Intuitionistic propositional logic and proof search:
What you could consider knowing

Tarmo Uustalu
Institute of Cybernetics

Theory Days at Polva, 25-27 Jan. 2008

Proof search for intuitionistic propositional logic

@ In functional programming, we infer types for terms. What
about inferring terms for types?
Then we don't have to program?

@ Via Curry-Howard, simply-typed lambda calculus is the same
as intuitionistic propositional logic (IPL):
types = formulae, lambda-terms = proofs.

@ So this amounts to proof search.

@ Tough: While proof search for CPL is NP-complete, this proof
search for IPL is PSPACE-complete.

Natural deduction system for IPL

Cerl Catom Tk C

rr.c P e C mid
reT T

[F. AAB
Troa /o iAo THA
[FeAoAAL o FHi Ao A Ay

M e A 1

[F.ADB FHA Ak B
. B °¢ trase -7t

@ Proofs respecting the e/i annotations — $-normal proofs
proofs respecting the atomic midformula condition —
n-long-normal proofs

.with lambda terms

z:CeTl h
Fez: C yp

Mhet:AgAAL
MFemot: Ao
MNket: Ag AAL
[Femt: A
Fet:ADB ThHu:A
[Fetu:B

NEy

AEL

D&

Catom Thet:C .
Fet:C mi

0.7

M to: A0 ThH A

I (to, tl) cAg N Ag

Nx:AKt: B T
FHAxt:ADB

VA

Proof of S

Fe hy_z
Fepog P THP™
hyp >E
ke . Feq |
- mid —jj*md
hyp L. p iq/\I
.FepANgDr .”hpAqu
o bFer

pAanpophrm
PAGDr,pDqgFipDr

Y ELICE EICEL
Fi(pAgDr)D((PDq)D(pDr))

Multiple proofs of N

hyp
mid
o7

PO pP,pPrep
pOp,ptip
pOpEipDp
Fi(p2>p)D(PDP)

———h
popprep 00
———— mid

POp,pFepDp pPOp,pEip
D&
pOp,ptep
pPOp,pEip
pOpkipDp
Fi(pDpP)D(PDP)

hyp

mid

A

——— h
poOpprep ¥
mid

pOp,ptepDp pophp35
POpP,PFep .
popprip ™
: D&

hyp
popprepop

pOp,ptep

pPOp,pFip
pOpFipDp
F(p2pP)D(PDP)

mid
DA
DA

Sequent calculus

Catom CeTl .. r-c rcrA
rec Init rEA cut
IrEC o
rTrc £ et 'R

[Ao, AL C FEAy TFA

F A AAFC \E FEAgnA, R

ASBFAC TBFC . TAFB

LASBFC - FASB -~

@ Note the choice of A in favor of C and the contraction
(duplication) of A D B in the D L rule.

@ Proofs without cut — #-normal proofs,
proofs respecting the atomic initformula condition —
n-long-normal proofs

..with lambda terms

Catom z:CeTl .. Fr=t:C lNz:Ckhu:A t
Nz:C Init M-uft/z]: A <t
_rre:C
I_,X:Tl—t:CTL rl—();TTR
loyo Aoy Atk C FTHto:Ag THt:A

AL AR
Mx:AgNALF t[7rox/y0][7r1 X/y1] : C I+ (to, tl) Ag AN Ay

Nx:ADBFt:A Iy:Bru:C r Mx:AFt:B
Mx:A>BFuxt/y]:C FFoxt.A>B -~

Proof of S

init init
pANGqDr,pDq,pkp pAanquDﬁ
pANGDr,pDq,ptgq

pAgqOrpOgpFp
pAgDr,pDqpkpAq N rrpo>qphkr
AgDr,pDqg,pkr
pp/\ qu r,pp:) qql—ppDr OR
pPAGOrF(poa)D(por) ~
F(pAgDr)D((PDq)D(pDr))

init

L

How to search for a proof?

@ Choice between

e natural deduction vs sequent calculus
o backward (root-first) search vs forward (leaves-first) search

The two directions don’t mean the same thing for natural
deduction and sequent calculus:

o forward with & rules = backward with £ rules.

e Good idea to search for normal proofs (every provable formula
has a normal proof).

Good idea to realize that for normal proofs we have a
(polarized) subformula property.

Today:

o backward search in sequent calculus (well-known)
o forward search in natural deduction (little-known)

Backward search in sequent calculus

Rules except D L permutable, so any order of applying them
is give the same.

Backtracking necessary because of the choice in D L.

Good idea to minimize its effect by postponing applications of
this rule.

In addition, because of the contraction in D L, proof search
may loop.
Solutions:

o loop-detection
e switching to a contraction-free sequent calculus

Loop-detection: If " C T, then proof of ' — C not
attempted in a proof attempt of [— C.

