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Explicit versus implicit

EXPLICIT
(model)

oo // IMPLICIT
(axiomatic theory)

PROBLEM:
Need to know what one is modelling ...
Need to know how to axiomatize the phenomenon
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Explicit versus implicit

EXPLICIT
COMPUTABILITY

(particular model)
OO

��

IMPLICIT
COMPUTABILITY

(axiomatic theory)
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Explicit computability

• Turing machine computing (partial) functions

• Kleene’s first model (natural numbers are codes for machines
which act on numbers)

• Oracle computability (jump operators)

• Combinatory and λ-algebras

• Domain theory models.
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Implicit computability

• Axiomatic/logic approaches to computability ...

• Combinatory logic and λ-calculus ...

• Turing categories

Turing categories = abstract computability

MANY non-standard models!!

... all models are Turing categories.
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Explicit versus implicit

EXPLICIT
COMPLEXITY

(particular model)
OO

��

IMPLICIT
COMPLEXITY

(axiomatic theory)
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Explicit complexity

• Time complexity: counting the ticks of a Turing/computing
machine

• Space complexity: counting the storage required by a
Turing/computing machine

Want these notions to be independent of the machine model ...

Are they?
Well not really!
e.g. Turing machine versus pointer models at low complexity
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Implicit complexity

Why do it?

• Theoretical understanding of complexity ...
wide variety of different models
relationship between different models
correspondence between axiomatic features and complexity

• Type checking for complexity
real-time applications ...
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This talk looks at the explicit models complexity theorists themselves
use!!!

but with categorical eyes!

Part of the program of abstract computability:

unifies complexity and computability.
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Functional Complexity in a Timed Maps “Universe”
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Functional Complexity in a Timed Maps “Universe”

A surprise connection between partiality and complexity

A categorical model/semantics of basic complexity theory

A construction that builds models of computability whose total maps
are precisely the maps of a given functional complexity class:

P-time, Log-space, and above ...

I.e. mimic what complexity theorists do ... BUT with categorical eyes.
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The timing of a partial map as a primitive

Start with a notion of timing/costing a partial map:

A
f //

|·|f &&

B

N

f (x) ↓ ⇔ |x |f ↓

• A partial function f may have different timings

• Think of each timing as the cost (time/space/resource) of
computing f by an algorithm
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ASIDE: What is cost?

We shall assume cost is a natural number
BUT the theory works more generally!

A size monoid is a partially ordered commutative monoid
(M, 0,+,≤) such that

• 0 ≤ x for all x ∈ M,

• x ≤ x ′ and y ≤ y ′ implies x + y ≤ x ′ + y ′.

Examples: N,R≥0, N× N...

In fact, given any commutative monoid A set x ≤ y if there is a z
with x + z = y then x ∼ y ≡ x ≤ y&y ≤ x then size(A) = A/ ∼ is
the universal size monoid associated with A.

Note: size monoids are orthogonal to commutative groups.
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The Category of Timed Sets

TSet:

• Objects: Sets

• Maps: Timed partial functions

• Identity: The identity function with 0 cost

• Composition:

A
f //

|·|f ))

B
g //

|·|g ))

C

N N

= A
fg //

|·|f +|f (·)|g ))

C

N
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The Category of Timed Sets

Too restrictive ...

Two maps are equal only if their timing are exactly the same ...

Need to capture O( ) the order of complexity ...
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Complexity Orders

An additive complexity order C is a class of monotone functions
P : N −→ N such that C is:

• down-closed: P ∈ C and Q ≤ P then Q ∈ C;

• closed to composition: if P,Q in C then PQ ∈ C;

• additive: 0 ∈ C and if P,Q ∈ C then P + Q ∈ C.
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Examples of complexity orders

Linear:
L = 〈λx .nx |n ∈ N〉

Polynomial:

P =

〈
λx .

n∑
i=1

aix
i |n ∈ N

〉

Where 〈 〉 denotes down-closure.
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C-ordering

Every complexity order C induces a preorder enrichment on the maps
of TSet, f ≤C g :

• g(x) ↓ implies f (x) ↓ and g(x) = f (x);

• there is a P ∈ C such that for all x , |x |f ≤ P(|x |g ).
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C-equivalence

