
Principles of Symmetry Reduction
for Verification and Testing

Sümmeetriareduktsioonide põhimõtted verifitseerimises ja testis

Juhan Ernits

Dept. of Comp. Sci / Inst. of Cybernetics
Tallinn University of Technology

Pesa @ Põlva 25.01.2008



Overview

I Motivation

I General overview of state space reduction techniques
I Symmetry reduction techniques

I Equivalent markings in Petri Nets [Jensen 85]
I Scalar sets in model checking [Ip and Dill 93]
I Heap canonization [Iosif 2002]
I Extraction of channel diagrams [Miller and Donaldson 2007]
I State graph isomorphism [Rensink 2006, Veanes et al 2007]

I Summary och ToDo



Motivation

I Exploit symmetries for reducing the required amount of
storage in automatic exploration of models of systems.



Automated Analysis and Verification

I There is a variety of automated techniques available.
I We look at different techniques used in:

I Explicit state model checking
I Model-based testing

I Model checking relies on a formal model of the system and
model-based testing on a formal model of the specification
that can be automatically analysed.



Modelling Formalisms

We look at three modelling formalisms that are created for
modelling software systems with automation in mind:

I Timed Automata, the modelling formalism of the real-time
model checker Uppaal and the implementation of scalar sets

I Model programs that use C# and a custom library called
NModel for model-based testing

I Graphs, as in Groove

I ...



State Space Explosion

I The techniques of model checking and model-based testing
involve traversing the state space of the model.

I There may be many states, for example, there are:
I an estimated 1081 atoms in the Universe
I more than 101200000 possible states in a processor with 4 MB

of cache

I Even abstract models can easily have state spaces that can not
be enumerated with reasonable amount of time and resources.

I We need to reduce the number of states to be traversed to be
successful



State Space Reduction Techniques

I Partial order reductions

I Symmetry reductions

I Symbolic methods

I Compositional methods
I Incomplete techniques

I hash compaction
I bitstate hashing, Bloom filters



Scalar Sets

I Scalar set is an integer subrange with restricted operations.

I Let us look at an example!



Model Programs

I C# programs that use the API provided by NModel

I Have built in abstract data types: Sets, Maps, Bags

I Can contain objects with arbitrary structure

I Model programs use non-determinism on action selection and
action argument selection level

I Model program state is the configuration of all the variables
between actions.



Model Programs: State Space of 3 Dining Philosophers
0

1

Init()

4

TakeLeft(Philosopher(2))

3

TakeLeft(Philosopher(3))

2

TakeLeft(Philosopher(1))

13

TakeLeft(Philosopher(1))

20

TakeRight(Philosopher(2))

7

TakeLeft(Philosopher(3))

6

TakeLeft(Philosopher(1))

5

TakeRight(Philosopher(3))TakeLeft(Philosopher(2))

TakeLeft(Philosopher(3))

12

TakeRight(Philosopher(1))

TakeLeft(Philosopher(2))

10

TakeLeft(Philosopher(2))

15

TakeRight(Philosopher(1))

14

ReleaseLeft(Philosopher(1))

TakeLeft(Philosopher(3))

19

TakeRight(Philosopher(2))

TakeLeft(Philosopher(3))

22

ReleaseLeft(Philosopher(2))

ReleaseRight(Philosopher(2))

25

TakeRight(Philosopher(1))

ReleaseRight(Philosopher(2))

26

ReleaseLeft(Philosopher(1))

ReleaseRight(Philosopher(2))

21

ReleaseRight(Philosopher(1))

ReleaseRight(Philosopher(1))

16

TakeLeft(Philosopher(3))

ReleaseRight(Philosopher(2))

TakeLeft(Philosopher(1))

ReleaseRight(Philosopher(1))

17

TakeRight(Philosopher(3))

18

ReleaseLeft(Philosopher(3))ReleaseRight(Philosopher(1))

ReleaseRight(Philosopher(3))

8

ReleaseRight(Philosopher(1))ReleaseLeft(Philosopher(3))

9

TakeLeft(Philosopher(2))

ReleaseRight(Philosopher(3))

11

TakeLeft(Philosopher(2))

ReleaseLeft(Philosopher(3))

ReleaseRight(Philosopher(3))

23

TakeRight(Philosopher(2))

ReleaseRight(Philosopher(3))

24

ReleaseLeft(Philosopher(2))

TakeLeft(Philosopher(1))

ReleaseLeft(Philosopher(2))ReleaseRight(Philosopher(3))ReleaseRight(Philosopher(2))

ReleaseLeft(Philosopher(1))

TakeLeft(Philosopher(1)) TakeRight(Philosopher(3))



Program State as a Graph

Root()

Set(1)

phils(3)

Philosopher(3)

in

Philosopher(1)

in

Philosopher(2)

in

Fork(3)

left

Fork(1)

right

Fork(2)

rightleftright lefthasMe



State Graph Isomorphism

Root()

Set(1)

phils(3)

Philosopher(3)

in

Philosopher(1)

in

Philosopher(2)

in

Fork(3)

left

Fork(1)

right

Fork(2)

rightleftright lefthasMe

∼=

Root()

Set(1)

phils(3)

Philosopher(1)

in

Philosopher(2)

in

Philosopher(3)

in

Fork(1)

left

Fork(2)

right

Fork(3)

rightleftleftrighthasMe

I Works well in a highly symmetric example

I Is applicable for more symmetries than scalar sets

I Is an important approach as there is an independent
implementation by Arend Rensink in GROOVE



Summary

I Symmetry reduction provides an exact abstraction

I Of all currently known methods, state graph isomorphism is
the most general, but is also quite resource intensive

I To Do
I The statically symmetric topology could be remembered also

for the isomorphism checking
I Experiment with improving the efficiency of isomorphism

checking. One idea: use multiset discrimination based
approach by Paige and Tarjan as suggested by Henglein



Thank you for your attention!
Questions?


