
Computability in Timed Sets in Opetaa, Estonia

Robin Cockett
Joaqúın D́ıaz-Böıls
Jonathan Gallagher

Pavel Hrubeš

University ofCalgary

February 4, 2013

Motivation
Explicit versus implicit

Timed sets
Where are we going?
Timing maps
Complexity orders
Restriction categories

Computability in timed sets
Iteration ...
Splitting idempotents
Getting non-zero size ..

Computability
Powerful objects
Program objects
Turing structure

2 of 63

Explicit versus implicit

EXPLICIT
(model)

oo // IMPLICIT
(axiomatic theory)

PROBLEM:
Need to know what one is modelling ...
Need to know how to axiomatize the phenomenon
3 of 63

Explicit versus implicit

EXPLICIT
COMPUTABILITY

(particular model)
OO

��

IMPLICIT
COMPUTABILITY

(axiomatic theory)

4 of 63

Explicit computability

• Turing machine computing (partial) functions

• Kleene’s first model (natural numbers are codes for machines
which act on numbers)

• Oracle computability (jump operators)

• Combinatory and λ-algebras

• Domain theory models.

5 of 63

Implicit computability

• Axiomatic/logic approaches to computability ...

• Combinatory logic and λ-calculus ...

• Turing categories

Turing categories = abstract computability

MANY non-standard models!!

... all models are Turing categories.

6 of 63

Explicit versus implicit

EXPLICIT
COMPLEXITY

(particular model)
OO

��

IMPLICIT
COMPLEXITY

(axiomatic theory)

7 of 63

Explicit complexity

• Time complexity: counting the ticks of a Turing/computing
machine

• Space complexity: counting the storage required by a
Turing/computing machine

Want these notions to be independent of the machine model ...

Are they?
Well not really!
e.g. Turing machine versus pointer models at low complexity

8 of 63

Implicit complexity

Why do it?

• Theoretical understanding of complexity ...
wide variety of different models
relationship between different models
correspondence between axiomatic features and complexity

• Type checking for complexity
real-time applications ...

9 of 63

This talk looks at the explicit models complexity theorists themselves
use!!!

but with categorical eyes!

Part of the program of abstract computability:

unifies complexity and computability.

10 of 63

Functional Complexity in a Timed Maps “Universe”

11 of 63

Functional Complexity in a Timed Maps “Universe”

A surprise connection between partiality and complexity

A categorical model/semantics of basic complexity theory

A construction that builds models of computability whose total maps
are precisely the maps of a given functional complexity class:

P-time, Log-space, and above ...

I.e. mimic what complexity theorists do ... BUT with categorical eyes.
12 of 63

The timing of a partial map as a primitive

Start with a notion of timing/costing a partial map:

A
f //

|·|f &&

B

N

f (x) ↓ ⇔ |x |f ↓

• A partial function f may have different timings

• Think of each timing as the cost (time/space/resource) of
computing f by an algorithm

13 of 63

ASIDE: What is cost?

We shall assume cost is a natural number
BUT the theory works more generally!

A size monoid is a partially ordered commutative monoid
(M, 0,+,≤) such that

• 0 ≤ x for all x ∈ M,

• x ≤ x ′ and y ≤ y ′ implies x + y ≤ x ′ + y ′.

Examples: N,R≥0, N× N...

In fact, given any commutative monoid A set x ≤ y if there is a z
with x + z = y then x ∼ y ≡ x ≤ y&y ≤ x then size(A) = A/ ∼ is
the universal size monoid associated with A.

Note: size monoids are orthogonal to commutative groups.

14 of 63

The Category of Timed Sets

TSet:

• Objects: Sets

• Maps: Timed partial functions

• Identity: The identity function with 0 cost

• Composition:

A
f //

|·|f))

B
g //

|·|g))

C

N N

= A
fg //

|·|f +|f (·)|g))

C

N

15 of 63

The Category of Timed Sets

Too restrictive ...

Two maps are equal only if their timing are exactly the same ...

Need to capture O() the order of complexity ...

16 of 63

Complexity Orders

An additive complexity order C is a class of monotone functions
P : N −→ N such that C is:

• down-closed: P ∈ C and Q ≤ P then Q ∈ C;

• closed to composition: if P,Q in C then PQ ∈ C;

• additive: 0 ∈ C and if P,Q ∈ C then P + Q ∈ C.

17 of 63

Examples of complexity orders

Linear:
L = 〈λx .nx |n ∈ N〉

Polynomial:

P =

〈
λx .

n∑
i=1

aix
i |n ∈ N

〉

Where 〈 〉 denotes down-closure.