Necessity of backtracking

unprovable :
ros,pD>q,pkr,d s,pD>q,pkgq
ros,p>q,pkgq -

L

ro>s,poqpkp mrD&qugz
ros,p>q,ptgq

nit

The problem of looping

loop
pOpkp pkp
pOpkp

init

oL

Contraction-free sequent calculus (Vorobev)

(also Hudelmaier, Dyckhoff)

Replace rule
NA>DBFA I,BEC

FTASDBFC oL

with rules

Aatom Ae Tl TI,B-C
LASBFC > Latom

rBFC
FT>BFC "
r,D03(DlDB)|—C
FDoADiDBFC
rMESB,DFE T,B-C

N(D>E)yDBFC

Lt

D L

D L5

@ This does not find all proofs, only some proof of every
provable formula.

.with lambda terms

Replace rule
NNx:ADBFt:A T,y:BrFu:C r
Mx:ADBFulxt/y]: C -
with rules
Aatom z:Ae T I',y:BI—u:CDL
Mx:ADBFu[xz/y]: C atom
y:BFu:
% u:C -

Mx:TDOBFuly()/x]: C -
r,y:DoD(DlDB)l—u:C

I,x:DgADy DBt uAzy(moz) (miz)/x]: C

MNx:E>B,z:DFs:E T,y:Bru:C 5
M,x:(DD>E)DBF ulx(Azs[Awx(A-w)])/x])/y]: C

D LA

L5

Djinn

@ A lambda-term synthesizer by Lennart Augustsson based on
backward search in contraction-free sequent calculus.

Forward search in natural deduction

(Known as inverse method, Mints-style resolution, Stalmarck’s
method)

@ With forward search, where should one start, if any sequent
' C with C €T qualifies as an axiom to start with?

o Idea: take the polarized subformula property of ND seriously.

e For any goal formula G, organize search in a ND calculus
specialized for this formula.
o Notation:
o egoals(G) — negative subformulas of G (e-goals)
e igoals(G) — positive subformulas of G (i-goals)
o hyps(G) — antecedents of positive subimplications of G

(hypotheses)
(these are a subset of the negative subformulas)

Goal-specialized natural deduction system

I C hyps(G) Cerh C atom C €igoals(G) T+, C
. C yp rC mid
T € igoals(G)
T
. AAB
T a /o Ao AAp €igoals(G) TH Ay T A
) [Ag A A N
Fl—er/\Al AE i 710 1
M e Ay !
(FeADB THA AD B cigoals(G) T,AF B
M. B - rA>B

@ In this system, one can only prove sequents
e C where I' C hyps(G) and C € egoals(G)
and I' F; C where I' C hyps(G) and C € igoals(G).

Specialized natural deduction system for S

e Main goal:
G=(prgDr)D>((PDq)D(pDr))
@ e- and i-goals:
egoals(G) ={pAqgDr,pDq,p,q,r}
igoals(G) = {p,q,r,pAq,pDr,(pDq)D(pDr),
(PAgDr)D((PDq)D(pDr))}
@ Hypotheses:
hyps(G) ={pAg>Dr,p>Daq,p}
@ Example rules:

FChyps(G) THp Thig
FHipAg 4

FChyps(G) ThEepAgDr THpAg
Mo r -

7z

£

Forward search in natural deduction, ctd

@ Basic idea now:
Generate in forward manner all provable sequents ' . C,
I+ C. If b G is generated, a proof has been found.

@ More detailed:
For any I' C hyps(G) produce all of its e- and i-conclusions in
a separate process.
If an i-goal B is achieved in the process for I'; A and
A D B € igoals(G), communicate this to the process for I

o With proper organization, this takes time O(N - 2M) where
o N = size of G (# of subformula occurrences)
o M = |hyps(G)| (# of positive subimplications of G)
@ Bounding the interdependence of hypotheses (which gives
incompleteness), we get O(N).

@ Practically, it makes sense to increase the bound iteratively.

Forward search in natural deduction, ctd

Technical details:

Work with names of goals and rules.
Arrange for these static datastructures (in each process):

@ an association to each goal the list of rules it is a premise for
@ an association to each rule the goal it concludes

Control generation with these dynamic datastructures (in each
process):

e a queue of rules ready to fire,
@ an association to each goal if it has been derived
@ an association to each rule the list of its premise goals not yet
derived
@ Generation: Initialize the dynamic datastructures. While
queue nonempty, dequeue a rule and fire, i.e., update the
dynamic datastructures.

Stalmarck’'s method

@ Proof search for classical propositional logic based on the
same ideas.

@ Basis: A natural deduction system with signed formulae and a
dilemma rule to account for bivalence. Forward search in a
goal-specialized version.

