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Proof search for intuitionistic propositional logic

@ In functional programming, we infer types for terms. What
about inferring terms for types?
Then we don't have to program?

@ Via Curry-Howard, simply-typed lambda calculus is the same
as intuitionistic propositional logic (IPL):
types = formulae, lambda-terms = proofs.

@ So this amounts to proof search.

@ Tough: While proof search for CPL is NP-complete, this proof
search for IPL is PSPACE-complete.



Natural deduction system for IPL
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@ Proofs respecting the e/i annotations — $-normal proofs
proofs respecting the atomic midformula condition —
n-long-normal proofs



.with lambda terms
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Proof of S
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Multiple proofs of N
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Sequent calculus
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@ Note the choice of A in favor of C and the contraction
(duplication) of A D B in the D L rule.

@ Proofs without cut — #-normal proofs,
proofs respecting the atomic initformula condition —
n-long-normal proofs



..with lambda terms
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Proof of S
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How to search for a proof?

@ Choice between

e natural deduction vs sequent calculus
o backward (root-first) search vs forward (leaves-first) search

The two directions don’t mean the same thing for natural
deduction and sequent calculus:

o forward with & rules = backward with £ rules.

e Good idea to search for normal proofs (every provable formula
has a normal proof).

Good idea to realize that for normal proofs we have a
(polarized) subformula property.

Today:

o backward search in sequent calculus (well-known)
o forward search in natural deduction (little-known)



Backward search in sequent calculus

Rules except D L permutable, so any order of applying them
is give the same.

Backtracking necessary because of the choice in D L.

Good idea to minimize its effect by postponing applications of
this rule.

In addition, because of the contraction in D L, proof search
may loop.
Solutions:

o loop-detection
e switching to a contraction-free sequent calculus

Loop-detection: If " C T, then proof of ' — C not
attempted in a proof attempt of [ — C.



Necessity of backtracking
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The problem of looping
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Contraction-free sequent calculus (Vorobev)

(also Hudelmaier, Dyckhoff)
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@ This does not find all proofs, only some proof of every
provable formula.



.with lambda terms
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Djinn

@ A lambda-term synthesizer by Lennart Augustsson based on
backward search in contraction-free sequent calculus.



Forward search in natural deduction

(Known as inverse method, Mints-style resolution, Stalmarck’s
method)

@ With forward search, where should one start, if any sequent
' C with C €T qualifies as an axiom to start with?

o Idea: take the polarized subformula property of ND seriously.

e For any goal formula G, organize search in a ND calculus
specialized for this formula.
o Notation:
o egoals(G) — negative subformulas of G (e-goals)
e igoals(G) — positive subformulas of G (i-goals)
o hyps(G) — antecedents of positive subimplications of G

(hypotheses)
(these are a subset of the negative subformulas)



Goal-specialized natural deduction system
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@ In this system, one can only prove sequents
e C where I' C hyps(G) and C € egoals(G)
and I' F; C where I' C hyps(G) and C € igoals(G).



Specialized natural deduction system for S

e Main goal:
G=(prgDr)D>((PDq)D(pDr))
@ e- and i-goals:
egoals(G) ={pAqgDr,pDq,p,q,r}
igoals(G) = {p,q,r,pAq,pDr,(pDq)D(pDr),
(PAgDr)D((PDq)D(pDr))}
@ Hypotheses:
hyps(G) ={pAg>Dr,p>Daq,p}
@ Example rules:
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Forward search in natural deduction, ctd

@ Basic idea now:
Generate in forward manner all provable sequents ' . C,
I+ C. If b G is generated, a proof has been found.

@ More detailed:
For any I' C hyps(G) produce all of its e- and i-conclusions in
a separate process.
If an i-goal B is achieved in the process for I'; A and
A D B € igoals(G), communicate this to the process for I

o With proper organization, this takes time O(N - 2M) where
o N = size of G (# of subformula occurrences)
o M = |hyps(G)| (# of positive subimplications of G)
@ Bounding the interdependence of hypotheses (which gives
incompleteness), we get O(N).

@ Practically, it makes sense to increase the bound iteratively.



Forward search in natural deduction, ctd

Technical details:

Work with names of goals and rules.
Arrange for these static datastructures (in each process):

@ an association to each goal the list of rules it is a premise for
@ an association to each rule the goal it concludes

Control generation with these dynamic datastructures (in each
process):

e a queue of rules ready to fire,
@ an association to each goal if it has been derived
@ an association to each rule the list of its premise goals not yet
derived
@ Generation: Initialize the dynamic datastructures. While
queue nonempty, dequeue a rule and fire, i.e., update the
dynamic datastructures.



Stalmarck’'s method

@ Proof search for classical propositional logic based on the
same ideas.

@ Basis: A natural deduction system with signed formulae and a
dilemma rule to account for bivalence. Forward search in a
goal-specialized version.