18 of 63

C-ordering

Every complexity order C induces a preorder enrichment on the maps
of TSet, f ≤C g :

• g(x) ↓ implies f (x) ↓ and g(x) = f (x);

• there is a P ∈ C such that for all x , |x |f ≤ P(|x |g).

19 of 63

C-equivalence

C-equivalence is the congruence f =C g if:

f ≤C g and g ≤C f

E.g. f =L g if |x |f ≤ m|x |g and |x |g ≤ n|x |f

20 of 63

Partiality: Restriction Categories

For each map f : A −→ B: a restriction idempotent f : A −→ A
such that

[R.1] f f = f [R.3] f g = f g

[R.2] f g = g f [R.4] f h = fh f

• A general framework for partiality [Cockett and Lack 2002]
E.g. Sets and partial functions: f is domain of definition

• P-categories [Robinson and Rosolini 1988]

• Influential paper by Robert Di Paola and Alex Heller on “dominical
categories” (1986) initiates abstract computability.

21 of 63

Totality in Restriction Category

Recall that a map in a restriction category is total in case

f = 1.

22 of 63

Timed Sets and Restriction Structure

For TSet, the desired restriction is (f , |·|f) = (f , |·|f).

However, this is not a restriction structure since [R.1] fails:

(f , |·|f) (f , |·|f) = (f , |·|f + |·|f)

6= (f , |·|f)

23 of 63

The Restriction Category of Timed Sets

TSet may be quotiented by the congruence =C .

Proposition.

For any complexity order C, TSet/C is a restriction category where

(f , |·|f) = (f , |·|f).

24 of 63

Linking Complexity Order and Partiality

Every restriction category is partial order enriched by f ≤ g :

f g = f .

Lemma.

In TSet/C,
f ≤ g

if and only if
g ≤C f .

25 of 63

Iteration in a restriction category

f ? g :

f ng (for at most one n)

Intuitively
g t fg t ffg t · · ·

26 of 63

Iteration in a restriction category

Iterate(f,g)(x) =

while (x in dom(f))

x := f (x)

g(x)

Iteration: one way to obtain computability ...

27 of 63

Disjoint joins

Proposition.

For every C, TSet/C has disjoint joins.

What does that mean?

28 of 63

Disjoint joins

Disjointness, means that “domains” do not overlap

f g = ∅

The join of disjoint maps f , g is the join, t, with respect to ≤. Must
also be ”stable” with respect to composition:

h(f t g) = hf t hg

29 of 63

Disjoint joins and iteration

Need disjoint joins for iteration ...

f ? g = g t fg t ffg t · · · =
⊔
n

f ng

Also need ⊔
n

f ng =C
⊔
n

f ′ng ′

whenever f =C f ′ and g =C g ′.

This requires the complexity order satisfy an extra laxness condition
...

30 of 63

Distributive Restriction Categories

Proposition. [Cockett and Lack 2007]

For a restriction category

Distributivity ⇒ Extensiveness ⇒ Disjoint Joins

31 of 63

The Distributive Restriction Category of Timed Sets

Proposition.

For every complexity order C, TSet/C is a distributive restriction cate-
gory.

32 of 63

TSet/C has a restriction terminal object

1 = {?} is the restriction terminal object.

!A : A −→ 1

is always defined and has zero cost. Thus, for any f : A −→ 1,

f = f !A

33 of 63

Restriction products

The binary restriction product of A,B is A× B with total
projections π0, π1 and a unique pairing such that in

U

g

!!

f

}}

〈f ,g〉

��
A A× Bπ0
oo

π1
// B

〈f , g〉π0 = g f and 〈f , g〉π1 = f g .

34 of 63

TSet/C has restriction products

A× B is as in Sets.

Projections, π, are always defined and have zero cost.

〈(f , |·|f), (g , |·|g)〉 := (〈f , g〉 , |·|〈f ,g〉)

where
|x |〈f ,g〉 := |x |f + |x |g

35 of 63

TSet/C has an initial object

0 = ∅ is the initial object.

Note also that TSet/C has nowhere defined maps:

∅ := (∅, ∅) : A −→ B

36 of 63

TSet/C has coproducts

A + B is as in Sets.

Coprojections σ are always defined and have zero cost.

[(f , |·|f), (g , |·|g)] = ([f , g] , |·|[f ,g])

where
|·|[f ,g] = [|·|f , |·|g]

37 of 63

TSet/C is distributive

The map

[A + σB ,A + σC] : (A× B) + (A× C) −→ A× (B + C)

is an isomorphism in Sets, and is zero cost.

