
Optimizing execution time in a
distributed virtual processor

Dan Bogdanov
researcher / PhD student

Cybernetica / University of Tartu

Outline of the talk

1. The Sharemind virtual processor

2. The command processing pipeline

3. Chosen benchmarks

4. Optimization techniques

What is Sharemind?

Sharemind

Sharemind

• A privacy-preserving virtual machine that

Sharemind

• A privacy-preserving virtual machine that

‣ performs secure multi-party computation

Sharemind

• A privacy-preserving virtual machine that

‣ performs secure multi-party computation

‣ can add, multiply and compare integers

Sharemind

• A privacy-preserving virtual machine that

‣ performs secure multi-party computation

‣ can add, multiply and compare integers

‣ has a simple programming interface

Sharemind

• A privacy-preserving virtual machine that

‣ performs secure multi-party computation

‣ can add, multiply and compare integers

‣ has a simple programming interface

• Sharemind can be used for processing
private data without compromising it

Data collection

f 32 teacher Tallinn ...
Input data

Data collection

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h27
2

fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

Data collection

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h27
2

fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

No share reveals
anything about

the original data

Processing the data

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h272 fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

Processing the data

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h272 fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

Processing the data

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h272 fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

messages

Processing the data

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h272 fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

messages

No message reveals
anything about the data

Processing the data

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h272 fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

Processing the data

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h272 fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

gs32kq bvx2as huo2ei ...

09fgh2 bnv6sd 2yfhod ...

439fxj yvbwr2 l9sufg ...

Reading the results

j34 f2b7 271pgn
n

823tfbffsd2 ...

dha lcc7 nf62ng0 72v2ovgxfv ...

vjn h272 fjsfkha2 chdn7d2nd ...

First share of the data

Second share of the data

Third share of the data

gs32kq bvx2as huo2ei ...

09fgh2 bnv6sd 2yfhod ...

439fxj yvbwr2 l9sufg ...

Reading the results
First share of the data

Second share of the data

Third share of the data

gs32kq bvx2as huo2ei ...

09fgh2 bnv6sd 2yfhod ...

439fxj yvbwr2 l9sufg ...

Reading the results

gs32kq bvx2as huo2ei ...

09fgh2 bnv6sd 2yfhod ...

439fxj yvbwr2 l9sufg ...

Reading the results

Results
68% women 32% men average income 6350 EEK ...

