Modelling Cyclic Structures
by Nested Datatypes

Varmo Vene

Teooriapaevad, Koke, 3-5 February 2006

Motivation

@ Algebraic datatypes provide a nice way to represent
tree-like structures.

@ Lazy languages, eg. Haskell, allow to build also cyclic
structures.

cycle =1 : 2 : cycle

'

1 - 2

@ Allows to represent complete infinite structures in finite
memory

Motivation

@ However, there is no support for manipulating cyclic
structures

e Eg. mapping over cyclic list gives an infinite list
map (+1) cycle == [2,3,2,3,2,3,2,3,....

@ In fact, there is no way to distinguish cyclic structures
from infinite ones

@ Our aim is to represent cyclic structures inductively, hence
to separate them from infinite (coinductive) structures.

@ This gives the ability to explicitly manipulate cyclic
structures either directly or using generic operations like
fold, etc.

Cyclic Lists — 1st attempt

Sheard, Fegaras 1996 (?7)
@ Definition:
data CList

= Nil

| Cons Int CList

| Rec (CList -> CList)
with an extra axiom

Rec f = f (Rec f)

@ Examples:
clistl = Rec () xs -> Cons 1 xs)

clist2 = Rec (A xs -> Cons 1 (Cons 2 xs))
clist3 Cons 1 (Rec (A xs -> Cons 2 xs))

@ Doesn’t have unique representation

@ Requires higher-order recursive datatypes

Cyclic Lists — 2nd attempt

@ Definition:

data CList = Nil
| Cons Int CList
| Var Int
e Examples:

clistl = Cons 1 (Var 1)
clist2 = Cons 1 (Cons 2 (Var 1))
clist3 = Cons 1 (Cons 2 (Var 2))

@ Can have pointers outside of the list.

@ This can be avoided by using dependent types:

data CList (n :: Int) = Nil
| Cons Int (CList (n+1))
| Var 1 ... Var n

Cyclic Lists as Nested Datatype

Definition:

data CList a = Nil
| Cons Int (CList (Maybe a))
| Var a

Var a represents a backward pointer to an element in a
list.

Nothing is the pointer to the first element of a cyclic list.
Just Nothing is for the second element, and
Just (Just Nothing) is for the third element, etc.

The complete cyclic list has type CList Empty, where
Empty is a type without constructors.

Examples

Cons 1 (Cons 2 (Var Nothing))

'
2

1] 2| L 3 4———4{M

Cons 1 (Cons 2 (Cons 3 Nil))

"Folding” a cycle

@ "Standard” fold

fold :: (forall a. a —> f a)
-> (forall a . f a)
-> (forall a. Int -> f (Maybe a) -> f a)
-> CList a -=> f a

fold v n ¢ (Var x) =v X

fold v n ¢ Nil =n

fold v n ¢ (Cons x 1) = ¢ x (fold v n c 1)

e Example:

newtype K a = K Int
summ = fold (A x -> K 0) (K 0) (A i (K j) -> K (i+j))

@ In genereal, not very easy to use.

@ Generalized folds for nested data types (Bird, Patterson)

Tail of a Cyclic List

Tail of a Cyclic List

Coalgebraic structure on Cyclic Lists

chead :: CList Empty -> Int
chead (Cons x 1) = x

ctail :: CList Empty -> CList Empty
ctail (Cons x 1) = csnoc x 1

csnoc :: Int -> CList (Maybe a) -> CList a
csnoc h Nil = Nil

csnoc h (Var Nothing) Cons h (Var Nothing)
csnoc h (Var (Just x)) Var x

csnoc h (Cons x 1) Cons x (csmnoc h 1)

unwind :: CList Empty -> [Int]
[
chead 1 : unwind (ctail 1)

unwind Nil

unwind 1

Cyclic Binary Trees

@ Definition:

Leaf
| Node Int (CTree (Maybe a))
(CTree (Maybe a))

data CTree a

| VarT a

@ Nodes are "numbered” top-down.
@ All nodes on the same level have the same " number”.
@ Has only backpointers to form cycles.

@ Pointers to other directions forbidden, hence no sharing.

Example

L
)

L 1

Node 1 (Node 2 (Node 3 (VarT Nothing) Leaf)
Leaf)
(Node 4 (Node 5 Leaf Leaf)
(Node 6 Leaf Leaf))

\\h

Cyclic children

\\h

Coalgebra structure on Cyclic Binary Trees

sonl :: CTree a -> CTree a
sonl. (Node x t1 t2) = tsnoclL x t2 t1

tsnocL :: Int -> CTree (Maybe a)
-> CTree (Maybe a) -> CTree a
tsnocl x t (VarT Nothing) Node x (VarT Nothing) t
tsnocLl x t (VarT (Just n)) = VarT n
X
X

tsnocL t Leaf Leaf
t (Node y t1 t2) Node y (tsmocL x t’ t1)
(tsnocl x t’ t2)

tsnocL
where t’ = relabel t

relabel :: CTree a -> CTree (Maybe a)

relabel (VarT x) = VarT (Just x)

relabel Leaf = Leaf

relabel (Node x t1 t2) = Node x (relabel t1) (relabel t2)

Conclusions

@ Generic framework to model cyclic structures.
@ Backward pointers — no sharing, just cycles.
@ Type system guarantees the safety of pointers.
@ To do: Work out all the details . ..

o New examples: zip, reverse, etc.

	Introduction
	Cyclic Lists
	Cyclic Binary Trees

