

TIME-SPECIFIC SIGNATURES IN THE ATTRIBUTE-BASED SETTING

4Feb2011

Madeline González Muñiz (joint work with Peeter Laud)

Digital Signatures

- Schemes used to prove the following in a document:
 - Authenticity
 - Integrity
 - Non-repudiation
- Algorithms:
 - Key Generation Algorithm
 - Signing Algorithm
 - Verification Algorithm

Time-Specific Signatures

In addition, we want the following possibilities: Create a signature only during a specific time interval Key generation authority ID-based, attribute-based Pre-computation may or may not be allowed Verify a signature only during a specific time interval

Attribute-Based Signatures (ABS)

Attribute authority gives keys to users based on their attributes

Baseball playerUniversity studentComputer science

Salsa dancerUniversity studentMathematics

Attribute-Based Keys

What if they want to join forces and sign using D_B and D_S ?

Coalition Resistance

Users may not combine secret keys to sign documents

How does the attribute authority ensure this?

Lagrange Interpolation

Different polynomials, but f(0)=q(0)

Key Generation

Default Attribute Set from Z_p

$$\Omega_1$$
 Ω_2 \dots Ω_{d-1}

- □ Polynomial q of degree d-1 is chosen at random with q(0)=x
- \Box g^x is the attribute authority public key
- \square D_i is the secret key for attribute *i* in $\omega \cup \Omega$
 - Each D_i is constructed using q(i) in the exponent
 - □ Also, contains $H_1(i)$ which is used in verification $^{8/30}$

Signing Predicate

Attributes

Prove having *k* out of *n* attributes

Selecting Attributes

Select from default attributes (d-k) $\Omega_{1^*}, \dots, \Omega_{d-k^*}$

In the signature, the corresponding secret keys are raised to the Lagrange coefficient which is used in the interpolation

ABS Signing Algorithm

ABS Verification Algorithm

Why are ABS useful?

- Prove credentials
- This access is time unlimited
- Why limit the time validity intervals of the attributes?
 - Attribute revocation

Time-Specific Encryption

Users get an encryption to be decrypted in the future

A "time server" (TS) broadcasts the "time instant key" (TIK) which is the secret key for the current time period

Time Server

Binary tree

- Leaves are time periods
- Each TIK broadcast is a path from the root node to a leaf

Each interval has a unique "cover"

The TIK and cover intersect at one node

Binary Tree of Depth 3

 2^3 time periods for interval [0,7]

Cover for [1,5]

TIK for t=1(001)

TIK for t=2(010)

TIK for t=3(011)

TIK for t=4(100)

TIK for t=5(101)

- □ Recall D_i is the secret key for attribute *i* in $\omega \cup \Omega$
- □ D_i is constructed using $H_1(i)$ which is used in verification
- □ Thus, we modify this to $H_1(i||t_{i0}||t_{i1})$

Attribute-Based Time-Specific Signatures (ATS)

Combining Attributes

Combining Attributes

Combining Attributes

No Pre-computation

- Signer may not begin computing the signature until a TIK has been broadcast for each attribute being used
- □ Solution:
 - Attibute *i* has time validity $I_i = [t_{i0}, t_{i1}]$
 - Encrypt sk_i under a cover for I_i using a TSE scheme
- Verification:
 - ABS scheme verification
 - Non-empty intersection of intervals

With Pre-computation

- Signer may begin computing the signature, but it will not be valid until a TIK has been broadcast for each attribute being used
- Verification:
 - ABS scheme verification
 - Non-empty intersection of intervals
 - \blacksquare Call this intersection J
 - TIK from J appended

Delayed Verification

- Part of the signature may be encrypted so that the verification occurs in the futu
- May be generalized since a key generation authority is not necessary

Use a bilinear pairing $e(g^{\alpha}, H(t))^{r}$ to encrypt

Recover term using TIK α H(t) by computing e(g^r , α H(t)) ^{31/30}

Summary

Attribute-Based Signatures

Time-Specific Encryption

- Time Server
- Time-Specific Attribute-Based Signatures

