Cryptographic Techniques in Privacy-Preserving Data Mining

Helger Lipmaa

University College London

Estonian Theory Days, 28.01.2007, Tutorial

Motivation And Introduction Some Simple PPDM Algorithms Circuit Evaluation: Tool For Complex Protocols Secret Sharing/MPC And Combining Tools Conclusions

Outline

Motivation And Introduction

- Motivation And Introduction
- Some Simple PPDM Algorithms
 - Private Information Retrieval
 - Scalar Product Computation

- Motivation And Introduction
- Some Simple PPDM Algorithms
 - Private Information Retrieval
 - Scalar Product Computation
- 3 Circuit Evaluation: Tool For Complex Protocols

- Motivation And Introduction
- Some Simple PPDM Algorithms
 - Private Information Retrieval
 - Scalar Product Computation
- 3 Circuit Evaluation: Tool For Complex Protocols
- 4 Secret Sharing/MPC And Combining Tools

- Motivation And Introduction
- 2 Some Simple PPDM Algorithms
 - Private Information Retrieval
 - Scalar Product Computation
- 3 Circuit Evaluation: Tool For Complex Protocols
- 4 Secret Sharing/MPC And Combining Tools
- Conclusions

- This tutorial is based on three earlier tutorials in
 - ECML/PKDD 2006, the leading European ML/DM conference
 - Inscrypt 2006, a new data security conference
 - University of Bristol, 2007 for a mixed audience of cryptographers (a majority) and one data miner

- This tutorial is based on three earlier tutorials in
 - ECML/PKDD 2006, the leading European ML/DM conference
 - Inscrypt 2006, a new data security conference
 - University of Bristol, 2007 for a mixed audience of cryptographers (a majority) and one data miner
- The ECML/PKDD 2006 tutorial was aimed for data miners, and thus spelled out a lot of small cryptographic details that a cryptographer knows by heart. On the other hand, I assumed that the audience knows ML/DM.

- This tutorial is based on three earlier tutorials in
 - ECML/PKDD 2006, the leading European ML/DM conference
 - Inscrypt 2006, a new data security conference
 - University of Bristol, 2007 for a mixed audience of cryptographers (a majority) and one data miner
- The ECML/PKDD 2006 tutorial was aimed for data miners, and thus spelled out a lot of small cryptographic details that a cryptographer knows by heart. On the other hand, I assumed that the audience knows ML/DM.
- The current slides still spell out a lot of trivial cryptographic details but I will skip many of them

- This tutorial is based on three earlier tutorials in
 - ECML/PKDD 2006, the leading European ML/DM conference
 - Inscrypt 2006, a new data security conference
 - University of Bristol, 2007 for a mixed audience of cryptographers (a majority) and one data miner
- The ECML/PKDD 2006 tutorial was aimed for data miners, and thus spelled out a lot of small cryptographic details that a cryptographer knows by heart. On the other hand, I assumed that the audience knows ML/DM.
- The current slides still spell out a lot of trivial cryptographic details but I will skip many of them
- Unless you object!

 Spring 2003: Sven Laur visits me in Finland for a semester, joint seminars with Heikki Mannila, ...

- Spring 2003: Sven Laur visits me in Finland for a semester, joint seminars with Heikki Mannila, ...
- 02.2004...07.2007: 3.5 year grant on PPDM from Finnish Academy of Sciences, for Sven's PhD studies (Sven still there)

- Spring 2003: Sven Laur visits me in Finland for a semester, joint seminars with Heikki Mannila, ...
- 02.2004...07.2007: 3.5 year grant on PPDM from Finnish Academy of Sciences, for Sven's PhD studies (Sven still there)
- 01.2006...12.2007: 2 year grant on PPDM from Estonian Science Foundation

- Spring 2003: Sven Laur visits me in Finland for a semester, joint seminars with Heikki Mannila, ...
- 02.2004...07.2007: 3.5 year grant on PPDM from Finnish Academy of Sciences, for Sven's PhD studies (Sven still there)
- 01.2006...12.2007: 2 year grant on PPDM from Estonian Science Foundation
- Soon applying for a grant in the UK

- Spring 2003: Sven Laur visits me in Finland for a semester, joint seminars with Heikki Mannila, ...
- 02.2004...07.2007: 3.5 year grant on PPDM from Finnish Academy of Sciences, for Sven's PhD studies (Sven still there)
- 01.2006...12.2007: 2 year grant on PPDM from Estonian Science Foundation
- Soon applying for a grant in the UK
 - Interest from BT (British Telecom), possibility to hire new postdocs/PhD students

- Spring 2003: Sven Laur visits me in Finland for a semester, joint seminars with Heikki Mannila, ...
- 02.2004...07.2007: 3.5 year grant on PPDM from Finnish Academy of Sciences, for Sven's PhD studies (Sven still there)
- 01.2006...12.2007: 2 year grant on PPDM from Estonian Science Foundation
- Soon applying for a grant in the UK
 - Interest from BT (British Telecom), possibility to hire new postdocs/PhD students
- Most of the research is a joint work with Sven Laur

Goal of DM: to build models of real data

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain
- Solution: add privacy. Only information that is really necessary will be published. E.g.,
 - Parties learn only average values of entries
 - Linear classification: parties learn only the classifiers of new data

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain
- Solution: add privacy. Only information that is really necessary will be published. E.g.,
 - Parties learn only average values of entries
 - Linear classification: parties learn only the classifiers of new data
- Many industrial/...applications

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain
- Solution: add privacy. Only information that is really necessary will be published. E.g.,
 - Parties learn only average values of entries
 - Linear classification: parties learn only the classifiers of new data
- Many industrial/...applications
 - Medical databases: mining necessary to design new drugs/..., but many privacy issues — sharing data may even be illegal

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain
- Solution: add privacy. Only information that is really necessary will be published. E.g.,
 - Parties learn only average values of entries
 - Linear classification: parties learn only the classifiers of new data
- Many industrial/...applications
 - Medical databases: mining necessary to design new drugs/..., but many privacy issues — sharing data may even be illegal
 - Loyal customers: pooling databases helps to provide better services. Many privacy issues

- Goal of DM: to build models of real data
- Problem of DM: real data is too valuable and thus difficult to obtain
- Solution: add privacy. Only information that is really necessary will be published. E.g.,
 - Parties learn only average values of entries
 - Linear classification: parties learn only the classifiers of new data
- Many industrial/...applications
 - Medical databases: mining necessary to design new drugs/..., but many privacy issues — sharing data may even be illegal
 - Loyal customers: pooling databases helps to provide better services. Many privacy issues
 - . . .