C-equivalence is the congruence f =C g if:

f ≤C g and g ≤C f

E.g. f =L g if |x |f ≤ m|x |g and |x |g ≤ n|x |f
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Partiality: Restriction Categories

For each map f : A −→ B: a restriction idempotent f : A −→ A
such that

[R.1] f f = f [R.3] f g = f g

[R.2] f g = g f [R.4] f h = fh f

• A general framework for partiality [Cockett and Lack 2002]
E.g. Sets and partial functions: f is domain of definition

• P-categories [Robinson and Rosolini 1988]

• Influential paper by Robert Di Paola and Alex Heller on “dominical
categories” (1986) initiates abstract computability.
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Totality in Restriction Category

Recall that a map in a restriction category is total in case

f = 1.
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Timed Sets and Restriction Structure

For TSet, the desired restriction is (f , |·|f ) = (f , |·|f ).

However, this is not a restriction structure since [R.1] fails:

(f , |·|f ) (f , |·|f ) = (f , |·|f + |·|f )

6= (f , |·|f )
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The Restriction Category of Timed Sets

TSet may be quotiented by the congruence =C .

Proposition.

For any complexity order C, TSet/C is a restriction category where

(f , |·|f ) = (f , |·|f ).
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Linking Complexity Order and Partiality

Every restriction category is partial order enriched by f ≤ g :

f g = f .

Lemma.

In TSet/C,
f ≤ g

if and only if
g ≤C f .
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Iteration in a restriction category

f ? g :

f ng (for at most one n)

Intuitively
g t fg t ffg t · · ·
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Iteration in a restriction category

Iterate(f,g)(x) =

while (x in dom(f))

x := f (x)

g(x)

Iteration: one way to obtain computability ...
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Disjoint joins

Proposition.

For every C, TSet/C has disjoint joins.

What does that mean?
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Disjoint joins

Disjointness, means that “domains” do not overlap

f g = ∅

The join of disjoint maps f , g is the join, t, with respect to ≤. Must
also be ”stable” with respect to composition:

h(f t g) = hf t hg
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Disjoint joins and iteration

Need disjoint joins for iteration ...

f ? g = g t fg t ffg t · · · =
⊔
n

f ng

Also need ⊔
n

f ng =C
⊔
n

f ′ng ′

whenever f =C f ′ and g =C g ′.

This requires the complexity order satisfy an extra laxness condition
...
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Distributive Restriction Categories

Proposition. [Cockett and Lack 2007]

For a restriction category

Distributivity ⇒ Extensiveness ⇒ Disjoint Joins
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The Distributive Restriction Category of Timed Sets

Proposition.

For every complexity order C, TSet/C is a distributive restriction cate-
gory.
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TSet/C has a restriction terminal object

1 = {?} is the restriction terminal object.

!A : A −→ 1

is always defined and has zero cost. Thus, for any f : A −→ 1,

f = f !A
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Restriction products

The binary restriction product of A,B is A× B with total
projections π0, π1 and a unique pairing such that in

U

g

!!

f

}}

〈f ,g〉

��
A A× Bπ0
oo

π1
// B

〈f , g〉π0 = g f and 〈f , g〉π1 = f g .
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TSet/C has restriction products

A× B is as in Sets.

Projections, π, are always defined and have zero cost.

〈(f , |·|f ), (g , |·|g )〉 := (〈f , g〉 , |·|〈f ,g〉)

where
|x |〈f ,g〉 := |x |f + |x |g
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TSet/C has an initial object

0 = ∅ is the initial object.

Note also that TSet/C has nowhere defined maps:

∅ := (∅, ∅) : A −→ B
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TSet/C has coproducts

A + B is as in Sets.

Coprojections σ are always defined and have zero cost.

[(f , |·|f ), (g , |·|g )] = ([f , g ] , |·|[f ,g ])

where
|·|[f ,g ] = [|·|f , |·|g ]
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TSet/C is distributive

The map

[A + σB ,A + σC ] : (A× B) + (A× C ) −→ A× (B + C )

is an isomorphism in Sets, and is zero cost.
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Iteration

f : A −→ A g : A −→ B f , g disjoint

f ? g : A −→ B

where [Conway 1971]:

W.1 (fg) ? h = h t f ((gf ) ? (gh))

W.2 (f t g) ? h = (f ? g) ? (f ? h)

W.3 (f ? g)h = f ? (gh)

W.4 1× (f ? g) = (1× f ) ? (1× g)

W.5 f ≤ f ′, g ≤ g ′ then
f ? g ≤ f ′ ? g ′

For example W.1:

f ? h

= h t f (f ? h)

= h t f (h t f (f ? h))

= h t fh t f 2(f ? h)

= · · ·
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Iteration in TSet/C

Definition.