Security

Security

• The protocols are proven secure in the
honest-but-curious model

Security

• The protocols are proven secure in the
honest-but-curious model

• If a miner looks at its data it sees uniformly
distributed values

Security

• The protocols are proven secure in the
honest-but-curious model

• If a miner looks at its data it sees uniformly
distributed values

• If two miners collude during a protocol,
they can recover the secret values

Works in the real world

Works in the real world

• We have implemented it using C++

Works in the real world

• We have implemented it using C++

• The software consists of two parts

Works in the real world

• We have implemented it using C++

• The software consists of two parts

1) the data miner runtime server

Works in the real world

• We have implemented it using C++

• The software consists of two parts

1) the data miner runtime server

2) controller library for creating clients

Works in the real world

• We have implemented it using C++

• The software consists of two parts

1) the data miner runtime server

2) controller library for creating clients

• Uses the RakNet fast networking library

Works in the real world

• We have implemented it using C++

• The software consists of two parts

1) the data miner runtime server

2) controller library for creating clients

• Uses the RakNet fast networking library

• Runs (at least) on Linux, Mac OS X, Win XP

The processing pipeline

Execution model

Execution model

• Our processor is based on a stack machine

Execution model

• Our processor is based on a stack machine

‣ The input is pushed on the stack

Execution model

• Our processor is based on a stack machine

‣ The input is pushed on the stack

‣ The operation is executed

Execution model

• Our processor is based on a stack machine

‣ The input is pushed on the stack

‣ The operation is executed

‣ The results are read from the stack

Execution model

• Our processor is based on a stack machine

‣ The input is pushed on the stack

‣ The operation is executed

‣ The results are read from the stack

• The CPU also has a heap and a database

Execution model

• Our processor is based on a stack machine

‣ The input is pushed on the stack

‣ The operation is executed

‣ The results are read from the stack

• The CPU also has a heap and a database

• Which basically make it Turing-complete

A generic computer

CPU

Memory

A generic computer

CPU

Memory

Instr

A generic computer

CPU

Memory

Instr

A generic computer

CPU

Memory

A generic computer

CPU

MemoryInput

A generic computer

CPU

Memory

Input

A generic computer

CPU

Memory

A generic computer

CPU

Memory

A generic computer

CPU

Memory

Result

A generic computer

CPU

Memory
Result

A generic computer

CPU

Memory

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

InstrInstrInstr

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

Instr

Instr

Instr

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

Input1

Input2

Input3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

Input1

Input2

Input3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

Result1

Result2

Result3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

Result1

Result2

Result3

The three little miners

D1

StorageVirtual processor

D2

D3

M2

M1

M3

Operation scheduling

Operation scheduling

• Operation execution is divided into rounds

Operation scheduling

• Operation execution is divided into rounds

‣ A round ends with message sending

Operation scheduling

• Operation execution is divided into rounds

‣ A round ends with message sending

• Single-round operations are called local

Operation scheduling

• Operation execution is divided into rounds

‣ A round ends with message sending

• Single-round operations are called local

• Multi-round operations can be scheduled
with a granularity of one round

Operation scheduling

• Operation execution is divided into rounds

‣ A round ends with message sending

• Single-round operations are called local

• Multi-round operations can be scheduled
with a granularity of one round

‣ This allows sub-operations (calls)

Chosen benchmarks

Benchmark operations

Benchmark operations

• We currently benchmark atomic
operations and simple compositions

Benchmark operations

• We currently benchmark atomic
operations and simple compositions

• Our current candidates are:

Benchmark operations

• We currently benchmark atomic
operations and simple compositions

• Our current candidates are:

‣ scalar product

Benchmark operations

• We currently benchmark atomic
operations and simple compositions

• Our current candidates are:

‣ scalar product

‣ vectorized comparison

Benchmark methods

Benchmark methods

• We measure execution time in milliseconds

Benchmark methods

• We measure execution time in milliseconds

• Option 1: Measure at the client

Benchmark methods

• We measure execution time in milliseconds

• Option 1: Measure at the client

‣ What a client sees. Includes overhead.

Benchmark methods

• We measure execution time in milliseconds

• Option 1: Measure at the client

‣ What a client sees. Includes overhead.

• Option 2: Measure at the miners

Benchmark methods

• We measure execution time in milliseconds

• Option 1: Measure at the client

‣ What a client sees. Includes overhead.

• Option 2: Measure at the miners

‣ Exact computation time. No overhead.

Benchmark methods

• We measure execution time in milliseconds

• Option 1: Measure at the client

‣ What a client sees. Includes overhead.

• Option 2: Measure at the miners

‣ Exact computation time. No overhead.

• We have been using both methods

Experimental setup

Experimental setup

• Repeat each experiment a number of times

Experimental setup

• Repeat each experiment a number of times

• Throw away first 10% of results after the
test program starts up.

Experimental setup

• Repeat each experiment a number of times

• Throw away first 10% of results after the
test program starts up.

• This eliminates the effects of the network
layer flow control algorithms.

Experimental setup

• Repeat each experiment a number of times

• Throw away first 10% of results after the
test program starts up.

• This eliminates the effects of the network
layer flow control algorithms.

• A real-life system is “always on” and
doesn’t need flow calibration so often.

Optimization techniques

Where does time go?

Where does time go?

• We can group work done in a distributed
system in three categories

Where does time go?

• We can group work done in a distributed
system in three categories

1. Actual computation at the miners

Where does time go?

• We can group work done in a distributed
system in three categories

1. Actual computation at the miners

2. Sending data to other miners

Where does time go?

• We can group work done in a distributed
system in three categories

1. Actual computation at the miners

2. Sending data to other miners

3. Receiving data from other miners

Where does time go?

