
Deductive Verification of C

Oleg Mürk

KeY Project

● Dynamic logic for imperative languages

● Java(Card), C, ...

● Interactive proof assistant

● Usability, Automation, Easy to learn

● Operation contracts & invariants

My Work

● C Dynamic Logic (CDL)
– ANSI C

● Portable, type-safe

– Specializations
● MISRA-C
● IA-32
● ...

● Language variability of KeY

● KeY-C

Dynamic Logic

● (Typed) First Order Logic

● Modalities:

● Rigid vs Non-rigid Symbols

● Kripke Structure

● Updates:

● Sequent Calculus

〈P 〉 , [P]

{ value obj ≔ val || next≔next1 }

CDL: Challenges

● Hierarchical data structures

● Integers have multiple representations

● Objects can be deleted

● Pointers to members, local variables

● (Non-deterministic expressions)

● (Untyped memory access)

CDL: Challenges

● Vague specification
– No official type system
– No official formal semantics

● Lots of underspecification

● Some non-determinism

Memory Model

struct Node {
int elem;
struct Child child;
struct Node* next;

};

Type-Safe Heap

$Node

SINT@

$Child

...

Non-rigid

Rigid (injection) Rigid (injection)

Rigid function (injection)

$Node@

Non-rigid

$Node::elem :
$NodeSINT@

$Node::next :
$Node$Node@

SINT@::value : SINT@SINT $Node@::value : $Node@$Node

$Node::<lookup> : int$Node

Current Status

● Types
– Integer, Pointer, Scalar, Struct, Array

● WHILE language with
– C declarations
– C expressions
– Compound statements
– If, while statements

Example Program

int count = 0;
struct Node* ptr = ifirst;
while (ptr != (struct Node*)0) {

count++;
ptr = ptr->next;

}
int* arr = (int*)0;
if (count > 0) {

...
}
*ocount = count;
*oarr = arr;

arr = (int*)calloc(count, sizeof(int));
if (arr != (int*)0) {

struct Node* nptr = ifirst;
int index = 0;
while (index < count) {

arr[index] = nptr->elem;
struct Node* oldPtr = nptr;
nptr = nptr->next;
free(oldPtr);
index++;

}
}

And Now...

KeY-C Demo

KeY Language Variability

KeY Core

Language
Plugin

EnvironmentServicesProfile

KeY Language Variability

● Logic
– Type System
– Signature

● Program
– Type System
– AST, Parser, Printer
– Visitors-- (Walkers)
– Matching
– Instantiation

● Calculus
– Rules, Strategy

Further Work

● Language features
– Function calls, pointers
– Translation units
– Jump statements

● Heap Models
– Unions
– Deep Copy
– Untyped Memory Access

● Static Analysis of Aliasing

Sources of Information

● KeY Project: http://www.key-project.org

● Oleg Mürk. Deductive Verification of C Programs in
KeY. MSc thesis.

● Oleg Mürk, Daniel Larsson, Reiner Hähnle. A Dynamic
Logic for Deductive Verification of C Programs with
KeY-C. C/C++ Verification Workshop at IFM 2007.

● Oleg Mürk, Daniel Larsson, Reiner Hähnle. KeY-C: A
Tool for Verification of C Programs. Conference on
Automated Deduction (CADE-21).

● My home page: http://oleg.myrk.name

http://www.key-project.org/
http://oleg.myrk.name/

Thank You!