Goal: to model data

- Goal: to model data
- Typical task: given a database of transactions, find most frequent patterns

- Goal: to model data
- Typical task: given a database of transactions, find most frequent patterns
- Many methods are efficient only with "real data" that has redundancy, good structure etc

- Goal: to model data
- Typical task: given a database of transactions, find most frequent patterns
- Many methods are efficient only with "real data" that has redundancy, good structure etc
 - Data compression, many algorithms of data mining, special methods of machine learning...
 - Random data cannot be compressed and does not have small-sized models

- Goal: to model data
- Typical task: given a database of transactions, find most frequent patterns
- Many methods are efficient only with "real data" that has redundancy, good structure etc
 - Data compression, many algorithms of data mining, special methods of machine learning...
 - Random data cannot be compressed and does not have small-sized models
- Having real data to test your algorithms with is important

- Goal: to model data
- Typical task: given a database of transactions, find most frequent patterns
- Many methods are efficient only with "real data" that has redundancy, good structure etc
 - Data compression, many algorithms of data mining, special methods of machine learning...
 - Random data cannot be compressed and does not have small-sized models
- Having real data to test your algorithms with is important
- Data representation is important

Conclusion: world I is data dependent

General goal: secure (confidential, authentic, ...)
 communication

- General goal: secure (confidential, authentic, . . .) communication
- Subgoal: to hide properties of data

- General goal: secure (confidential, authentic, ...)
 communication
- Subgoal: to hide properties of data
- Since cryptographic algorithms must hide (most of the) data, they must be data independent

- General goal: secure (confidential, authentic, ...)
 communication
- Subgoal: to hide properties of data
- Since cryptographic algorithms must hide (most of the) data, they must be data independent
 - A few selected additional properties like the length of the input may be leaked if hiding such properties is too expensive
- For example, oblivious transfer:
 - Alice has input $i \in [n]$, Bob has n strings $\mathcal{D}_1, \ldots, \mathcal{D}_n$

- General goal: secure (confidential, authentic, ...)
 communication
- Subgoal: to hide properties of data
- Since cryptographic algorithms must hide (most of the) data, they must be data independent
 - A few selected additional properties like the length of the input may be leaked if hiding such properties is too expensive
- For example, oblivious transfer:
 - Alice has input $i \in [n]$, Bob has n strings $\mathcal{D}_1, \ldots, \mathcal{D}_n$
 - Alice obtains \mathcal{D}_i

- General goal: secure (confidential, authentic, ...)
 communication
- Subgoal: to hide properties of data
- Since cryptographic algorithms must hide (most of the) data, they must be data independent
 - A few selected additional properties like the length of the input may be leaked if hiding such properties is too expensive
- For example, oblivious transfer:
 - Alice has input $i \in [n]$, Bob has n strings $\mathcal{D}_1, \ldots, \mathcal{D}_n$
 - Alice obtains \mathcal{D}_i
 - Cryptographic goal: Alice obtains no more information. Bob obtains no information at all

- General goal: secure (confidential, authentic, ...)
 communication
- Subgoal: to hide properties of data
- Since cryptographic algorithms must hide (most of the) data, they must be data independent
 - A few selected additional properties like the length of the input may be leaked if hiding such properties is too expensive
- For example, oblivious transfer:
 - Alice has input $i \in [n]$, Bob has n strings $\mathcal{D}_1, \ldots, \mathcal{D}_n$
 - Alice obtains \mathcal{D}_i
 - Cryptographic goal: Alice obtains no more information. Bob obtains no information at all
- OT: everything but \mathcal{D}_i (and n) should be private

• Cryptography is usually inefficient with large amount of data

- Cryptography is usually inefficient with large amount of data
- Example:
 - It is a "trivial" task to retrieve the ith element \mathcal{D}_i of a database \mathcal{D}

- Cryptography is usually inefficient with large amount of data
- Example:
 - It is a "trivial" task to retrieve the ith element \mathcal{D}_i of a database \mathcal{D}
 - Oblivious transfer:
 - Database server's computation is $\Omega(|\mathcal{D}|)$

- Cryptography is usually inefficient with large amount of data
- Example:
 - It is a "trivial" task to retrieve the ith element \mathcal{D}_i of a database \mathcal{D}
 - Oblivious transfer:
 - Database server's computation is $\Omega(|\mathcal{D}|)$
 - "Proof": If she does not do any work with the *j*th database element then she "knows" that $i \neq j$. QED.

- Cryptography is usually inefficient with large amount of data
- Example:
 - It is a "trivial" task to retrieve the ith element \mathcal{D}_i of a database \mathcal{D}
 - Oblivious transfer:
 - Database server's computation is $\Omega(|\mathcal{D}|)$
 - "Proof": If she does not do any work with the jth database element then she "knows" that $i \neq j$. QED.
 - Of course, the constant in Ω is important!

- Cryptography is usually inefficient with large amount of data
- Example:
 - It is a "trivial" task to retrieve the ith element \mathcal{D}_i of a database \mathcal{D}
 - Oblivious transfer:
 - Database server's computation is $\Omega(|\mathcal{D}|)$
 - "Proof": If she does not do any work with the jth database element then she "knows" that $i \neq j$. QED.
 - ullet Of course, the constant in Ω is important!
 - $|\mathcal{D}|$ public-key operations is 1000 times slower than $|\mathcal{D}|$ secret-key operations

- Cryptography is usually inefficient with large amount of data
- Example:
 - It is a "trivial" task to retrieve the ith element \mathcal{D}_i of a database \mathcal{D}
 - Oblivious transfer:
 - Database server's computation is $\Omega(|\mathcal{D}|)$
 - "Proof": If she does not do any work with the jth database element then she "knows" that $i \neq j$. QED.
 - Of course, the constant in Ω is important!
 - $|\mathcal{D}|$ public-key operations is 1000 times slower than $|\mathcal{D}|$ secret-key operations
 - In addition, one can do the majority of the work "offline"

- Cryptography is usually inefficient with large amount of data
- Example:
 - It is a "trivial" task to retrieve the ith element \mathcal{D}_i of a database \mathcal{D}
 - Oblivious transfer:
 - Database server's computation is $\Omega(|\mathcal{D}|)$
 - "Proof": If she does not do any work with the jth database element then she "knows" that $i \neq j$. QED.
 - Of course, the constant in Ω is important!
 - $|\mathcal{D}|$ public-key operations is 1000 times slower than $|\mathcal{D}|$ secret-key operations
 - In addition, one can do the majority of the work "offline"
 - Total work is still linear!

