
ETF9171

ProveIt
How to make proving cryptographic

protocols less tedious

Liina Kamm
Computer Science Theory Days at Kubija

28.01.2012

Overview

Motivation

Game-based protocol proofs

ProveIt

Who is it for?

Motivation

Proving a security
protocol using game
rewriting is often
Error-prone
Time consuming

G’
G’’

G’’’ G*’’

Game-Based Proofs

G

Adv	
 =	
 ?

Adversary

Adv	
 ≤	
 ε

...

G*’

G*

[Bellare, Rogaway 04], [Shoup 04]

Consider two games and with adversaries
A and B and let and be the respective
probabilities, that A wins and B wins

Transformation is safe if
Transformation is conservative if
Transformation is lossy if

or

for some particular or

pG pH

pG  pH

pG = pH

pG  pH + " pG  c · pH

" > 0 c > 1

Transformations

G H

G H

Features of ProveIt

Protocol entered in pseudocode

Protocol parsed from text to abstract syntax
tree

Transformations:
FreeStep, User Defined Step
PRP/PRF Switching, Function Rename
Dead Code Elimination, Statement Switching

FreeStep, User Defined Step

Preconditions: none

Application rules: can be applied to any
statement

Difference between the games: user specified

PRP/PRF Switching

Preconditions: the secret key used in the
pseudorandom permutation f must not appear
on the right side of other statements

Application rules: can be applied to the function
call of f

Difference between the games?

PRP/PRF Switching Lemma

Let n ≥ 1 be an integer. Let A be an adversary
that asks at most q oracle queries. Then

π - randomly sampled from the set of all
permutations on {0,1}n

ρ - randomly sampled from the set of all
functions from {0,1}n to {0,1}n

| Pr [A⇡) 1]� Pr [A⇢) 1]|  q(q � 1)
2n+1

PRP/PRF Switching

Preconditions: the secret key used in the
pseudorandom permutation f must not appear
on the right side of other statements

Application rules: can be applied to the function
call of f

Difference between the games:

sd(GA
0 ,GA

1)  q(q � 1)
2n+1

Protocols

Protocols

Generates

Workflow

f: K \times M1 \times M2 -> C
sk <- K
c := f(sk, m1, m2)

Enter protocol as plaintext

Parses

f <- {f : M1 \times M2 -> C}
c := f (m1, m2)

Receive plaintext

Transforms
(PRP/PRF)

Game Trees

Advantages

Automatic game-rewriting
Reduces the number of rewriting errors
Makes the proving process faster

Checks for rule usage
Is it possible to use a certain proof step for the

selected statement?
What steps can I use for a selected statement?

Helps researchers, students, teaching assistants

Ongoing Work

Control flow analysis

Type inference

Protocol presentation

More transformations

Translation to EasyCrypt and CertiCrypt

User feedback
Students
Researchers

Demo?

