ProveIt

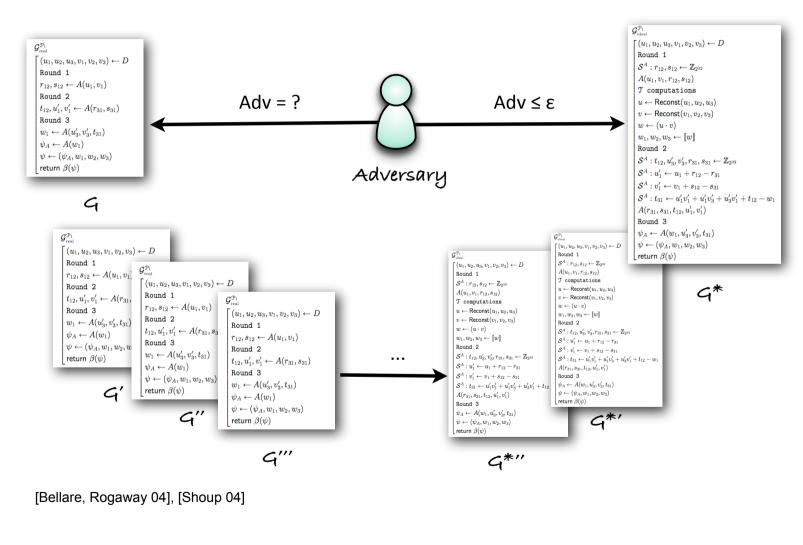
How to make proving cryptographic

protocols less tedious

Liina Kamm Computer Science Theory Days at Kubija 28.01.2012

Overview Motivation ▶ Game-based protocol proofs ProveIt Who is it for?

Motivation


Proving a security protocol using game rewriting is often

Error-prone

Time consuming

Game-Based Proofs

Transformations

Consider two games G and H with adversaries A and B and let pg and pH be the respective probabilities, that A wins G and B wins H

Transformation is **safe** if $p_{\mathcal{G}} \leq p_{\mathcal{H}}$

Transformation is **conservative** if $p_{\mathcal{G}} = p_{\mathcal{H}}$

Transformation is lossy if

 $p_{\mathcal{G}} \le p_{\mathcal{H}} + \varepsilon$ or $p_{\mathcal{G}} \le c \cdot p_{\mathcal{H}}$

for some particular $\varepsilon > 0$ or c > 1

Features of Provelt

Protocol entered in pseudocode

- Protocol parsed from text to abstract syntax tree
- Transformations:

FreeStep, User Defined Step

- PRP/PRF Switching, Function Rename
- Dead Code Elimination, Statement Switching

FreeStep, User Defined Step

Preconditions: none

- Application rules: can be applied to any statement
- Difference between the games: user specified

PRP/PRF Switching

Preconditions: the secret key used in the pseudorandom permutation f must not appear on the right side of other statements

Application rules: can be applied to the function call of f

Difference between the games?

PRP/PRF Switching Lemma

Let $n \ge 1$ be an integer. Let A be an adversary that asks at most q oracle queries. Then

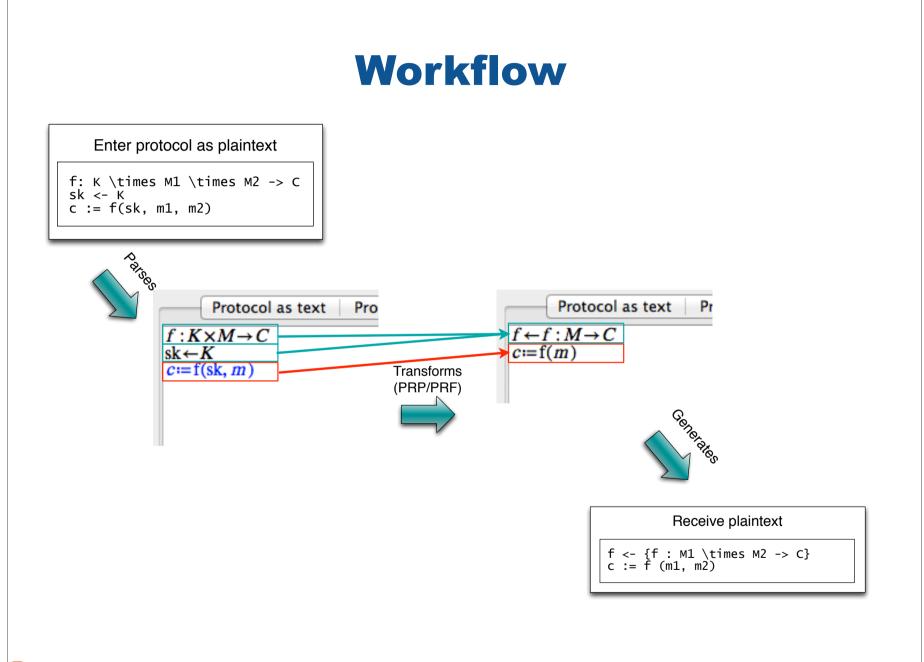
$$|\Pr[A^{\pi} \Rightarrow 1] - \Pr[A^{\rho} \Rightarrow 1]| \le \frac{q(q-1)}{2^{n+1}}$$