• Goal: discover a model of the data, but nothing else

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!
- Simplest example: find out average age of all patients (and nothing else)

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!
- Simplest example: find out average age of all patients (and nothing else)
- More complex example: publish average age of all patients with symptom X, where X is not public

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!
- Simplest example: find out average age of all patients (and nothing else)
- More complex example: publish average age of all patients with symptom X, where X is not public
 - I.e., database owner must not get to know X

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!
- Simplest example: find out average age of all patients (and nothing else)
- More complex example: publish average age of all patients with symptom X, where X is not public
 - I.e., database owner must not get to know X
- Another example: find 10 most frequent itemsets in the data

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!
- Simplest example: find out average age of all patients (and nothing else)
- More complex example: publish average age of all patients with symptom X, where X is not public
 - I.e., database owner must not get to know X
- Another example: find 10 most frequent itemsets in the data
- Find a model of DNA sequences for patients who have AIDS and are over 40

- Goal: discover a model of the data, but nothing else
 - Both "model" and "nothing else" must be well-defined!
- Simplest example: find out average age of all patients (and nothing else)
- More complex example: publish average age of all patients with symptom X, where X is not public
 - I.e., database owner must not get to know X
- Another example: find 10 most frequent itemsets in the data
- Find a model of DNA sequences for patients who have AIDS and are over 40
- In PPDM, data mining provides objectives, cryptography provides tools (traditionally!)

Cryptographic PPDM: Good, Bad and Ugly

- Good: companies and persons may become more willing to participate in data mining
- Bad: already inefficient data mining algorithms become often almost intractable
 - Simpler tasks can still be done
- There is no ugly: it's a nice research area ©

Cryptographic PPDM: Good, Bad and Ugly

- Good: companies and persons may become more willing to participate in data mining
- Bad: already inefficient data mining algorithms become often almost intractable
 - Simpler tasks can still be done
- There is no ugly: it's a nice research area ©
 - At this moment far from being practical, and thus offers many open problems

Cryptographic PPDM: Good, Bad and Ugly

- Good: companies and persons may become more willing to participate in data mining
- Bad: already inefficient data mining algorithms become often almost intractable
 - Simpler tasks can still be done
- There is no ugly: it's a nice research area ©
 - At this moment far from being practical, and thus offers many open problems
 - Many of the open problems are really-really tough is it good, bad or ugly?

Randomization Approach

 Extremely popular in the data mining community, see Srikant's SIGKDD innovation award talk in KDD 2006, Gehrke's tutorial in KDD 2006, Xintao Wu's tutorial in ECML/PKDD 2006

Randomization Approach

- Extremely popular in the data mining community, see Srikant's SIGKDD innovation award talk in KDD 2006, Gehrke's tutorial in KDD 2006, Xintao Wu's tutorial in ECML/PKDD 2006
- There are significant differences between cryptographic and randomization approaches!

Randomization Approach

- Extremely popular in the data mining community, see Srikant's SIGKDD innovation award talk in KDD 2006, Gehrke's tutorial in KDD 2006, Xintao Wu's tutorial in ECML/PKDD 2006
- There are significant differences between cryptographic and randomization approaches!
 - ...and they are studied by completely different communities

Clients have data that is to be published and mined

- Clients have data that is to be published and mined
- It is desired that one can build certain models of the data without violating the privacy of individual records

- Clients have data that is to be published and mined
- It is desired that one can build certain models of the data without violating the privacy of individual records
 - E.g., compute average age before getting to know the age of any one person

- Clients have data that is to be published and mined
- It is desired that one can build certain models of the data without violating the privacy of individual records
 - E.g., compute average age before getting to know the age of any one person
 - It is allowed to get to know the average age of say any three persons

- Clients have data that is to be published and mined
- It is desired that one can build certain models of the data without violating the privacy of individual records
 - E.g., compute average age before getting to know the age of any one person
 - It is allowed to get to know the average age of say any three persons
- Untrusted publisher model: clients perturb their data and send their perturbed version to miner who mines the results

- Clients have data that is to be published and mined
- It is desired that one can build certain models of the data without violating the privacy of individual records
 - E.g., compute average age before getting to know the age of any one person
 - It is allowed to get to know the average age of say any three persons
- Untrusted publisher model: clients perturb their data and send their perturbed version to miner who mines the results
- Trusted publisher model: clients send original data to a TP, who perturbs it and sends the results to miner who mines the results

• Assume there are n parties (clients, servers, miners) who all have some private inputs x_i , and they must compute some private outputs $y_i = f_i(\vec{x})$

- Assume there are n parties (clients, servers, miners) who all have some private inputs x_i , and they must compute some private outputs $y_i = f_i(\vec{x})$
 - f_i etc are defined by the functionality we want to compute —
 by data miners

- Assume there are n parties (clients, servers, miners) who all have some private inputs x_i , and they must compute some private outputs $y_i = f_i(\vec{x})$
 - f_i etc are defined by the functionality we want to compute —
 by data miners
- Build a cryptographic protocol that guarantees that after some rounds, the ith party learns yi and nothing else

- Assume there are n parties (clients, servers, miners) who all have some private inputs x_i , and they must compute some private outputs $y_i = f_i(\vec{x})$
 - f_i etc are defined by the functionality we want to compute —
 by data miners
- Build a cryptographic protocol that guarantees that after some rounds, the ith party learns y_i and nothing else— with probability $1-\epsilon$

Cryptographic vs Randomization Approach: Differences

• Who owns the database:

Cryptographic vs Randomization Approach: Differences

- Who owns the database:
 - Randomization: randomized data is published, and the miner operates on the perturbed database without contacting any third parties

Cryptographic vs Randomization Approach: Differences

- Who owns the database:
 - Randomization: randomized data is published, and the miner operates on the perturbed database without contacting any third parties
 - Cryptographic: depends on applications

- Who owns the database:
 - Randomization: randomized data is published, and the miner operates on the perturbed database without contacting any third parties
 - Cryptographic: depends on applications
 - Data is kept by a server, and the miner queries the server

- Who owns the database:
 - Randomization: randomized data is published, and the miner operates on the perturbed database without contacting any third parties
 - Cryptographic: depends on applications
 - Data is kept by a server, and the miner queries the server
 - Data is shared by several miners, who can only jointly mine it

- Who owns the database:
 - Randomization: randomized data is published, and the miner operates on the perturbed database without contacting any third parties
 - Cryptographic: depends on applications
 - Data is kept by a server, and the miner queries the server
 - Data is shared by several miners, who can only jointly mine it
 - ...

