
Model-based Synthesis of Reactive Model based Synthesis of Reactive
Planning On-line Testers

Marko Kääramees
Jü i VainJüri Vain
Kullo Raiend

Tallinn University of Technology
Eliko Competence Centrep
Elvior

Overview

� Scope and main idea of the work
� Workflow of testing
� Off-line preparation algorithm and example
� On-line testing algorithm and example
� Implementation and complexity issues
� Conclusions� Conclusions

Scope of the work
� Black box model based testing

� tests are generated from the model
� Model is non-deterministic

� output observability
assumedassumed

� Several test goals are
tackled at the same time
� minimizing the amount

and length of the tests

Testing non-deterministic models
On-line testing is needed
� Test cases cannot be prepared beforehand
� Tester must decide inputs during the test based

on observed outputs and active goals
Test planning is costly and not feasible on line� Test planning is costly and not feasible on-line

Proposed solutionProposed solution
� Model is analysed off-line
� Result is expressed as a set of data constraints p

for each test goal
� Data instance generation is done on-line

Model of SUT
� Model is given as EFSM

� input/output, guard, update
� input parameter t [temp] and variable d [delay]

� Requirements
� fridge must switch off when t is 4..5
� fridge must switch on when t is 6..7 and it has

been off 20 39 seconds (tick every 10 seconds)been off 20..39 seconds (tick every 10 seconds)

d:=0
tick(t)/off

t ≥ 6 ∧ d ≥ 2
tick(t)/on

off ont ≤ 7 ∨ d ≤ 3
d:=d+1

tick(t)/off
t ≥ 4
tick(t)/on

t ≤ 5
d:=0

tick(t)/off

Modeling of test goals
� Test goals are expressed by traps

� trap is a pair <transition,predicate>
� expressed as update of trap variable in model

� Can express
� transition coverage
� transition sequence
� repeated pass using auxiliary variable� repeated pass using auxiliary variable

d:=0
tick(t)/off

t ≥ 6 ∧ d ≥ 2
tick(t)/on

off ont ≤ 7 ∨ d ≤ 3
d:=d+1

tick(t)/off
t ≥ 4
tick(t)/ontrap1:=(d=3)

trap2:=true

t ≤ 5
d:=0

tick(t)/off

Workflow

model testmodel
(EFSM) goals

(traps)

off-line
test on-line SUT

A
dap

test
generator tester SUT

pter

testing
data

(constraints)
test

verdict

Off-line constraint generation
Constraints for a trap (trap1 on example) generated by
breath-first backwards constraint propagation algorithm:

• Constraints C|L give the condition and length
for the shortest path
• Constraints C*|L* give the condition and length| g g
for all paths up to fixpoint (or search depth)
• Constraints Cg give the condition for choosing the
next transition depending on the values of variables

d:=0
tick(t)/off

t ≥ 6 ∧ d ≥ 2
tick(t)/on C |1: d=3

C*|6: true

next transition depending on the values of variables

off ont ≤ 7 ∨ d ≤ 3
d:=d+1

tick(t)/off t ≥ 4
tick(t)/ontrap1:=(d=3)

trap2:=true

C |6: true
Cg: d ≥ 3

t ≤ 5
d:=0

tick(t)/off
C |2: d=2 C |5: true C |6: true
C*|4: d ≤ 2 C*|5: true C*|6: true
Cg: d ≤ 2 Cg: true Cg: false

Offline algorithm for trap tr
initialise C to false, L to 0
C*

t = guard t ∧ conditiontr

while fixpoint or search depth is reached
for each state s on the depth level do

C* = simplify(C*’ ∨ ∃I:�C*) // ti - t leaving from s; I - inputC s simplify(C s ∨ ∃I:�C ti) // ti - t leaving from s; I - input
if SAT(¬(C*

s⇒ C*’
s)) // C*

s changed
L*

s = depth
if not C s // minimal constraint
Cs = C*

s ; Ls = L*
s

for each transition t coming to sfor each transition t coming to s
C*

t = simplify(C*’
t ∨ guard t ∧ wp(updatet, C*

s))
record L*

s , C t , L s if neededs t s

Cg
t= simplify(Cg’

t ∨ (∃I:C*
t ∧ ¬C*

source(t)))