• We can group work done in a distributed
system in three categories

1. Actual computation at the miners

2. Sending data to other miners

3. Receiving data from other miners

• Find out the truth by running experiments

Profiling scalar product

0 ms

375 ms

750 ms

1 125 ms

1 500 ms

5 100 1000 5000 10000 20000 40000 60000 80000100000

T
im

e
(m

ill
is

ec
on

ds
)

The number of elements in the vector

Other Receive Wait for incoming Send

Direct implications

Direct implications

• Time required for sending network packets
grows by little

Direct implications

• Time required for sending network packets
grows by little

• Time for receiving and interpreting
network packets grows by little

Direct implications

• Time required for sending network packets
grows by little

• Time for receiving and interpreting
network packets grows by little

• The computation time grows by little

Direct implications

• Time required for sending network packets
grows by little

• Time for receiving and interpreting
network packets grows by little

• The computation time grows by little

• Waiting for data takes most of the time

Why are we waiting?

Why are we waiting?

• Waiting happens between rounds

Why are we waiting?

• Waiting happens between rounds

• The miner has computed something

Why are we waiting?

• Waiting happens between rounds

• The miner has computed something

• The results have been sent out

Why are we waiting?

• Waiting happens between rounds

• The miner has computed something

• The results have been sent out

• To continue, the miner must have the
computation results from other miners

What controls the delay?

What controls the delay?

• The delay is influenced by the following:

What controls the delay?

• The delay is influenced by the following:

‣ network speed

What controls the delay?

• The delay is influenced by the following:

‣ network speed

‣ size of the packets

What controls the delay?

• The delay is influenced by the following:

‣ network speed

‣ size of the packets

‣ number of packets

What controls the delay?

• The delay is influenced by the following:

‣ network speed

‣ size of the packets

‣ number of packets

‣ organization of the protocol

Network latency

Network latency

• Test machines are on a 1 Gbps network

Network latency

• Test machines are on a 1 Gbps network

• Hard to optimize much further :)

Network latency

• Test machines are on a 1 Gbps network

• Hard to optimize much further :)

• Reality is bound to be a lot worse anyway

Packet size and count

Packet size and count

• Big packets are hard to transmit

Packet size and count

• Big packets are hard to transmit

• Many packets create too much overhead

Packet size and count

• Big packets are hard to transmit

• Many packets create too much overhead

• Obviously, a balance is required

Packet size and count

• Big packets are hard to transmit

• Many packets create too much overhead

• Obviously, a balance is required

• Actually, two clever ideas can be derived:

Packet size and count

• Big packets are hard to transmit

• Many packets create too much overhead

• Obviously, a balance is required

• Actually, two clever ideas can be derived:

‣ vectorization

Packet size and count

• Big packets are hard to transmit

• Many packets create too much overhead

• Obviously, a balance is required

• Actually, two clever ideas can be derived:

‣ vectorization

‣ batched processing

Vectorized operations

Vectorized operations
• A standard solution in CPU design

Vectorized operations
• A standard solution in CPU design

• Instead of doing a single operation at once,
do many similar operations simultaneously

Vectorized operations
• A standard solution in CPU design

• Instead of doing a single operation at once,
do many similar operations simultaneously

‣ multiply 100 000 values at the same time

Vectorized operations
• A standard solution in CPU design

• Instead of doing a single operation at once,
do many similar operations simultaneously

‣ multiply 100 000 values at the same time

• This optimizes packet count, but makes the
packets bigger

Vectorized operations
• A standard solution in CPU design

• Instead of doing a single operation at once,
do many similar operations simultaneously

‣ multiply 100 000 values at the same time

• This optimizes packet count, but makes the
packets bigger

• The performance increase is substantial

Vectorization is good

0 ms

500 ms

1 000 ms

1 500 ms

2 000 ms

5 100 1000 5000 10000 20000 40000 60000 80000 100000

T
im

e
in

 m
ill

is
ec

on
ds

Number of elements in the vector

Sharemind 1 MIPS computer (~1970s)