Correctness:

- Correctness:
 - Randomization:
 - Client "owns" a perturbed database, and must be able to compute (an approximation to) the desired output from it

- Correctness:
 - Randomization:
 - Client "owns" a perturbed database, and must be able to compute (an approximation to) the desired output from it
 - Cryptographic:
 - Client can usually compute the precise output after interactive communicating with the server

- Privacy:
 - Randomization: one can usually only guarantee that the values of individual records are somewhat protected

- Privacy:
 - Randomization: one can usually only guarantee that the values of individual records are somewhat protected
 - E.g., in Randomized Response Technique, variance depends on the size of the population
 - Interval privacy, k-anonymity, . . .

- Privacy:
 - Randomization: one can usually only guarantee that the values of individual records are somewhat protected
 - E.g., in Randomized Response Technique, variance depends on the size of the population
 - Interval privacy, k-anonymity, . . .
 - Cryptographic: one can guarantee that only the desired output will become known to the client

- Privacy:
 - Randomization: one can usually only guarantee that the values of individual records are somewhat protected
 - E.g., in Randomized Response Technique, variance depends on the size of the population
 - Interval privacy, k-anonymity, . . .
 - Cryptographic: one can guarantee that only the desired output will become known to the client
 - Protect everything as much as possible

Definitional:

- Definitional:
 - Randomization: privacy definitions seem to be ad hoc (to a cryptographer)

- Definitional:
 - Randomization: privacy definitions seem to be ad hoc (to a cryptographer)
 - Cryptographic:

- Definitional:
 - Randomization: privacy definitions seem to be ad hoc (to a cryptographer)
 - Cryptographic:
 - A lot of effort has been put into formalizing the definitions of privacy, the definitions and their implications are well understood

- Definitional:
 - Randomization: privacy definitions seem to be ad hoc (to a cryptographer)
 - Cryptographic:
 - A lot of effort has been put into formalizing the definitions of privacy, the definitions and their implications are well understood
 - Cryptographic community has invested dozens of man years to come up with correct definitions!

- Efficiency:
 - Randomization: randomizing might be difficult but it is done once by the server; client's work is usually comparable to her work in the non-private case
 - Cryptographic: privatization overhead every single time when a client needs to obtain some data

- Efficiency:
 - Randomization: randomizing might be difficult but it is done once by the server; client's work is usually comparable to her work in the non-private case
 - Better efficiency, but privacy depends on data and predicate
 - Cryptographic: privatization overhead every single time when a client needs to obtain some data
 - Better privacy, but efficiency depends on predicate

Communities:

- Communities:
 - Randomization: bigger community, people from the data mining community

- Communities:
 - Randomization: bigger community, people from the data mining community
 - Too many results to even mention...
 - Randomization is an optimization problem: tweak and your algorithm might work for some concrete data

- Communities:
 - Randomization: bigger community, people from the data mining community
 - Too many results to even mention...
 - Randomization is an optimization problem: tweak and your algorithm might work for some concrete data
 - Cryptographic: small community

- Communities:
 - Randomization: bigger community, people from the data mining community
 - Too many results to even mention...
 - Randomization is an optimization problem: tweak and your algorithm might work for some concrete data
 - Cryptographic: small community
 - Cryptographic approach is seen to be too resource-consuming and thus not worth the research time
 - Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright and students, myself and Sven Laur, . . .

Private Information Retrieval

- Alice (client) has index $i \in [n]$, Bob (database server) has database $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$
- Functional goal: Alice obtains \mathcal{D}_i , Bob does not have to obtain anything
- Cryptographic privacy goal I: Bob does not obtain any information about i
 - "Private information retrieval"

Private Information Retrieval

- Alice (client) has index $i \in [n]$, Bob (database server) has database $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$
- Functional goal: Alice obtains \mathcal{D}_i , Bob does not have to obtain anything
- Cryptographic privacy goal I: Bob does not obtain any information about i
 - "Private information retrieval"
- Cryptographic privacy goal II: Alice does not obtain any information about \mathcal{D}_i for any $j \neq i$
 - PIR + goal II = ("relaxed" secure) oblivious transfer

Private Information Retrieval

- Alice (client) has index $i \in [n]$, Bob (database server) has database $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$
- Functional goal: Alice obtains \mathcal{D}_i , Bob does not have to obtain anything
- Cryptographic privacy goal I: Bob does not obtain any information about i
 - "Private information retrieval"
- Cryptographic privacy goal II: Alice does not obtain any information about \mathcal{D}_j for any $j \neq i$
 - PIR + goal II = ("relaxed" secure) oblivious transfer
- Cryptographic security/correctness goal III: the string that Alice obtains is really equal to \mathcal{D}_i
 - goal I + II + III = secure oblivious transfer

• Privacy can be defined to be statistical or computational

- Privacy can be defined to be statistical or computational
- Statistical client-privacy:
 - Alice's messages that correspond to any two queries i₀ and i₁ come from similar distributions
 - Then even an unbounded adversary cannot distinguish between messages that correspond to any two different queries
 - Even if the queries i_0/i_1 are chosen by the adversary

- Privacy can be defined to be statistical or computational
- Statistical client-privacy:
 - Alice's messages that correspond to any two queries i₀ and i₁ come from similar distributions
 - Then even an unbounded adversary cannot distinguish between messages that correspond to any two different queries
 - Even if the queries i_0/i_1 are chosen by the adversary
- Well-known fact: communication of statistically client-private information retrieval with database \mathcal{D} is at least $|\mathcal{D}|$ bits.

