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Executive Summary
• Monads are the most successful programming pattern 

arising in functional programming.

• There is a lot of research on different variations of 
monads (arrows, comonads, idioms).

• Haskell doesn’t even give us the full power of monads! 

• The extra expressivity of dependently typed functional 
programming gives us an opportunity to consider 
other variations that are invisible in functional 
programming. 

• Relative monads are a generalisation of monads. 
Arrows and monads are instances.



(Our) Motivation
1. If you like functional programming and category 

theory then you will find monads everywhere.

2. But there are some things which are almost like 
monads but not quite. The satisfy the rules even but 
the types are wrong!

3. Abstract the common pattern in these examples. 

4. Invent relative monads!

5. Generalise monad theory and study examples in this 
new light.



What’s a monad?
• A monad is just an algebraic structure like a 

monoid, a group, a ring, etc.

some data:
a map T : |C| → |C| (in Haskell C = Set, |C| = Set)
for any X, a map return : X → T X
for any X and Y, a map bind : (X → T Y) → T X → T Y

subject to the following conditions:
bind return = id -- left unit
bind f . return = f -- right unit
bind f . bind g = bind (bind f . g) -- associativity



Doublenegation monad
False is the empty set

¬ X = X → False

T  = ¬¬
return  : X → ¬¬ X  or  X → (X → False) → False 
bind : (X → ¬¬ Y) → (¬¬ X → ¬¬ Y)
           which is the same as
     (X → ¬ Y → False) →  hyp. 1
     (¬ X → False) →      hyp. 2
     ¬ Y →                hyp. 3
     False)               by hyp. 2 $ (hyp 1.  $ hyp 3)
and the laws hold trivially (up to definitional equality)



What’s an algebra (for a 
monad)

• A pair of (A,a) where

• A is a object of C

• For any X a map a :  (X → A) → (TX → A)

• such that

•  a f . return = f

• a (a f . g) = a f . bind g



Relationship to to the 
category C

• The algebras are objects of a category called the 
Eilenberg-Moore category for the monad

• The morphisms are algebra morphisms

• There is an adjunction between this category EM(T) 
and the category C

• Monads can be split into adjunctions, this is one 
canonical way.

• The other is due to Kleisli.



What is an algebra for 
double negation?

• It should be a pair of a proposition A and for any X 
an operation a : (X → A) → ¬¬ X → A

• What does this mean?

• a would be a operation that broadens the 
implication to take classical evidence instead of 
constructive evidence (note. for a fixed A).

• A should be a proposition which is true classically 
and constructively. Right?



What’s a relative monad?
• A relative monad is like a monad but it 

includes a 

data:
a functor J : J → C
a map T : |J| → |C|
a map for any X, return : J X → T X
a map for any X and Y, bind : (J X → T Y) → T X → T Y

subject to the (same!) following conditions:
bind return = id -- left unit
bind f . return = f -- right unit
bind f . bind g = bind (bind f . g) -- associativity



Eg 1-  Untyped lambda terms
data Lam : Nat → Set where
  var : Fin n → Lam n
  lam : Lam (suc n) → Lam n
  app : Lam n → Lam n → Lam n

T = Lam, 
J = Fin, 
return : Fin n → Lam n
return = var

bind : (Fin m → Lam n) → Lam m → Lam n
The monadic structure shows you how to implement 

substitution (notoriously fiddly) and what properties to 
verify



Eg 2 - Vector spaces
F : Nat → Set
F n = Fin n → R -- any semiring would do

where T = F and J = Fin and:

return : ∀{n} → Fin n → F n
return a = λ b → if a == b then 1 else 0

bind : ∀{m n} → (Fin m → F n) → F m → F n
bind f v = λ b → Σ m (λ a → v a * f a b)



Next...  relative algebras

• Why should we care?

• Algebras for a monad are a standard 
construction in category theory

• We’ve generalised monads. So, our 
generalisation should work for their 
algebras too.

• It would be very nice if our construction 
gives some interesting algebras for our 
motivating examples (it does!).



What’s an algebra of a 
relative monad?

• An algebra is a pair (A,a) of

• an object A of C 

• for any X a map a : (JX → A) → T X → A

• subject to the same laws as before:

• a . return = id

• a (a f . g) = a f . bind g



Relationship to to the 
functor J

• The rel. algebras are objects of a category called the 
rel. Eilenberg-Moore category for the rel. monad

• The morphisms are rel. algebra morphisms

• There is a rel. adjunction between this category 
REM(T) and the functor J.

• Rel. monads can be split into rel. adjunctions, this is 
one canonical way.

• The other is Rel. Kleisli.



Eg. 1 - ext. lambda models
• A triple (S,eval,ap) of

• S : Set

• for any n, a map eval : (Fin n → S) → Tm n → S

• a map ap : S → S → S

• subject to some laws:

• eval γ (var i) = γ i

• eval γ (app t u) = ap (eval γ t) (eval γ u)

• ap (eval γ (lam t)) s = eval (γ << s) t

• ((a : S) → ap f a = ap g a) → f = g   

(S,eval) is an algebra!



Eg. 2 - a right module 
over a semiring R

• a monoid (A, ε, · ) and 

• an operation & : A → R → A

• subject to some laws

• ε & r        ≅ ε

• (a · a') & r ≅ (a & r) · (a' & r)

• a & zero     ≅ ε

• a & (r + r') ≅ (a & r) · (a & r')

• a & one      ≅ a

• a & (r * r') ≅ (a & r) & r'



Output

• A very dense conference paper “Monads 
need not be endofunctors” at FoSSaCS 
2010, Paphos

• A journal paper “Relative monads 
formalised” in the journal of formalized 
reasoning (final version pending).

• A journal paper “Relative Monads” for a 
special issue on FoSSaCS 2010 which is 
excruciatingly late.



Future work

•  Complete formalisation

• Investigate relationship between our work 
and related ideas

• Find more examples