A complexity order C is lax if it is generated by functions P,

P(m) + P(n) ≤ P(m + n)

Proposition.

If C is lax, then TSet/C has iteration

Both L and P are lax ..
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Iteration in TSet/C

Given disjoint timed maps f : A −→ A, g : A −→ B,

f ? g(x) :=

{
g(f n(x)) ∃n.f n ∈ g

↑ else

where the cost is

|x |f ?g :=


n−1∑
i=0

|f i (x)|f + |f n(x)|g ∃n.f n ∈ g

↑ else
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Structural Recap

The basic structural ingredients for building a simple model of
complexity:

• Timed functions

• C-equivalence

• Distributivity

• Iteration
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Additional Structure

Discreteness: the map ∆ : A −→ A× A has a partial inverse:

∆−1(x , y) =

{
x x = y

↑ else

Ranges: restriction idempotents that act on the codomain; provides
the image.

Finite Joins: If f g = g f , then the stable join with respect to ≤ of
f , g exists.
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Total maps

Problems:

The total maps are zero cost maps

(f , |·|f ) = 1 if, in particular, there is a P such that

|·|f ≤ P(0) = 0.

However, “running time” should be a function of input size.
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Restriction Idempotents in TSet/C

A restriction idempotent is a timed partial identity

Restriction idempotents can be thought of as measuring the size of
the input.
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Restriction Idempotents Splitting of TSet/C

An object in Split(TSetC) is a sized set

e = (A, |·|e)

A map f : e −→ e ′ is a timed map such that efe ′ =C f :

|x |e + |x |f + |f (x)|e′ ≤ P(|x |f )

Intuitively a function cannot be “faster” than the time required to
read its input and produce its output!!
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Linking Complexity and Totality

Recall, in a restriction category, f is total if f = 1.

In the restriction idempotent splitting:
f : e −→ e ′ is total iff e = f

In Split(TSetC), what doe this mean?

P(|x |e) ≥ |x |f
f is C-bounded by the size of its input.
i.e. total maps are exactly the “C-timed” maps!!!
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The structure in Split(TSetC)

All the structure lifts to the idempotent splitting.

Theorem.

Split(TSetC) is a distributive restriction category with iteration where
the total maps are precisely those with C-cost.
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Sizes are non-zero ..

Elements with zero size have no impact on complexity!

How do we ensure all sizes are non-zero?

Answer: Move to the slice Split(TSet/C)/?.

? is the subobject 1 = {()} determined by the idempotent ? : 1 −→ 1
where |()|? = 1.

Lemma
If C is a pointed complexity order an object Y ∈ Split(TSet/C) has a
total map to ? if and only if each element of Y has a non-zero size.
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Computability

The total maps in Split(TSet/P)/? are by no means the standard
PTIME maps of complexity theory:!

• Not computable

• Their P-timing are arbitrarily assigned.

To obtain a standard notion of say PTIME maps we must demand
that the maps are realized by a machine.

E.g. by a Turing machine with the standard timing.

Shall show how this gives a Turing category whose total maps are
precisely PTIME maps.
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Powerful and program objects

A is a powerful object in case there are total maps s× : A× A −→ A
and partial maps P0,P1 : A −→ A such that sx 〈P0,P1〉 = 1A×A.

A non-trivial powerful object is List(Bool) with size given by
‖x‖ = 1 + 2 · len(x). There are then linear time maps s×, P0, and P1

which code and decode pairs:

s×(b :bs,b′:bs ′)=1:b :1 :b′:s×(bs,bs ′) P0(1 :b : : :rs) = b :P0(rs)
s×([], b′ :bs ′) = 0:0 :1 :b′ :s×([],bs ′) P0(0 : 0 : : : rs) = []
s×(b : bs, []) = 1 : b : 0 : 0 : s×(bs, []) P1( : :1 :b′ : : rs ′) = b′ :P1(rs ′)