- Privacy can be defined to be statistical or computational
- Statistical client-privacy:
 - Alice's messages that correspond to any two queries i₀ and i₁ come from similar distributions
 - Then even an unbounded adversary cannot distinguish between messages that correspond to any two different queries
 - Even if the queries i_0/i_1 are chosen by the adversary
- Well-known fact: communication of statistically client-private information retrieval with database \mathcal{D} is at least $|\mathcal{D}|$ bits.
 - I.e., the trivial solution Bob sends to Alice his whole database, Alice retrieves \mathcal{D}_i is also the optimal one

PIR: Computational Client-Privacy (Intuition)

- Computational client-privacy: no computationally bounded Bob can distinguish between the distributions corresponding to any two queries i_0 and i_1
- I.e., the distributions of Alice's messages $A(i_0)$ and $A(i_1)$ corresponding to i_0 and i_1 are computationally indistinguishable

• Consider the next "game":

- Consider the next "game":
 - B picks two indices i_0 and i_1 , and sends them to A
 - A picks a random bit $b \in \{0,1\}$ and sends $A(i_b)$ to B
 - $B(i_0, i_1, A(i_b))$ outputs a bit b'

- Consider the next "game":
 - B picks two indices i_0 and i_1 , and sends them to A
 - A picks a random bit $b \in \{0,1\}$ and sends $A(i_b)$ to B
 - $B(i_0, i_1, A(i_b))$ outputs a bit b'
- B is successful if b' = b
- PIR is (ε, τ) -computationally client-private if no τ -time adversary B has better success than $|2\varepsilon 1|$

- Consider the next "game":
 - B picks two indices i_0 and i_1 , and sends them to A
 - A picks a random bit $b \in \{0,1\}$ and sends $A(i_b)$ to B
 - $B(i_0, i_1, A(i_b))$ outputs a bit b'
- B is successful if b' = b
- PIR is (ε, τ) -computationally client-private if no τ -time adversary B has better success than $|2\varepsilon 1|$
- If B tosses a coin then it has success 1/2 and thus is a $(0,\tau)$ -adversary for some small τ

- Consider the next "game":
 - B picks two indices i_0 and i_1 , and sends them to A
 - A picks a random bit $b \in \{0,1\}$ and sends $A(i_b)$ to B
 - $B(i_0, i_1, A(i_b))$ outputs a bit b'
- B is successful if b' = b
- PIR is (ε, τ) -computationally client-private if no τ -time adversary B has better success than $|2\varepsilon 1|$
- If B tosses a coin then it has success 1/2 and thus is a $(0,\tau)$ -adversary for some small τ
- IND-CPA security: INDistinguishability against Chosen Plaintext Attacks

OT: Formal Definition of Server-Security

• Difference with client-privacy:

- Difference with client-privacy:
 - Client obtains an output \mathcal{D}_i and thus can distinguish between databases $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D}_i \neq \mathcal{D}_i'$

- Difference with client-privacy:
 - Client obtains an output \mathcal{D}_i and thus can distinguish between databases $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D}_i \neq \mathcal{D}'_i$
 - This must be taken into account

- Difference with client-privacy:
 - Client obtains an output \mathcal{D}_i and thus can distinguish between databases $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D}_i \neq \mathcal{D}_i'$
 - This must be taken into account
 - We can achieve statistical server-privacy

- Difference with client-privacy:
 - Client obtains an output \mathcal{D}_i and thus can distinguish between databases $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D}_i \neq \mathcal{D}_i'$
 - This must be taken into account
 - We can achieve statistical server-privacy
 - With communication $\Theta(\log |\mathcal{D}|)$

- Difference with client-privacy:
 - Client obtains an output \mathcal{D}_i and thus can distinguish between databases $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D}_i \neq \mathcal{D}_i'$
 - This must be taken into account
 - We can achieve statistical server-privacy
 - With communication $\Theta(\log |\mathcal{D}|)$
 - Since server gets no output, server-privacy=server-security

- Difference with client-privacy:
 - Client obtains an output \mathcal{D}_i and thus can distinguish between databases $\mathcal{D}, \mathcal{D}'$ with $\mathcal{D}_i \neq \mathcal{D}_i'$
 - This must be taken into account
 - We can achieve statistical server-privacy
 - With communication $\Theta(\log |\mathcal{D}|)$
 - Since server gets no output, server-privacy=server-security
 - Recall goal III

 Consider the next ideal world with a completely trusted third party T:

- Consider the next ideal world with a completely trusted third party T:
 - A sends her input i to T, B sends the database \mathcal{D} to T (secretly, authenticatedly)

- Consider the next ideal world with a completely trusted third party T:
 - A sends her input i to T, B sends the database \mathcal{D} to T (secretly, authenticatedly)
 - T sends D_i to A (secretly, authenticatedly)

- Consider the next ideal world with a completely trusted third party T:
 - A sends her input i to T, B sends the database \mathcal{D} to T (secretly, authenticatedly)
 - T sends D_i to A (secretly, authenticatedly)
- This clearly models what we want to achieve!

- Consider the next ideal world with a completely trusted third party T:
 - A sends her input i to T, B sends the database \mathcal{D} to T (secretly, authenticatedly)
 - T sends \mathcal{D}_i to A (secretly, authenticatedly)
- This clearly models what we want to achieve!
- A protocol is server-secure if:

- Consider the next ideal world with a completely trusted third party T:
 - A sends her input i to T, B sends the database \mathcal{D} to T (secretly, authenticatedly)
 - T sends D_i to A (secretly, authenticatedly)
- This clearly models what we want to achieve!
- A protocol is server-secure if:
 - For any attack that A can mount against B in the protocol, there exists an adversary A* that can mount the same attack against B in the described ideal world

- Consider the next ideal world with a completely trusted third party T:
 - A sends her input i to T, B sends the database \mathcal{D} to T (secretly, authenticatedly)
 - T sends D_i to A (secretly, authenticatedly)
- This clearly models what we want to achieve!
- A protocol is server-secure if:
 - For any attack that A can mount against B in the protocol, there exists an adversary A* that can mount the same attack against B in the described ideal world
- Technical differences: real world is always asynchronous, but it does not matter here

 Security definitions are uniform and modular, and remain the same for most protocols

- Security definitions are uniform and modular, and remain the same for most protocols
- The previous definitions work for any two-party protocol where on client's input a and server's input b, client must obtain an output f(a,b) for some f, and server must obtain no output

- Security definitions are uniform and modular, and remain the same for most protocols
- The previous definitions work for any two-party protocol where on client's input a and server's input b, client must obtain an output f(a,b) for some f, and server must obtain no output
- Computational client-privacy: client's messages corresponding to any, even chosen-by-server, inputs a and a' must be computationally indistinguishable

- Security definitions are uniform and modular, and remain the same for most protocols
- The previous definitions work for any two-party protocol where on client's input a and server's input b, client must obtain an output f(a,b) for some f, and server must obtain no output
- Computational client-privacy: client's messages corresponding to any, even chosen-by-server, inputs a and a' must be computationally indistinguishable
- Statistical server-security: consider an ideal world where client gives a to T, server gives b to T and T returns f(a,b) to client. Show that any attacker in real protocol can be used to attack the ideal world with comparable efficiency.

