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Sharemind

• A privacy-preserving virtual machine that

‣ performs secure multi-party computation

‣ can add, multiply and compare integers

‣ has a simple programming interface

• Sharemind can be used for processing 
private data without compromising it
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Reading the results

gs32kq bvx2as huo2ei ...

09fgh2 bnv6sd 2yfhod ...

439fxj yvbwr2 l9sufg ...



Reading the results

Results
68% women 32% men average income 6350 EEK ...
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Security

• The protocols are proven secure in the 
honest-but-curious model

• If a miner looks at its data it sees uniformly 
distributed values

• If two miners collude during a protocol, 
they can recover the secret values
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Works in the real world

• We have implemented it using C++

• The software consists of two parts

1) the data miner runtime server

2) controller library for creating clients

• Uses the RakNet fast networking library

• Runs (at least) on Linux, Mac OS X, Win XP
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Execution model

• Our processor is based on a stack machine

‣ The input is pushed on the stack

‣ The operation is executed

‣ The results are read from the stack

• The CPU also has a heap and a database

• Which basically make it Turing-complete
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Operation scheduling

• Operation execution is divided into rounds

‣ A round ends with message sending

• Single-round operations are called local

• Multi-round operations can be scheduled 
with a granularity of one round

‣ This allows sub-operations (calls)
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Benchmark operations

• We currently benchmark atomic 
operations and simple compositions

• Our current candidates are:

‣ scalar product

‣ vectorized comparison
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Benchmark methods

• We measure execution time in milliseconds

• Option 1: Measure at the client

‣ What a client sees.  Includes overhead.

• Option 2: Measure at the miners

‣ Exact computation time. No overhead.

• We have been using both methods



Experimental setup



Experimental setup

• Repeat each experiment a number of times



Experimental setup

• Repeat each experiment a number of times

• Throw away first 10% of results after the 
test program starts up.



Experimental setup

• Repeat each experiment a number of times

• Throw away first 10% of results after the 
test program starts up.

• This eliminates the effects of the network 
layer flow control algorithms.



Experimental setup

• Repeat each experiment a number of times

• Throw away first 10% of results after the 
test program starts up.

• This eliminates the effects of the network 
layer flow control algorithms.

• A real-life system is “always on” and 
doesn’t need flow calibration so often.
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Where does time go?

• We can group work done in a distributed 
system in three categories

1. Actual computation at the miners

2. Sending data to other miners

3. Receiving data from other miners

• Find out the truth by running experiments
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Direct implications

• Time required for sending network packets 
grows by little

• Time for receiving and interpreting 
network packets grows by little

• The computation time grows by little

• Waiting for data takes most of the time
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Why are we waiting?

• Waiting happens between rounds

• The miner has computed something

• The results have been sent out

• To continue, the miner must have the 
computation results from other miners
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What controls the delay?

• The delay is influenced by the following:

‣ network speed

‣ size of the packets

‣ number of packets

‣ organization of the protocol
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Network latency

• Test machines are on a 1 Gbps network

• Hard to optimize much further :)

• Reality is bound to be a lot worse anyway
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Packet size and count

• Big packets are hard to transmit

• Many packets create too much overhead

• Obviously, a balance is required

• Actually, two clever ideas can be derived:

‣ vectorization

‣ batched processing
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Vectorized operations
• A standard solution in CPU design

• Instead of doing a single operation at once, 
do many similar operations simultaneously

‣ multiply 100 000 values at the same time

• This optimizes packet count, but makes the 
packets bigger

• The performance increase is substantial



Vectorization is good
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Batched processing
• Also a standard solution in this area

• Instead of processing a lot of data at once, 
process a piece of it and send it to the next 
miner so it could start work earlier

• Decreases packet size, but increases count

• Balances the effects of vectorization

• Improves performance by about 10%
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Protocol organization

• Each round increases the waiting time

‣ Try to decrease the number of rounds?

• The temporal arrangement also matters

‣ Try to arrange the work so that miners 
have to wait as little as possible
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Number of rounds

• Example:  we replaced a logarithmic-time 
comparison protocol with a linear-time one

• The new protocol was 3-10 times faster

• It was also a lot more complex

• Decreasing the number of rounds in a 
protocol is harder
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Work instead of waiting

• We could build a better scheduler, which 
would do useful work instead of waiting

• It would run a protocol round only when 
all the needed inputs have arrived

• It could run computation for other queries 
while waiting for data

• We need more operations to run in parallel
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Parallel execution

• A program could run instructions in parallel

• Will give concurrent protocol instances...

• ...but the stack machine fails right there

• A synchronous machine will be needed

• We can also run queries for many clients at 
the same time (like a database server)
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Conclusions
• Waiting for computation inputs between 

rounds is the biggest performance killer

• Vectorization + batch processing provide a 
method for balancing network traffic

• Reducing the number of protocol rounds 
will give the biggest improvements

• Parallel execution will not improve speed, 
but it will improve throughput



That is all.


