
Modelling Cyclic Structures
by Nested Datatypes

Varmo Vene

Teooriapäevad, Koke, 3-5 February 2006

Motivation
Algebraic datatypes provide a nice way to represent
tree-like structures.
Lazy languages, eg. Haskell, allow to build also cyclic
structures.
cycle = 1 : 2 : cycle

1 2

Allows to represent complete infinite structures in finite
memory

Motivation
However, there is no support for manipulating cyclic
structures
Eg. mapping over cyclic list gives an infinite list
map (+1) cycle ==> [2,3,2,3,2,3,2,3,....

In fact, there is no way to distinguish cyclic structures
from infinite ones
Our aim is to represent cyclic structures inductively, hence
to separate them from infinite (coinductive) structures.
This gives the ability to explicitly manipulate cyclic
structures either directly or using generic operations like
fold, etc.

Cyclic Lists – 1st attempt
Sheard, Fegaras 1996 (??)
Definition:
data CList = Nil

| Cons Int CList
| Rec (CList -> CList)

with an extra axiom
Rec f = f (Rec f)

Examples:
clist1 = Rec (λ xs -> Cons 1 xs)
clist2 = Rec (λ xs -> Cons 1 (Cons 2 xs))
clist3 = Cons 1 (Rec (λ xs -> Cons 2 xs))

Doesn’t have unique representation
Requires higher-order recursive datatypes

Cyclic Lists – 2nd attempt
Definition:
data CList = Nil

| Cons Int CList
| Var Int

Examples:
clist1 = Cons 1 (Var 1)
clist2 = Cons 1 (Cons 2 (Var 1))
clist3 = Cons 1 (Cons 2 (Var 2))

Can have pointers outside of the list.
This can be avoided by using dependent types:
data CList (n :: Int) = Nil

| Cons Int (CList (n+1))
| Var 1 ... Var n

Cyclic Lists as Nested Datatype
Definition:

data CList a = Nil
| Cons Int (CList (Maybe a))
| Var a

Var a represents a backward pointer to an element in a
list.
Nothing is the pointer to the first element of a cyclic list.
Just Nothing is for the second element, and
Just (Just Nothing) is for the third element, etc.
The complete cyclic list has type CList Empty, where
Empty is a type without constructors.

Examples

1 2

Cons 1 (Cons 2 (Var Nothing))

1 2 3

Cons 1 (Cons 2 (Cons 3 (Var (Just Nothing))))

1 2 3

Cons 1 (Cons 2 (Cons 3 Nil))

”Folding” a cycle
”Standard” fold
fold :: (forall a. a -> f a)

-> (forall a . f a)
-> (forall a. Int -> f (Maybe a) -> f a)
-> CList a -> f a

fold v n c (Var x) = v x
fold v n c Nil = n
fold v n c (Cons x l) = c x (fold v n c l)

Example:
newtype K a = K Int
summ = fold (λ x -> K 0) (K 0) (λ i (K j) -> K (i+j))

In genereal, not very easy to use.
Generalized folds for nested data types (Bird, Patterson)

Tail of a Cyclic List

1 2 3

2 3 1

Tail of a Cyclic List

1 2 3

2 3

Coalgebraic structure on Cyclic Lists

chead :: CList Empty -> Int
chead (Cons x l) = x

ctail :: CList Empty -> CList Empty
ctail (Cons x l) = csnoc x l

csnoc :: Int -> CList (Maybe a) -> CList a
csnoc h Nil = Nil
csnoc h (Var Nothing) = Cons h (Var Nothing)
csnoc h (Var (Just x)) = Var x
csnoc h (Cons x l) = Cons x (csnoc h l)

unwind :: CList Empty -> [Int]
unwind Nil = []
unwind l = chead l : unwind (ctail l)

Cyclic Binary Trees
Definition:

data CTree a = Leaf
| Node Int (CTree (Maybe a))

(CTree (Maybe a))
| VarT a

Nodes are ”numbered” top-down.
All nodes on the same level have the same ”number”.
Has only backpointers to form cycles.
Pointers to other directions forbidden, hence no sharing.

Example

1

2 4

3 65

Node 1 (Node 2 (Node 3 (VarT Nothing) Leaf)
Leaf)

(Node 4 (Node 5 Leaf Leaf)
(Node 6 Leaf Leaf))

Cyclic children

2

3

1

4

65

Coalgebra structure on Cyclic Binary Trees

sonL :: CTree a -> CTree a
sonL (Node x t1 t2) = tsnocL x t2 t1

tsnocL :: Int -> CTree (Maybe a)
-> CTree (Maybe a) -> CTree a

tsnocL x t (VarT Nothing) = Node x (VarT Nothing) t
tsnocL x t (VarT (Just n)) = VarT n
tsnocL x t Leaf = Leaf
tsnocL x t (Node y t1 t2) = Node y (tsnocL x t’ t1)

(tsnocL x t’ t2)
where t’ = relabel t

relabel :: CTree a -> CTree (Maybe a)
relabel (VarT x) = VarT (Just x)
relabel Leaf = Leaf
relabel (Node x t1 t2) = Node x (relabel t1) (relabel t2)

Conclusions
Generic framework to model cyclic structures.
Backward pointers — no sharing, just cycles.
Type system guarantees the safety of pointers.
To do: Work out all the details . . .
New examples: zip, reverse, etc.

	Introduction
	Cyclic Lists
	Cyclic Binary Trees