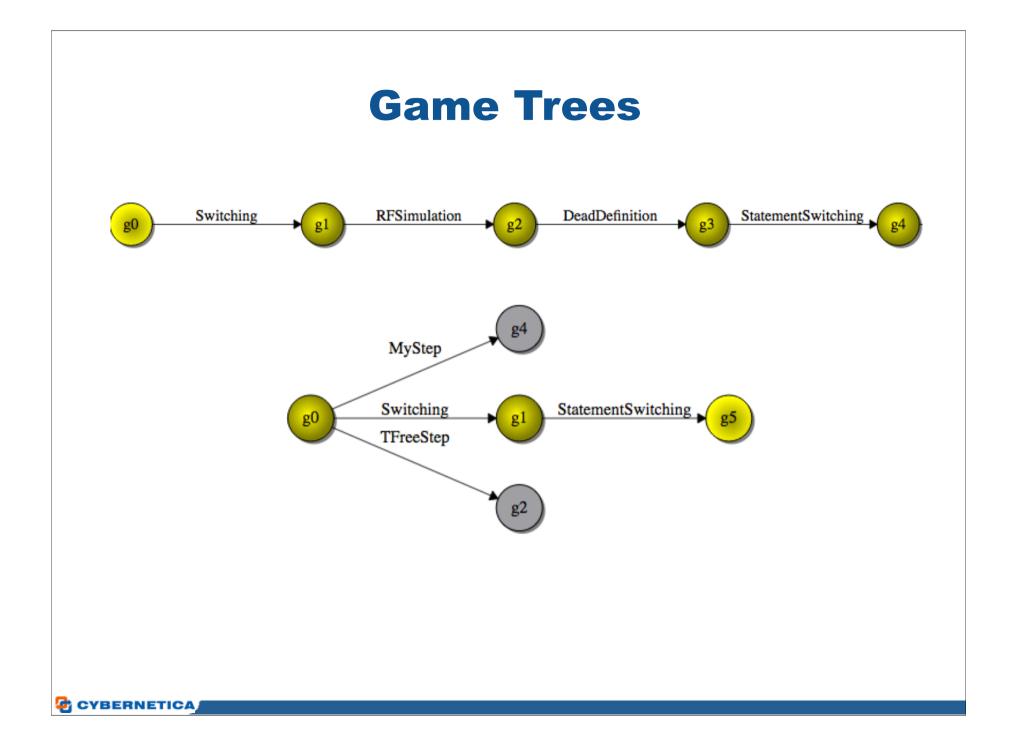
- ▶ π randomly sampled from the set of all permutations on $\{0,1\}^n$
- → ρ randomly sampled from the set of all functions from $\{0,1\}^n$ to $\{0,1\}^n$

PRP/PRF Switching

Preconditions: the secret key used in the pseudorandom permutation f must not appear on the right side of other statements

Application rules: can be applied to the function call of f


Difference between the games:


$$\mathsf{sd}(\mathcal{G}_0^A, \mathcal{G}_1^A) \leq \frac{q(q-1)}{2^{n+1}}$$

Protocol as text	Protocol parsed to text	Protocol as tree	Visual tree	_
_23 <- Z_2^32				
_23 <- Z_2^32				
_31 <- Z_2^32				
_31 <- Z_2^32 end(p_2, r_12)				
end(p_2, s_12) end(p_2, s_12)				
end(p_3, r_23)				
end(p_3, s_23)				
end(p_1, r_31)				
end(p_1, s_31)				
oc/o 2 x 21)				
ec(p_3, r_31) ec(p_3, s_31)				
ec(p_1, r_12)				
ec(p_1, s_12)				
ec(p_2, r_23)				
ec(p_2, s_23)				
_12<- Z_2^32				,
$u'_1 := u_1 + r_{12} - r_{13}$ $v'_1 := v_1 + s_{12} - s_{13}$				
_1 := v_1 + s_12 - s_: _23 <- Z_2^32				
	12			
$'_2 := v_2 + s_{23} - s_{12}$				
_31 <- Z_2^32				
'_3 := u_3 + r_31 - r_3				
$'_3 := v_3 + s_{31} - s_{41}$	23			
end(p_2, u'_1)				

Protocols

Sharemind	Provelt [sharemind-multiplication.txt]
/Users/kamm/Desktop/I	$\begin{array}{c} & & \\ \hline Protocol as text & Protocol parsed to text & Protocol as tree & Visual tree \\ \hline rec(p_{1}, r_{12}) \\ rec(p_{2}, r_{23}) \\ rec(p_{2}, r_{23}) \\ rec(p_{2}, s_{23}) \\ t_{12} \leftarrow Z_{2^{3}2} \\ u'_{12} \leftarrow u_{1} + r_{12} - r_{31} \\ v'_{11} = u_{1} + r_{12} - r_{31} \\ v'_{11} = u_{1} + r_{12} - r_{31} \\ v'_{12} = u_{2} + r_{23} - r_{12} \\ v'_{21} = u_{2} + r_{23} - r_{12} \\ v'_{21} = u_{2} + r_{23} - r_{12} \\ v'_{21} = u_{3} + r_{31} - r_{23} \\ u'_{31} = u_{3} + r_{31} - r_{23} \\ v'_{31} = v_{3} + s_{31} - s_{23} \end{array}$
	Parser [info]: Parsing successful Parser [info]: Parsing successful

Advantages

Automatic game-rewriting

Reduces the number of rewriting errors

Makes the proving process faster

Checks for rule usage

Is it possible to use a certain proof step for the selected statement?

What steps can I use for a selected statement?

Helps researchers, students, teaching assistants

Ongoing Work

- Control flow analysis
- Type inference
- Protocol presentation
- More transformations
- Translation to EasyCrypt and CertiCrypt
- User feedback
 - Students
 - Researchers

Demo?