
Two views on cryptographic reductions

Closing the gap between cryptography

and program analysis

Sven Laur∗

slaur@tcs.hut.fi

Helsinki University of Technology

Fools rush in where angels fear to tread.

... Although a construction of complex protocols is clearly an engineering
task, security analysis of such protocols often resembles to witchcraft;
sometimes the results are clearly wrong or too vague. Hence, many famous
cryptographers have tried to come up with rigorous methods. Nevertheless,
we still do not have formal machine verifiable methodology that is common
in other engineering disciplines.

The Root of All Evil

What is conditional probability?

Consider a simplistic algorithm

Obfuscate(x) :









if x = 0

then y ← 1

else y ← {0, 1} /* y is chosen randomly */

return y

What is the probability that x = 1 if y = 1?

(a) Pr [x = 1|y = 1] = 0

(b) Pr [x = 1|y = 1] = 1
3

(c) Pr [x = 1|y = 1] = 1

Theory Days, Rõuge, 26 Jan 2007 1

Bayes Rule revisited

Pr [A|B] :=
Pr [B ∧ A]

Pr [B]
=

Pr [B|A] · Pr [A]
∑

APr [B|A] · Pr [A]

As the conditional probability depends on Pr [A], it is dangerous to directly
reason about Pr [A|B]:

• Pr [A] can be unintentionally changed during the argumentation.

• At the end of security analysis we obtain unconditional probabilities.

– At some point we must multiply the result with Pr [B].

– We can work directly with joint probabilities Pr [A ∧ B].

Theory Days, Rõuge, 26 Jan 2007 2

Challenger-Centric Approach

Challenger-centric security game

Let for any t-time adversary A = (A1, A2)

AdvIND−CPA(A) = Pr
[
GA

IND−CPA = 1
]
≤ 1

2 + ε

where

GA

IND−CPA :











(sk, pk)← Gen

(m0, m1, σ)← A1(pk)

i← {0, 1} , c← Encpk(mi)

if A2(σ, c) = i then return 1

else return 0

Theory Days, Rõuge, 26 Jan 2007 3

A simple example

Bound the success of the following lets-try-again game G?

GB
? :


















(sk, pk)← Gen, m← {0, 1} , c← Encpk(m)

(b, m0,m1, σ)← B1(pk, c)

if b = ⊥ then
[

i← {0, 1} , c← Encpk(mi)

if B2(σ, c) = i then return 1 else return 0

else if b = m then return 1

else return 0

provided that AdvIND−CPA(A) ≤ 1
2 + ε for any t-time A.

Theory Days, Rõuge, 26 Jan 2007 4

Security proof

The game G? has very different structure from GIND−CPA. Still:

• Pr [B2(σ, c) = i|b = ⊥] ≤ 1
2 + ε or (B1,B2) wins the IND-CPA game.

• Similarly, Pr [(b,m1, m2, σ)← B1(pk, c) : b = m|b 6= ⊥] ≤ 1
2 + ε or B1

with a trivial sampler m1 = 0, m2 = 1, σ = pk wins the IND-CPA game.

Putting all together, we get

Pr
[
GB

? = 1
]
≤Pr [b = ⊥] · Pr [B2(σ, c) = i|b = ⊥]

+ Pr [b 6= ⊥] · Pr [B1(pk, c) = m|b 6= ⊥]

≤Pr [b = ⊥] · (1
2 + ε) + Pr [b 6= ⊥] · (1

2 + ε)

≤ 1
2 + ε .

Theory Days, Rõuge, 26 Jan 2007 5

Second attempt: Challenger-centric reduction

Main problem. The game G? has very different structure from GIND−CPA.

• We must guess what attack path B1 chooses.

• For a fixed guess, set up the correct IND-CPA game.

• Finally, analyse the success probability without errors.

Main consequence.

Such reductions cannot be easily automatically generated nor verified.

Theory Days, Rõuge, 26 Jan 2007 6

Adversary-Centric Approach

Adversary-centric security game

A

outA

Oinit

O1

out1

O2

out2

O3

out3

O4

out4

O5

out5

Ofinalise

outgame

pk done
outA, . . . , out5

Oracles Oinit, O1, . . . , On share a common memory, Oinit sets up global
variables and pk. Outputs outi are not observable by A. Finally, Ofinalise

computes the output outgame given only outA, out1, . . . , outn.

Theory Days, Rõuge, 26 Jan 2007 7

Code transformation rules

Any security property can be defined as a transformation rule (P, T ,S):

• P temporal precondition that must be satisfied,

• T the actual syntactic code transformation schema,

• S achievable security guarantee.

For example, IND-CPA security is equivalent to a transformation rule

• P: no information derived from sk are not released to A.

• T : replace Encpk(x) by Encpk(x◦) where x◦← D and supp(D) ⊆M.