E is a semantically/IND-CPA secure public-key cryptosystem iff

- E is a semantically/IND-CPA secure public-key cryptosystem iff
 - Every user has a public key pk and secret key sk

- E is a semantically/IND-CPA secure public-key cryptosystem iff
 - Every user has a public key pk and secret key sk
 - Encryption is probabilistic: $c = E_{pk}(m; r)$ for some random bitstring r

- E is a semantically/IND-CPA secure public-key cryptosystem iff
 - Every user has a public key pk and secret key sk
 - Encryption is probabilistic: $c = E_{pk}(m; r)$ for some random bitstring r
 - Decryption is successful: $D_{sk}(E_{pk}(m;r)) = m$

- E is a semantically/IND-CPA secure public-key cryptosystem iff
 - Every user has a public key pk and secret key sk
 - Encryption is probabilistic: $c = E_{pk}(m; r)$ for some random bitstring r
 - Decryption is successful: $D_{sk}(E_{pk}(m;r)) = m$
 - Semantical/IND-CPA security: Distributions corresponding to the encryptions of any m_0 and m_1 are computationally indistinguishable

- E is a semantically/IND-CPA secure public-key cryptosystem iff
 - Every user has a public key pk and secret key sk
 - Encryption is probabilistic: $c = E_{pk}(m; r)$ for some random bitstring r
 - Decryption is successful: $D_{sk}(E_{pk}(m;r)) = m$
 - Semantical/IND-CPA security: Distributions corresponding to the encryptions of any m_0 and m_1 are computationally indistinguishable

Additionally, E is additively homomorphic iff

Additionally, E is additively homomorphic iff

$$D_{sk}(E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2)) = m_1 + m_2$$
,

Additionally, E is additively homomorphic iff

$$D_{sk}(E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2)) = m_1 + m_2$$
,

• Thus also
$$D_{sk}(E_{pk}(m;r)^a) = am$$

Additionally, E is additively homomorphic iff

$$D_{sk}(E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2)) = m_1 + m_2$$
,

- Thus also $D_{sk}(E_{pk}(m;r)^a) = am$
- Fact: such IND-CPA secure public-key cryptosystems exist and are well-known [Paillier, 1999]
 - ullet There $\mathcal{M}=\mathbb{Z}_{\mathit{N}},\ \mathcal{C}=\mathbb{Z}_{\mathit{N}^2}$ for some large composite $\mathit{N}=\mathit{pq}$

Additionally, E is additively homomorphic iff

$$D_{sk}(E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2)) = m_1 + m_2$$
,

- Thus also $D_{sk}(E_{pk}(m;r)^a) = am$
- Fact: such IND-CPA secure public-key cryptosystems exist and are well-known [Paillier, 1999]
 - There $\mathcal{M}=\mathbb{Z}_N$, $\mathcal{C}=\mathbb{Z}_{N^2}$ for some large composite N=pq
 - If you care: $E_{pk}(m;r) = (1+mN)r^N \mod N^2$

Additionally, E is additively homomorphic iff

$$D_{sk}(E_{pk}(m_1; r_1) \cdot E_{pk}(m_2; r_2)) = m_1 + m_2$$
,

- Thus also $D_{sk}(E_{pk}(m;r)^a) = am$
- Fact: such IND-CPA secure public-key cryptosystems exist and are well-known [Paillier, 1999]
 - ullet There $\mathcal{M}=\mathbb{Z}_{\mathit{N}},\ \mathcal{C}=\mathbb{Z}_{\mathit{N}^2}$ for some large composite $\mathit{N}=\mathit{pq}$
 - If you care: $E_{pk}(m; r) = (1 + mN)r^N \mod N^2$
 - Theorem Paillier cryptosystem is IND-CPA secure if it is computationally difficult to distinguish the Nth random residues modulo N^2 from random integers modulo N^2

Inputs: Alice has query $i \in [n]$, Bob has $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$ where $\mathcal{D}_j \in \mathbb{Z}_N$

Inputs: Alice has query $i \in [n]$, Bob has $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$ where $\mathcal{D}_j \in \mathbb{Z}_N$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk, a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.

Inputs: Alice has query $i \in [n]$, Bob has $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$ where $\mathcal{D}_i \in \mathbb{Z}_N$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message a ← E_{pk}(i;*) and sends A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:

Inputs: Alice has query $i \in [n]$, Bob has $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$ where $\mathcal{D}_j \in \mathbb{Z}_N$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message a ← E_{pk}(i;*) and sends A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$

Inputs: Alice has query $i \in [n]$, Bob has $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$ where $\mathcal{D}_j \in \mathbb{Z}_N$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message a ← E_{pk}(i;*) and sends A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$

Inputs: Alice has query $i \in [n]$, Bob has $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$ where $\mathcal{D}_i \in \mathbb{Z}_N$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message a ← E_{pk}(i;*) and sends A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **③** Bob does for every $j \in \{1, ..., n\}$: • Set $b_j \leftarrow (a/E_{pk}(j; 1))^* \cdot E_{pk}(\mathcal{D}_j; *) = E_{pk}(*(i - j) + \mathcal{D}_j; *)$
- **4** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = \mathcal{D}_{sk}(b_i)$

Inputs: Alice has query $i \in [n]$, Bob has $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_n)$ where $\mathcal{D}_j \in \mathbb{Z}_N$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message a ← E_{pk}(i;*) and sends A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **③** Bob does for every $j \in \{1, ..., n\}$: • Set $b_j \leftarrow (a/E_{pk}(j; 1))^* \cdot E_{pk}(\mathcal{D}_j; *) = E_{pk}(*(i - j) + \mathcal{D}_j; *)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$