38 of 63

Iteration

f : A −→ A g : A −→ B f , g disjoint

f ? g : A −→ B

where [Conway 1971]:

W.1 (fg) ? h = h t f ((gf) ? (gh))

W.2 (f t g) ? h = (f ? g) ? (f ? h)

W.3 (f ? g)h = f ? (gh)

W.4 1× (f ? g) = (1× f) ? (1× g)

W.5 f ≤ f ′, g ≤ g ′ then
f ? g ≤ f ′ ? g ′

For example W.1:

f ? h

= h t f (f ? h)

= h t f (h t f (f ? h))

= h t fh t f 2(f ? h)

= · · ·

39 of 63

Iteration in TSet/C

Definition.

A complexity order C is lax if it is generated by functions P,

P(m) + P(n) ≤ P(m + n)

Proposition.

If C is lax, then TSet/C has iteration

Both L and P are lax ..

40 of 63

Iteration in TSet/C

Given disjoint timed maps f : A −→ A, g : A −→ B,

f ? g(x) :=

{
g(f n(x)) ∃n.f n ∈ g

↑ else

where the cost is

|x |f ?g :=


n−1∑
i=0

|f i (x)|f + |f n(x)|g ∃n.f n ∈ g

↑ else

41 of 63

Structural Recap

The basic structural ingredients for building a simple model of
complexity:

• Timed functions

• C-equivalence

• Distributivity

• Iteration

42 of 63

Additional Structure

Discreteness: the map ∆ : A −→ A× A has a partial inverse:

∆−1(x , y) =

{
x x = y

↑ else

Ranges: restriction idempotents that act on the codomain; provides
the image.

Finite Joins: If f g = g f , then the stable join with respect to ≤ of
f , g exists.

43 of 63

Total maps

Problems:

The total maps are zero cost maps

(f , |·|f) = 1 if, in particular, there is a P such that

|·|f ≤ P(0) = 0.

However, “running time” should be a function of input size.

44 of 63

Restriction Idempotents in TSet/C

A restriction idempotent is a timed partial identity

Restriction idempotents can be thought of as measuring the size of
the input.

45 of 63

Restriction Idempotents Splitting of TSet/C

An object in Split(TSetC) is a sized set

e = (A, |·|e)

A map f : e −→ e ′ is a timed map such that efe ′ =C f :

|x |e + |x |f + |f (x)|e′ ≤ P(|x |f)

Intuitively a function cannot be “faster” than the time required to
read its input and produce its output!!

46 of 63

Linking Complexity and Totality

Recall, in a restriction category, f is total if f = 1.

In the restriction idempotent splitting:
f : e −→ e ′ is total iff e = f

In Split(TSetC), what doe this mean?

P(|x |e) ≥ |x |f
f is C-bounded by the size of its input.
i.e. total maps are exactly the “C-timed” maps!!!

47 of 63

The structure in Split(TSetC)

All the structure lifts to the idempotent splitting.

Theorem.

Split(TSetC) is a distributive restriction category with iteration where
the total maps are precisely those with C-cost.

48 of 63

Sizes are non-zero ..

Elements with zero size have no impact on complexity!

How do we ensure all sizes are non-zero?

Answer: Move to the slice Split(TSet/C)/?.

? is the subobject 1 = {()} determined by the idempotent ? : 1 −→ 1
where |()|? = 1.

Lemma
If C is a pointed complexity order an object Y ∈ Split(TSet/C) has a
total map to ? if and only if each element of Y has a non-zero size.

49 of 63

Computability

The total maps in Split(TSet/P)/? are by no means the standard
PTIME maps of complexity theory:!

• Not computable

• Their P-timing are arbitrarily assigned.

To obtain a standard notion of say PTIME maps we must demand
that the maps are realized by a machine.

E.g. by a Turing machine with the standard timing.

Shall show how this gives a Turing category whose total maps are
precisely PTIME maps.

50 of 63

Powerful and program objects

A is a powerful object in case there are total maps s× : A× A −→ A
and partial maps P0,P1 : A −→ A such that sx 〈P0,P1〉 = 1A×A.

A non-trivial powerful object is List(Bool) with size given by
‖x‖ = 1 + 2 · len(x). There are then linear time maps s×, P0, and P1

which code and decode pairs:

s×(b :bs,b′:bs ′)=1:b :1 :b′:s×(bs,bs ′) P0(1 :b : : :rs) = b :P0(rs)
s×([], b′ :bs ′) = 0:0 :1 :b′ :s×([],bs ′) P0(0 : 0 : : : rs) = []
s×(b : bs, []) = 1 : b : 0 : 0 : s×(bs, []) P1(: :1 :b′ : : rs ′) = b′ :P1(rs ′)

P1(: : 0 : 0 : rs ′) = []