• S: If the running-time of both games G0 and G1 is less than t, then

|AdvG0(A)− AdvG1(A)| =
∣
∣Pr

[
GA

0 = 1
]
− Pr

[
GA

1 = 1
]∣
∣ ≤ ε .

Theory Days, Rõuge, 26 Jan 2007 8

Adversary-centric reduction I

Apply code transformation rules until you have reached trivial game.

GB
? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, m← {0, 1} , c← Encpk(m)

(b, m0, m1, σ) get from B(pk, c)

if b = ⊥ then

2

4

i← {0, 1} , c← Encpk(mi)

if B(σ, c) = i then return 1 else return 0

else if b = m then return 1

else return 0

IND−CPA
−−−−−→

ε

GB
?? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, m← {0, 1} , c← Encpk(0)

(b, m0, m1, σ) get from B(pk, c)

if b = ⊥ then

2

4

i← {0, 1} , c← Encpk(mi)

if B(σ, c) = i then return 1 else return 0

else if b = m then return 1

else return 0

Theory Days, Rõuge, 26 Jan 2007 9

Adversary-centric reduction II

Apply code transformation rules until you have reached trivial game.

GB
?? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, m← {0, 1} , c← Encpk(0)

(b, m0, m1, σ) get from B(pk, c)

if b = ⊥ then

2

4

i← {0, 1} , c← Encpk(mi)

if B(σ, c) = i then return 1 else return 0

else if b = m then return 1

else return 0

IND−CPA
−−−−−→

ε

GB
??? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, m← {0, 1} , c← Encpk(0)

(b, m0, m1, σ) get from B(pk, c)

if b = ⊥ then

2

4

i← {0, 1} , c← Encpk(m0)

if B(σ, c) = i then return 1 else return 0

else if b = m then return 1

else return 0

Theory Days, Rõuge, 26 Jan 2007 10

Adversary-centric reduction III

Apply code transformation rules until you have reached trivial game.

GB
??? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, m← {0, 1} , c← Encpk(0)

(b, m0, m1, σ) get from B(pk, c)

if b = ⊥ then

2

4

i← {0, 1} , c← Encpk(m0)

if B(σ, c) = i then return 1 else return 0

else if b = m then return 1

else return 0

DELAY
−−−−→

0

GB
???? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, c← Encpk(0)

(b, m0, m1, σ) get from B(pk, c)

m← {0, 1}

if b = ⊥ then

2

4

c← Encpk(m0), b
′ ← B(σ, c), i← {0, 1}

if b
′
= i then return 1 else return 0

else if b = m then return 1

else return 0

Theory Days, Rõuge, 26 Jan 2007 11

Adversary-centric reduction IV

Apply code transformation rules until you have reached trivial game.

GB
???? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, c← Encpk(0)

(b, m0, m1, σ) get from B(pk, c)

m← {0, 1}

if b = ⊥ then

2

4

c← Encpk(m0), b
′ ← B(σ, c), i← {0, 1}

if b
′
= i then return 1 else return 0

else if b = m then return 1

else return 0

BAD
−−→

1
2

GB
????? :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(sk, pk)← Gen, c← Encpk(0)

(b, m0, m1, σ) get from B(pk, c)

m← {0, 1}

if b = ⊥ then

2

4

c← Encpk(m0), b
′ ← B(σ, c), i← {0, 1}

if b
′
= i then return 0 else return 0

else if b = m then return 0

else return 0

Pr
[
GB

? = 1
]
≤ Pr

[
GB

????? = 1
]

︸ ︷︷ ︸
0

+2ε + 1
2 = 2ε + 1

2 .

Theory Days, Rõuge, 26 Jan 2007 12

Computer-Aided Security Proofs

General proof structure

GA
0

GA
1

GA
2 GA

3 GA
4 GA

5

GA
6 GA

7 GA
8 •

• • •

ε1∆t1

∆t2

ε2

∆t3 ε3
ε4∆t4

ε5

∆t5

ε6∆t6 ε7∆t7 ε8∆t8 ε9∆t9

ε10∆t10 ε11∆t11 ε12∆t12

Maximum working times ti and probabilities pi are computed bottom up

ti = min
j∈childs(i)

tj −∆tij and pi = max
j∈childs(i)

pj +
∑

j∈childs(i)

εij

Theory Days, Rõuge, 26 Jan 2007 13

Where do we need program analysis?

To check the proof we must:

• Test that temporal preconditions P are satisfied.

• Evaluate BAD rule:

– Find out which random variables can cause divergence in games.

– Evaluate corresponding probability

• Evaluate DEAD CODE ELIMINATION rule

The code is multi-threaded if the original protocol is asynchronous.

Theory Days, Rõuge, 26 Jan 2007 14

Are such proofs sound and complete?

• All proofs are sound if all code transformation rules are valid.

• If some transformation rule is missing:

– We can always bound the difference by hand.
– Then formalise it as a rule and add it to system.

• Many proofs can be generated automatically using heuristics.

Theory Days, Rõuge, 26 Jan 2007 15

Questions! Answers?

