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Overview

I Motivation

I General overview of state space reduction techniques
I Symmetry reduction techniques

I Equivalent markings in Petri Nets [Jensen 85]
I Scalar sets in model checking [Ip and Dill 93]
I Heap canonization [Iosif 2002]
I Extraction of channel diagrams [Miller and Donaldson 2007]
I State graph isomorphism [Rensink 2006, Veanes et al 2007]

I Summary och ToDo



Motivation

I Exploit symmetries for reducing the required amount of
storage in automatic exploration of models of systems.



Automated Analysis and Verification

I There is a variety of automated techniques available.
I We look at different techniques used in:

I Explicit state model checking
I Model-based testing

I Model checking relies on a formal model of the system and
model-based testing on a formal model of the specification
that can be automatically analysed.



Modelling Formalisms

We look at three modelling formalisms that are created for
modelling software systems with automation in mind:

I Timed Automata, the modelling formalism of the real-time
model checker Uppaal and the implementation of scalar sets

I Model programs that use C# and a custom library called
NModel for model-based testing

I Graphs, as in Groove

I ...



State Space Explosion

I The techniques of model checking and model-based testing
involve traversing the state space of the model.

I There may be many states, for example, there are:
I an estimated 1081 atoms in the Universe
I more than 101200000 possible states in a processor with 4 MB

of cache

I Even abstract models can easily have state spaces that can not
be enumerated with reasonable amount of time and resources.

I We need to reduce the number of states to be traversed to be
successful



State Space Reduction Techniques

I Partial order reductions

I Symmetry reductions

I Symbolic methods

I Compositional methods
I Incomplete techniques

I hash compaction
I bitstate hashing, Bloom filters



Scalar Sets

I Scalar set is an integer subrange with restricted operations.

I Let us look at an example!



Model Programs

I C# programs that use the API provided by NModel

I Have built in abstract data types: Sets, Maps, Bags

I Can contain objects with arbitrary structure

I Model programs use non-determinism on action selection and
action argument selection level

I Model program state is the configuration of all the variables
between actions.



Model Programs: State Space of 3 Dining Philosophers
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Program State as a Graph
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State Graph Isomorphism
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I Works well in a highly symmetric example

I Is applicable for more symmetries than scalar sets

I Is an important approach as there is an independent
implementation by Arend Rensink in GROOVE



Summary

I Symmetry reduction provides an exact abstraction

I Of all currently known methods, state graph isomorphism is
the most general, but is also quite resource intensive

I To Do
I The statically symmetric topology could be remembered also

for the isomorphism checking
I Experiment with improving the efficiency of isomorphism

checking. One idea: use multiset discrimination based
approach by Paige and Tarjan as suggested by Henglein



Thank you for your attention!
Questions?


