Algebras of Relative Monads

James Chapman Institute of Cybernetics, Tallinn

joint work with Thorsten Altenkirch (University of Nottingham) and Tarmo Uustalu (Institute of Cybernetics,Tallinn)

Executive Summary

- Monads are the most successful programming pattern arising in functional programming.
- There is a lot of research on different variations of monads (arrows, comonads, idioms).
- Haskell doesn't even give us the full power of monads!
- The extra expressivity of dependently typed functional programming gives us an opportunity to consider other variations that are invisible in functional programming.
- Relative monads are a generalisation of monads.
 Arrows and monads are instances.

(Our) Motivation

- I. If you like functional programming and category theory then you will find monads everywhere.
- 2. But there are some things which are almost like monads but not quite. The satisfy the rules even but the types are wrong!
- 3. Abstract the common pattern in these examples.
- 4. Invent relative monads!
- 5. Generalise monad theory and study examples in this new light.

What's a monad?

• A monad is just an algebraic structure like a monoid, a group, a ring, etc.

some data:

a map $T : |\mathbf{C}| \to |\mathbf{C}|$ (in Haskell $\mathbf{C} = \mathbf{Set}, |\mathbf{C}| = \mathbf{Set}$) for any X, a map return : $X \to T X$ for any X and Y, a map bind : $(X \to TY) \to T X \to TY$

subject to the following conditions: bind return = id -- left unit bind f . return = f -- right unit bind f . bind g = bind (bind f . g) -- associativity

Doublenegation monad

False is the empty set

 $\neg X = X \rightarrow False$

Τ = ¬ return : $X \rightarrow \neg \neg X$ or $X \rightarrow (X \rightarrow False) \rightarrow False$ bind : $(X \rightarrow \neg \gamma Y) \rightarrow (\neg \gamma X \rightarrow \neg \gamma Y)$ which is the same as $(X \rightarrow \neg Y \rightarrow False) \rightarrow hyp. I$ $(\neg X \rightarrow False) \rightarrow$ hyp. 2 $\neg \Upsilon \rightarrow$ hyp. 3 False) by hyp. 2 \$ (hyp 1. \$ hyp 3) and the laws hold trivially (up to definitional equality)

What's an algebra (for a monad)

- A pair of (A,a) where
 - A is a object of **C**
 - For any X a map a : $(X \rightarrow A) \rightarrow (TX \rightarrow A)$
- such that
 - a f.return = f
 - a (a f . g) = a f . bind g

Relationship to to the category **C**

- The algebras are objects of a category called the Eilenberg-Moore category for the monad
- The morphisms are algebra morphisms
- There is an adjunction between this category EM(T) and the category C
- Monads can be split into adjunctions, this is one canonical way.
- The other is due to Kleisli.

What is an algebra for double negation?

- It should be a pair of a proposition A and for any X an operation $a : (X \rightarrow A) \rightarrow \neg\neg X \rightarrow A$
- What does this mean?
 - a would be a operation that broadens the implication to take classical evidence instead of constructive evidence (note. for a fixed A).
 - A should be a proposition which is true classically and constructively. Right?

What's a relative monad?

• A relative monad is like a monad but it includes a

data:

a functor $J : J \rightarrow C$ a map $T : |J| \rightarrow |C|$ a map for any X, return : $J \times \rightarrow T \times$ a map for any X and Y, bind : $(J \times \rightarrow TY) \rightarrow T \times \rightarrow TY$

subject to the (same!) following conditions: bind return = id -- left unit bind f . return = f -- right unit bind f . bind g = bind (bind f . g) -- associativity

Eg I - Untyped lambda terms

```
data Lam : Nat \rightarrow Set where
```

var : Fin $n \rightarrow Lam$ n

```
lam : Lam (suc n) \rightarrow Lam n
```

app : Lam $n \rightarrow$ Lam $n \rightarrow$ Lam n

```
T = Lam,

J = Fin,

return : Fin n \rightarrow Lam n

return = var
```

bind : (Fin $m \rightarrow Lam n$) $\rightarrow Lam m \rightarrow Lam n$ The monadic structure shows you how to implement substitution (notoriously fiddly) and what properties to verify

Eg 2 - Vector spaces

F: Nat \rightarrow Set F n = Fin n \rightarrow R -- any semiring would do

where T = F and J = Fin and:

return : $\forall \{n\} \rightarrow Fin n \rightarrow F n$ return $a = \lambda b \rightarrow if a == b$ then 1 else 0

bind : $\forall \{m \ n\} \rightarrow (Fin \ m \rightarrow F \ n) \rightarrow F \ m \rightarrow F \ n$ bind f v = λ b $\rightarrow \Sigma$ m (λ a \rightarrow v a * f a b)

Next... relative algebras

- Why should we care?
 - Algebras for a monad are a standard construction in category theory
 - We've generalised monads. So, our generalisation should work for their algebras too.
 - It would be very nice if our construction gives some interesting algebras for our motivating examples (it does!).

What's an algebra of a relative monad?

- An algebra is a pair (A,a) of
 - an object A of ${\boldsymbol{\mathsf{C}}}$
 - for any X a map $a : (JX \rightarrow A) \rightarrow T X \rightarrow A$
- subject to the same laws as before:
 - a . return = id
 - a (a f . g) = a f . bind g

Relationship to to the functor J

- The rel. algebras are objects of a category called the rel. Eilenberg-Moore category for the rel. monad
- The morphisms are rel. algebra morphisms
- There is a rel. adjunction between this category REM(T) and the functor J.
- Rel. monads can be split into rel. adjunctions, this is one canonical way.
- The other is Rel. Kleisli.

Eg. I - ext. lambda models

- A triple (S,eval,ap) of
 - S:Set
 - for any n, a map eval : (Fin $n \rightarrow S$) $\rightarrow Tm n \rightarrow S$
 - a map ap : $S \rightarrow S \rightarrow S$
- subject to some laws:
 - eval γ (var i) = γ i
 - eval γ (app t u) = ap (eval γ t) (eval γ u)
 - ap (eval γ (lam t)) s = eval ($\gamma \ll s$) t

•
$$((a:S) \rightarrow ap f a = ap g a) \rightarrow f = g$$

(S,eval) is an algebra!

Eg. 2 - a right module over a semiring R • a monoid (Α, ε, ·) and

- an operation $\& : A \to R \to A$
- subject to some laws
 - $\mathbf{k} \mathbf{k} \mathbf{r} \cong \mathbf{k}$
 - $(a \cdot a') \& r \cong (a \& r) \cdot (a' \& r)$
 - a & zero $\cong \epsilon$
 - $a \& (r + r') \cong (a \& r) \cdot (a \& r')$
 - a & one \approx a
 - $a \& (r * r') \approx (a \& r) \& r'$

Output

- A very dense conference paper "Monads need not be endofunctors" at FoSSaCS 2010, Paphos
- A journal paper "Relative monads formalised" in the journal of formalized reasoning (final version pending).
- A journal paper "Relative Monads" for a special issue on FoSSaCS 2010 which is excruciatingly late.

Future work

- Complete formalisation
- Investigate relationship between our work and related ideas
- Find more examples