P1( : : 0 : 0 : rs ′) = []
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Powerful and program objects

Given a powerful object A, an A-program object is an object P
which has total operations comp, pair : P × P −→ P together with
total points Q0,Q1,Q : 1 −→ P and a partial evaluation map
ev : P × A −→ A such that:

A
〈Q,1〉 // P × A

ev
��

A

A

〈Q0,1A〉
��

P0

%%
P × A ev

// A

P × P × A

1×ev
��

comp×1 // P × A

ev
��

P × A ev
// A

A

〈Q1,1A〉
��

P1

&&
P × A ev

// A
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Powerful and program objects

P × P × A

〈π0,π2,π1,π2〉
��

pair×1 // P × A

ev

��

P × A× P × A

ev×ev
��

A× A s×
// A

We shall say that P is a machine program object in case
ev = step ? halt where step ∨ halt = 1P×A. In other words ev is a
trace of a machine transition which is total .
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Powerful and program objects

A map f : A −→ A is said to be P-programmable in case there is an
element df e : 1 −→ P such that

P × A
ev // A

A

〈df e,1A〉

OO

f

<<

If X and Y are (particular) retracts of A then a map h : X −→ Y is

P-programmable if the map A
rX−−→ X

h−−→ Y
sY−−→ A is

programmable.

Theorem
If A is an inhabited powerful object in X and P is an A-program
object, then the subcategory of P-programmable maps, ProgP(X), on
powers of A forms a cartesian restriction subcategory.
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Turing structure

An object T , in a cartesian restriction category, is a Turing object in
case:
• Every object in the category is a retract of T .
• There is an application map, also called a Turing morphism,
• : T × T −→ T such that for every (partial) map f : T × T −→ T
there is a total map f̃ : A −→ T such that:

T × T
• // T

T × T

f̃×1T

OO

f

;;

A cartesian category with a Turing object is a Turing category:
these provide a unifying formulation of abstract computability.

When does an A-program object P make A a Turing object?
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Turing structure

Theorem
If X is a cartesian restriction category with an inhabited powerful
object A and an A-programming object P such that P is a retract of
A and comp, pair, ev, Q0, Q1, and Q are all P-programmable then
ProgP(X) is a Turing category.
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Turing structure

Define the program q := d〈P0,P1〉 f e then

A× A
〈P0,P1〉×1// A× A× A

1×s×
��

rP×s×

&&
A× A× A

s××1

OO

1×s×
// A× A

rp×1 // P × A
ev

""
P × A

sP×1

OO

ev // A

A× A s×
//

(qsP)×1×1

OO

A

q×1

OO

〈P0,P1〉
// A× A

f

<<

where (q × 1)sPs× is the required total map and
• := (〈P0, p1〉 × 1)(rP × s×)ev.
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Turing Categories and Total Maps

Theorem.

The maps that are computable by a Turing machine within P-time in
Split(TSetP) form a Turing category, TP , whose Total maps are the
P-time maps.

Theorem.

The maps that are computable on a Transducer within Log-space in
Split(TSetL) form a Turing category, TLg, whose Total maps are the
Log-space maps.
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Turing Categories and Total Maps

Proof.
Turing machines can be composed and paired in P-time in the size of
their inputs.

For evaluation use the fact that a universal Turing machine can
simulate any Turing machine with just a polynomial overhead.
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From Log-space to P-time

There is a restriction preserving functor over Par between the above
Turing categories:

TLg

''

V // TP

ww
Par

Recall that if T runs in Space(S) then it runs in at most Time(2S).
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And back again?

TLg

''

V // TP

?

xx

ww
Par

V is an isomorphism if and only if P-time = Log-space.

If P-time and Log-space are equal, then for all T : Time(T ) is
Space(Log(T )).

Open complexity problem ....
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In Conclusion

Ideas in complexity can now be translated into categorical notions.

Open complexity problems have been re-expressed into categorical
questions.

There are Turing categories whose total maps are precisely those of
functional complexity classes.

Abstract computability unifies complexity and computability ....
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In Conclusion

For more:

Robin Cockett, Joaquin Diaz-Bols, Jonathan Gallagher, Pavel Hrubes

“Timed Sets, Functional Complexity, and Computability”

Electronic Notes in Theoretical Computer Science
Volume 286, 24 September 2012, Pages 117–137.
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