Example (on-line)
1. tick(true): off, d=0
2. tick(true): off, d=1
3 tick(true): off d 23. tick(true): off, d=2
4. tick(t < 6): off, d=3
5. tick(t ≥ 6): on, d=3 trap1☺ off, d=4
6. tick(t > 7): on, d=4
7. tick(t > 5): on, d=4 trap2☺
8. tick(t < 4): off, d=0 ®8. tick(t 4): off, d 0 ®

d:=0
tick(t)/off

t ≥ 6 ∧ d ≥ 2
tick(t)/on C|1: d=3

C*|6: true

off ont ≤ 7 ∨ d ≤ 3
d:=d+1

tick(t)/off t ≥ 4
tick(t)/ontrap1:=(d=3)

trap2:=true

Cg: d ≥ 3

t ≤ 5
d:=0

tick(t)/offC|2: d=2 C|5: true C|6: true
C*|4: d ≤ 2 C*|5: true C*|6: true
Cg: d ≤ 2 Cg: true Cg: false

On-line algorithm (greedy)
while exist uncovered traps //at state s

select nearest reachable trap tr // using SAT()
select transition with Cg

t satisfiable // using SAT()
select input parameters valuation by

solving C t or C*
t // constraint solving

communicate the inputs to SUT
if the output does not conform to the model // using SAT()if the output does not conform to the model // using SAT()

stop(test_failed)
move to the next statemove to the next state

end while
stop(test_passed)

Implementation issues
� UPPAAL used for modelling (Uppsala & Aalborg U)

� Z3 SMT solver suite (Microsoft Research)
� simplification of constraints
� quantifier elimination
� SAT solver
� constraint solving (model generation)� constraint solving (model generation)

� Python scripts for parsing and constraining � Python scripts for parsing and constraining
generation algorithm implementation

� TestCast - TTCN3 toolset (Elvior)
� running generated TTCN3 scripts

Complexity issues
� Constraints limited to decidable theories

� linear arithmetic (+ others supported by solver)
Th ti l li it� Theoretical limits
� SAT problem is NP-complete
� decision procedures and simplification of Presburger decision procedures and simplification of Presburger

arithmetic is double-exponential
� Practical aspects

b f (*)� number of constraints is in O(traps*transitions)
� Z3 does a good job in SAT and simplification

� Search depth� Search depth
� complexity of the constraints depends on the

structure of the model and search depth
� search depth can be constrained off-line when the

time for the SAT check needed on-line exceeds the
predefined limit

Constrained search

trap

depth 8

Main results
� Tester for non-deterministic EFSM
� Efficient on-line test planning

� supported by off-line preparation
� Off-line computation is usable also for off-line test

cases generation for deterministic modelscases generation for deterministic models
� On-line planning drives the test towards

uncovered test goals resulting a test with sub-g g
optimal length

� Future plans:
� modelling SUT and test scenarios (goals) using

hierarchical automata hierarchical automata
� Improvement of simplification

Offline algorithm for trap tr
initialise C to false, L to 0
C*

t = guard t ∧ conditiontr

while fixpoint or search depth is reached
for each state s on the depth level do

C* = simplify(C*’ ∨ ∃I:�C*) // ti - t leaving from s; I - inputC s simplify(C s ∨ ∃I:�C ti) // ti - t leaving from s; I - input
if SAT(¬(C*

s⇒ C*’
s)) // C*

s changed
L*

s = depth
if not C s // minimal constraint
Cs = C*

s ; Ls = L*
s

for each transition t coming to sfor each transition t coming to s
C*

t = simplify(C*’
t ∨ guard t ∧ wp(updatet, C*

s))
record L*

s , C t , L s if neededs t s

Cg
t= simplify(Cg’

t ∨ (∃I:C*
t ∧ ¬C*

source(t)))