Batched processing

Batched processing
• Also a standard solution in this area

Batched processing
• Also a standard solution in this area

• Instead of processing a lot of data at once,
process a piece of it and send it to the next
miner so it could start work earlier

Batched processing
• Also a standard solution in this area

• Instead of processing a lot of data at once,
process a piece of it and send it to the next
miner so it could start work earlier

• Decreases packet size, but increases count

Batched processing
• Also a standard solution in this area

• Instead of processing a lot of data at once,
process a piece of it and send it to the next
miner so it could start work earlier

• Decreases packet size, but increases count

• Balances the effects of vectorization

Batched processing
• Also a standard solution in this area

• Instead of processing a lot of data at once,
process a piece of it and send it to the next
miner so it could start work earlier

• Decreases packet size, but increases count

• Balances the effects of vectorization

• Improves performance by about 10%

Protocol organization

Protocol organization

• Each round increases the waiting time

Protocol organization

• Each round increases the waiting time

‣ Try to decrease the number of rounds?

Protocol organization

• Each round increases the waiting time

‣ Try to decrease the number of rounds?

• The temporal arrangement also matters

Protocol organization

• Each round increases the waiting time

‣ Try to decrease the number of rounds?

• The temporal arrangement also matters

‣ Try to arrange the work so that miners
have to wait as little as possible

Number of rounds

Number of rounds

• Example: we replaced a logarithmic-time
comparison protocol with a linear-time one

Number of rounds

• Example: we replaced a logarithmic-time
comparison protocol with a linear-time one

• The new protocol was 3-10 times faster

Number of rounds

• Example: we replaced a logarithmic-time
comparison protocol with a linear-time one

• The new protocol was 3-10 times faster

• It was also a lot more complex

Number of rounds

• Example: we replaced a logarithmic-time
comparison protocol with a linear-time one

• The new protocol was 3-10 times faster

• It was also a lot more complex

• Decreasing the number of rounds in a
protocol is harder

Work instead of waiting

Work instead of waiting

• We could build a better scheduler, which
would do useful work instead of waiting

Work instead of waiting

• We could build a better scheduler, which
would do useful work instead of waiting

• It would run a protocol round only when
all the needed inputs have arrived

Work instead of waiting

• We could build a better scheduler, which
would do useful work instead of waiting

• It would run a protocol round only when
all the needed inputs have arrived

• It could run computation for other queries
while waiting for data

Work instead of waiting

• We could build a better scheduler, which
would do useful work instead of waiting

• It would run a protocol round only when
all the needed inputs have arrived

• It could run computation for other queries
while waiting for data

• We need more operations to run in parallel

Parallel execution

Parallel execution

• A program could run instructions in parallel

Parallel execution

• A program could run instructions in parallel

• Will give concurrent protocol instances...

Parallel execution

• A program could run instructions in parallel

• Will give concurrent protocol instances...

• ...but the stack machine fails right there

Parallel execution

• A program could run instructions in parallel

• Will give concurrent protocol instances...

• ...but the stack machine fails right there

• A synchronous machine will be needed

Parallel execution

• A program could run instructions in parallel

• Will give concurrent protocol instances...

• ...but the stack machine fails right there

• A synchronous machine will be needed

• We can also run queries for many clients at
the same time (like a database server)

Conclusions

Conclusions
• Waiting for computation inputs between

rounds is the biggest performance killer

Conclusions
• Waiting for computation inputs between

rounds is the biggest performance killer

• Vectorization + batch processing provide a
method for balancing network traffic

Conclusions
• Waiting for computation inputs between

rounds is the biggest performance killer

• Vectorization + batch processing provide a
method for balancing network traffic

• Reducing the number of protocol rounds
will give the biggest improvements

Conclusions
• Waiting for computation inputs between

rounds is the biggest performance killer

• Vectorization + batch processing provide a
method for balancing network traffic

• Reducing the number of protocol rounds
will give the biggest improvements

• Parallel execution will not improve speed,
but it will improve throughput

That is all.

