict vs lazy semantics

e In strict semantics, executing an erroneous part of code lead
the same error as when executing this part separately.

e Lazy semantics has facilities to overcome parts of code produc]
an error when executed separately.

ing

2 Program slicing 8

Program slicing

2 Program slicing 9

An example

sum: = 0; sum: = 0;
prod : = 1;

i = 0; i = 0;

while i < n do (R while i < n do (
=0+ 1 =0 0+ 1;
sum:= sum+ i; sum:= sum+ i;
prod := prod * i

););

Criterion: {(¢, sum }, wheres denotes the end point.

2 Program slicing 10

An attempt to define

Let PP be a program and’ the set of all variables in it.
A slicing criterion is a setC C V(cfg P) x X.

A slice of P w.r.t. C'is any progrant) where

— all statements occur also i in the same order,

— for every(p. Z) € C, program() computes the same sequer
of values as progran® for program poinip and variableZ.

ce

2 Program slicing 11

Semantic anomaly

If the original program loops then we might have slices wlagbcute
the program points in the criterion more times than the onabpro-
gram.

For example, for criteriod (e, {x })} wherez is the end vertex, we ge

ot

a .= 1, N

x:=0 X :=0

while true do ; R

x:=0 X :=0
So-calledsemantic anomaly.
2 Program slicing 12

Observations

e The definition refers to a trace semantics. ..
e Implicitly, the standard semantics was assumed. ..

e Using a lazier non-standard semantics would help!

13

3 Transfinite semantics

Transfinite semantics

14

3 Transfinite semantics

Essence

Transfinite semantics is a semantics according to which compu
tion may continue after an infinite number of steps from soimé |
state determined somehow by the infinite computation pedol:

ta-

15

3 Transfinite semantics

Traces

In transfinite trace semantics, the execution traces ansfirdite se-
guences.

— The states in the transfinite list are normally indexed withiraal
numbers.

505515525+« Sws Swals -+ -Sw2ySw24T1y-vn-- Sw2, Sw241 - - -

— The body of every loop is repeated at mastimes during one
execution.

16

3 Transfinite semantics

The old example

while true do ; R
x =0 X =0

In transfinite semantics, the semantic anomaly does n&.aris

3 Transfinite semantics 17

4 Fractional semantics 19

Infinitely deep recursion
Consider declaration

proc p() is call p().

Where to jump from the infinite black hole?

Fractional semantics

3 Transfinite semantics 18

4 Fractional semantics 20

Observations

¢ It would be natural to unload infinitely deep recursion lewelevel
starting from infinity. . .

e Every part of a transfinite computation must have a first efgme

e We need a more general kind of semantics!

Essence

Fractional semantics is a trace semantics where trace compon
correspond to rational numbers.

— Transfinite trace semantics can be expressed as fractional.
— Rational numbers enable also infinite decreasing sequence

— Intervals of rationals are statically associated with cérdg-
ments.

eNts

4 Fractional semantics

21

Example: assignments and composition

The execution trace of

4 Fractional semantics 23

Comments

e Placing of runs of other parts of the code on the trace rerddine

unchanged.
e This would be the case even if the initial state was changed.
e Accommodating transfinite traces goes as easily.

— Every countable set of ordinals can be order-preservi
mapped into any non-trivial interval of rationals.

ngly

at state
(X—=1,y—22~0)
is
0= {(X—1y—2z2=0)|[z :=x;(X :=y;y 1= 2)])
te (X ly=2z=1) X = y;y = z]),
S (xm2y—=2z2-1) |y = z)),
Il {((x—=2,y—=1,z—1)][]).
4 Fractional semantics 22
Example: loop
If the second assignment is replaced with
W=while z >0do z :=z -1

then, on the same initial state, the execution trace is &sfsl

0> {(x—=1Ly—2z—0)]z :=x;(W:y
e (xmlLy—=2z-1) | [Wy 1= z]),
2 (x—=ly—2z-1)|[(z :=

T ((x—=1lLy—=22z2-0)|[W:y = z]),
P (x=ly—=2,z20)]y = z)),

I = {(X—1,y—02z—0)|[]).

4 Fractional semantics 24

Examples: infinite loops

e The components of the execution trace of
while true do ¢

are numbered by ordinals1, 2, 3, . .. andw in transfinite semantic
and by0, 1,3 7 and1 in lazy fractional semantics.

274080
e The components of double infinite loop
while true do while true do ¢

are indexed by ordinals froto »? in transfinite semantics and i
shown below in lazy fractional semantics.

0

I §F -

AS

4 Fractional semantics 25

Example: simple infinite recursion
Define procedure by declaration

proc p() is call p().

Its lazy fractional semantics results in the following demeonstruc-
tion process and final domain:

— Two infinite sequences — one ascending and another desce
— are both converging t§).

ndin

4 Fractional semantics 26

Example: a more complicated recursion
Define procedureg by declaration

proc q() is (call q();call q())

Its lazy fractional semantics results in the following deémeonstruc-
tion process:

4 Fractional semantics 27

Comments

e Each step adds twice more points than the previous sinceithber
of calls doubles every level.

e The fixpoint domain forms a fractal structure.

— A rational number betweet and 1 belongs to it iff its octal
representation is finite and each its digit after octal p@n
either1 or 3 except for the last one which can be alsor 4.

—

— The set of all possible limits of converging sequences od+at
nals in this set is uncountable.

4 Fractional semantics 28

Lazy fractional semantics

It is partially possible to compute the lazy fractional seties in lazy
functional language Haskell.

— The definition of the semantics in Haskell directly followet
mathematical specification.

* No tricks!

5 Conclusion

29

Conclusion

5 Conclusion 30

Conclusion

e Fractional semantics. ..
— provides a natural framework for accommodating transfi
executions;

— removes the principal obstacle of handling recursion us
transfinite semantics;

— shows that transfinite computations in the case of whilg
are analogues to fractal computations in the case of recyr

— associates parts of code statically with index intervals.
e However, the work in the case of recursion is still in progres

— Currently, 1 do not know how to define lazy fractional sem
tics for some important cases.

nite

5ing

an-