See [AIR01]

• Bob does for every $j \in \{1, \dots, n\}$:

- Bob does for every $j \in \{1, \dots, n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$

- Bob does for every $j \in \{1, ..., n\}$: • Set $b_i \leftarrow (a/E_{pk}(j; 1))^* \cdot E_{pk}(\mathcal{D}_i; *)$
- Since $a = E_{pk}(i; *)$ then

- Bob does for every $j \in \{1, ..., n\}$: • Set $b_i \leftarrow (a/E_{pk}(j; 1))^* \cdot E_{pk}(\mathcal{D}_i; *)$
- Since $a = E_{pk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$$

- Bob does for every $j \in \{1, ..., n\}$: • Set $b_i \leftarrow (a/E_{pk}(j; 1))^* \cdot E_{pk}(\mathcal{D}_i; *)$
- Since $a = E_{pk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$$

Because E is additively homomorphic then

- Bob does for every $j \in \{1, \dots, n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$
- Since $a = E_{pk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$$

Because E is additively homomorphic then

$$b_j = (E_{pk}(i-j;*))^* \cdot E_{pk}(\mathcal{D}_j;*) = (E_{pk}(*\cdot(i-j);r)) \cdot E_{pk}(\mathcal{D}_j;*)$$
 for some r

- Bob does for every $j \in \{1, \dots, n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$
- Since $a = E_{pk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$$

Because E is additively homomorphic then

$$b_{j} = (E_{pk}(i - j; *))^{*} \cdot E_{pk}(\mathcal{D}_{j}; *) = (E_{pk}(* \cdot (i - j); r)) \cdot E_{pk}(\mathcal{D}_{j}; *)$$

for some *r*

• If i = j then

- Bob does for every $j \in \{1, ..., n\}$: • Set $b_i \leftarrow (a/E_{ok}(j; 1))^* \cdot E_{ok}(\mathcal{D}_i; *)$
- Since $a = E_{pk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$$

Because E is additively homomorphic then

$$b_j = (E_{pk}(i - j; *))^* \cdot E_{pk}(\mathcal{D}_j; *) = (E_{pk}(* \cdot (i - j); r)) \cdot E_{pk}(\mathcal{D}_j; *)$$
 for some r

• If i = j then

$$b_j=E_{pk}(0;r)\cdot E_{pk}(\mathcal{D}_j;*)=E_{pk}(\mathcal{D}_j;*)$$
 and thus $D_{sk}(b_i)=\mathcal{D}_i$

- Bob does for every $j \in \{1, ..., n\}$: • Set $b_i \leftarrow (a/E_{ok}(j; 1))^* \cdot E_{ok}(\mathcal{D}_i; *)$
- Since $a = E_{nk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$$

Because E is additively homomorphic then

$$b_j = (E_{pk}(i-j;*))^* \cdot E_{pk}(\mathcal{D}_j;*) = (E_{pk}(*\cdot(i-j);r)) \cdot E_{pk}(\mathcal{D}_j;*)$$
 for some r

• If i = j then

$$b_j = E_{pk}(0; r) \cdot E_{pk}(\mathcal{D}_j; *) = E_{pk}(\mathcal{D}_j; *)$$

and thus $D_{sk}(b_i) = \mathcal{D}_i$

Thus Alice obtains D_i

- Bob does for every $j \in \{1, ..., n\}$: • Set $b_i \leftarrow (a/E_{ok}(j; 1))^* \cdot E_{ok}(\mathcal{D}_i; *)$
- Since $a = E_{pk}(i; *)$ then

$$b_j = (E_{pk}(i;*)/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*)$$

Because E is additively homomorphic then

$$b_j = (E_{pk}(i-j;*))^* \cdot E_{pk}(\mathcal{D}_j;*) = (E_{pk}(*(i-j);r)) \cdot E_{pk}(\mathcal{D}_j;*)$$

for some r

• If gcd(i-j, N) = 1 then $* \cdot (i-j) = *$ is a random element of \mathbb{Z}_N and thus

$$b_j = E_{pk}(*; r) \cdot E_{pk}(\mathcal{D}_j; *) = E_{pk}(*; *)$$
,

and thus $D_{sk}(b_j)=*$, i.e., b_j gives no information about \mathcal{D}_j

• Thus Alice obtains \mathcal{D}_i and nothing else!

 Alice's query is computationally "IND-CPA" private: Bob sees its encryption, and the cryptosystem is IND-CPA private by assumption

- Alice's query is computationally "IND-CPA" private: Bob sees its encryption, and the cryptosystem is IND-CPA private by assumption
- Bob's database is statistically private: Alice sees an encryption of \mathcal{D}_i together with n-1 encryptions of random strings

- Alice's query is computationally "IND-CPA" private: Bob sees its encryption, and the cryptosystem is IND-CPA private by assumption
- Bob's database is statistically private: Alice sees an encryption of \mathcal{D}_i together with n-1 encryptions of random strings
 - We can construct a simulator who, only knowing \mathcal{D}_i and nothing else about Bob's database, sends

$$(E_{pk}(*;*),\ldots,E_{pk}(*;*),E_{pk}(\mathcal{D}_i;*),E_{pk}(*;*),\ldots,E_{pk}(*;*))$$

to Alice.

- Alice's query is computationally "IND-CPA" private: Bob sees its encryption, and the cryptosystem is IND-CPA private by assumption
- Bob's database is statistically private: Alice sees an encryption of \mathcal{D}_i together with n-1 encryptions of random strings
 - We can construct a simulator who, only knowing \mathcal{D}_i and nothing else about Bob's database, sends

$$(E_{pk}(*;*), \dots, E_{pk}(*;*), E_{pk}(\mathcal{D}_i;*), E_{pk}(*;*), \dots, E_{pk}(*;*))$$

to Alice.

• Simulator's output is the same as honest Bob's output and was constructed, only knowing \mathcal{D}_i

- Alice's query is computationally "IND-CPA" private: Bob sees its encryption, and the cryptosystem is IND-CPA private by assumption
- Bob's database is statistically private: Alice sees an encryption of \mathcal{D}_i together with n-1 encryptions of random strings
 - We can construct a simulator who, only knowing \mathcal{D}_i and nothing else about Bob's database, sends

$$(E_{pk}(*;*), \dots, E_{pk}(*;*), E_{pk}(\mathcal{D}_i;*), E_{pk}(*;*), \dots, E_{pk}(*;*))$$

to Alice.