51 of 63

Powerful and program objects

Given a powerful object A, an A-program object is an object P
which has total operations comp, pair : P × P −→ P together with
total points Q0,Q1,Q : 1 −→ P and a partial evaluation map
ev : P × A −→ A such that:

A
〈Q,1〉 // P × A

ev
��

A

A

〈Q0,1A〉
��

P0

%%
P × A ev

// A

P × P × A

1×ev
��

comp×1 // P × A

ev
��

P × A ev
// A

A

〈Q1,1A〉
��

P1

&&
P × A ev

// A

52 of 63

Powerful and program objects

P × P × A

〈π0,π2,π1,π2〉
��

pair×1 // P × A

ev

��

P × A× P × A

ev×ev
��

A× A s×
// A

We shall say that P is a machine program object in case
ev = step ? halt where step ∨ halt = 1P×A. In other words ev is a
trace of a machine transition which is total .

53 of 63

Powerful and program objects

A map f : A −→ A is said to be P-programmable in case there is an
element df e : 1 −→ P such that

P × A
ev // A

A

〈df e,1A〉

OO

f

<<

If X and Y are (particular) retracts of A then a map h : X −→ Y is

P-programmable if the map A
rX−−→ X

h−−→ Y
sY−−→ A is

programmable.

Theorem
If A is an inhabited powerful object in X and P is an A-program
object, then the subcategory of P-programmable maps, ProgP(X), on
powers of A forms a cartesian restriction subcategory.
54 of 63

Turing structure

An object T , in a cartesian restriction category, is a Turing object in
case:
• Every object in the category is a retract of T .
• There is an application map, also called a Turing morphism,
• : T × T −→ T such that for every (partial) map f : T × T −→ T
there is a total map f̃ : A −→ T such that:

T × T
• // T

T × T

f̃×1T

OO

f

;;

A cartesian category with a Turing object is a Turing category:
these provide a unifying formulation of abstract computability.

When does an A-program object P make A a Turing object?
55 of 63

Turing structure

Theorem
If X is a cartesian restriction category with an inhabited powerful
object A and an A-programming object P such that P is a retract of
A and comp, pair, ev, Q0, Q1, and Q are all P-programmable then
ProgP(X) is a Turing category.

56 of 63

Turing structure

Define the program q := d〈P0,P1〉 f e then

A× A
〈P0,P1〉×1// A× A× A

1×s×
��

rP×s×

&&
A× A× A

s××1

OO

1×s×
// A× A

rp×1 // P × A
ev

""
P × A

sP×1

OO

ev // A

A× A s×
//

(qsP)×1×1

OO

A

q×1

OO

〈P0,P1〉
// A× A

f

<<

where (q × 1)sPs× is the required total map and
• := (〈P0, p1〉 × 1)(rP × s×)ev.
57 of 63

Turing Categories and Total Maps

Theorem.

The maps that are computable by a Turing machine within P-time in
Split(TSetP) form a Turing category, TP , whose Total maps are the
P-time maps.

Theorem.

The maps that are computable on a Transducer within Log-space in
Split(TSetL) form a Turing category, TLg, whose Total maps are the
Log-space maps.

58 of 63

Turing Categories and Total Maps

Proof.
Turing machines can be composed and paired in P-time in the size of
their inputs.

For evaluation use the fact that a universal Turing machine can
simulate any Turing machine with just a polynomial overhead.

59 of 63

From Log-space to P-time

There is a restriction preserving functor over Par between the above
Turing categories:

TLg

''

V // TP

ww
Par

Recall that if T runs in Space(S) then it runs in at most Time(2S).

60 of 63

And back again?

TLg

''

V // TP

?

xx

ww
Par

V is an isomorphism if and only if P-time = Log-space.

If P-time and Log-space are equal, then for all T : Time(T) is
Space(Log(T)).

Open complexity problem

61 of 63

In Conclusion

Ideas in complexity can now be translated into categorical notions.

Open complexity problems have been re-expressed into categorical
questions.

There are Turing categories whose total maps are precisely those of
functional complexity classes.

Abstract computability unifies complexity and computability

62 of 63

In Conclusion

For more:

Robin Cockett, Joaquin Diaz-Bols, Jonathan Gallagher, Pavel Hrubes

“Timed Sets, Functional Complexity, and Computability”

Electronic Notes in Theoretical Computer Science
Volume 286, 24 September 2012, Pages 117–137.

63 of 63

	Motivation
	Explicit versus implicit

	Timed sets
	Where are we going?
	Timing maps
	Complexity orders
	Restriction categories

	Computability in timed sets
	Iteration ...
	Splitting idempotents
	Getting non-zero size ..

	Computability
	Powerful objects
	Program objects
	Turing structure