• Simulator's output is the same as honest Bob's output and was constructed, only knowing $\mathcal{D}_i \Rightarrow$ protocol is statistically private for Bob

Proof.

We must assume that simulator is unbounded (this is ok since malicious Alice can also be unbounded, and thus simulator may need a lot of time to check her work).

Proof.

We must assume that simulator is unbounded (this is ok since malicious Alice can also be unbounded, and thus simulator may need a lot of time to check her work). Alice sends (pk, a) to Bob. Unbounded simulator finds corresponding sk and computes $i^* \leftarrow D_{sk}(a)$. If there is no such sk or sk

Proof.

We must assume that simulator is unbounded (this is ok since malicious Alice can also be unbounded, and thus simulator may need a lot of time to check her work). Alice sends (pk, a) to Bob. Unbounded simulator finds corresponding sk and computes $i^* \leftarrow D_{sk}(a)$. If there is no such sk or sk

$$(E_{pk}(*;*),\ldots,E_{pk}(*;*),E_{pk}(\mathcal{D}_i;*),E_{pk}(*;*),\ldots,E_{pk}(*;*))$$

to Alice.

Proof.

We must assume that simulator is unbounded (this is ok since malicious Alice can also be unbounded, and thus simulator may need a lot of time to check her work). Alice sends (pk, a) to Bob. Unbounded simulator finds corresponding sk and computes $i^* \leftarrow D_{sk}(a)$. If there is no such sk or sk

$$(E_{pk}(*;*),\ldots,E_{pk}(*;*),E_{pk}(\mathcal{D}_i;*),E_{pk}(*;*),\ldots,E_{pk}(*;*))$$

to Alice. Clearly in this case, even a malicious Alice sees messages from the same distribution as in the real world.

AIR PIR: Security Fineprints

- It takes some additional work to ascertain that the protocol is secure if i is chosen maliciously such that for some $j \in [n]$, gcd(i-j, N) > 1.
- We have a relaxed-secure oblivious transfer protocol: privacy
 of both parties is guaranteed but Alice has no guarantee that
 b_i decrypts to anything sensible

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_i \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_i;*)$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j)+\mathcal{D}_j;*)$

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$

- **1** Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$
- Alice's computation: one encryption at first, and one decryption at the end.

- **1** Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$
- Alice's computation: one encryption at first, and one decryption at the end. Good

- **1** Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$
 - Alice's computation: one encryption at first, and one decryption at the end. Good
 - Bob's computation: 2n encryptions, n exponentiations, etc.

- **1** Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message $a \leftarrow E_{pk}(i;*)$ and sends $A(i) \leftarrow (pk,a)$ to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$
- Alice's computation: one encryption at first, and one decryption at the end. Good
- Bob's computation: 2n encryptions, n exponentiations, etc. Bad but cannot improve to o(n)!

- Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message a ← E_{pk}(i; *) and sends A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$
- Alice's computation: one encryption at first, and one decryption at the end. Good
- Bob's computation: 2n encryptions, n exponentiations, etc. Bad but cannot improve to o(n)!

- **1** Alice generates a new public/private key pair (pk, sk) for an additively homomorphic secure public-key cryptosystem E
- ② Alice generates her message a ← E_{pk}(i; *) and sends A(i) ← (pk, a) to Bob. Bob stops if pk is not a valid public key or a is not a valid ciphertext.
- **3** Bob does for every $j \in \{1, ..., n\}$:
 - Set $b_j \leftarrow (a/E_{pk}(j;1))^* \cdot E_{pk}(\mathcal{D}_j;*) = E_{pk}(*(i-j) + \mathcal{D}_j;*)$
- **3** Bob sends (b_1, \ldots, b_n) to Alice, Alice decrypts b_i and obtains thus $\mathcal{D}_i = D_{sk}(b_i)$
- Alice's computation: one encryption at first, and one decryption at the end. Good
- Bob's computation: 2n encryptions, n exponentiations, etc. Bad but cannot improve to o(n)!

• It is possible to design provably secure PPDM algorithms

- It is possible to design provably secure PPDM algorithms
- Design is often complicated

- It is possible to design provably secure PPDM algorithms
- Design is often complicated
 - Bear in mind that PIR is the simplest possible PPDM algorithm!

- It is possible to design provably secure PPDM algorithms
- Design is often complicated
 - Bear in mind that PIR is the simplest possible PPDM algorithm!
- With a well-constructed protocol, proofs can become straightforward

- It is possible to design provably secure PPDM algorithms
- Design is often complicated
 - Bear in mind that PIR is the simplest possible PPDM algorithm!
- With a well-constructed protocol, proofs can become straightforward
 - Existing designs can be (hopefully?) explained to non-specialists

AIR PIR: Lessons

- It is possible to design provably secure PPDM algorithms
- Design is often complicated
 - Bear in mind that PIR is the simplest possible PPDM algorithm!
- With a well-constructed protocol, proofs can become straightforward
 - Existing designs can be (hopefully?) explained to non-specialists
- Even for really simple tasks, computational overhead can crash the party

 As said previously, Bob must do something with every database element

- As said previously, Bob must do something with every database element
- However, this something doesn't have to be public-key encryption — and symmetric key encryption (block ciphers, ...) is often 1000 times faster

- As said previously, Bob must do something with every database element
- However, this something doesn't have to be public-key encryption — and symmetric key encryption (block ciphers, ...) is often 1000 times faster
- Trivial PIR: Bob transfers the database to Alice. Good performance, linear communication, no privacy for Bob

- As said previously, Bob must do something with every database element
- However, this something doesn't have to be public-key encryption — and symmetric key encryption (block ciphers, ...) is often 1000 times faster
- Trivial PIR: Bob transfers the database to Alice. Good performance, linear communication, no privacy for Bob
- [NP99] showed how to transfer any PIR to OT:

- As said previously, Bob must do something with every database element
- However, this something doesn't have to be public-key encryption — and symmetric key encryption (block ciphers, ...) is often 1000 times faster
- Trivial PIR: Bob transfers the database to Alice. Good performance, linear communication, no privacy for Bob
- [NP99] showed how to transfer any PIR to OT:
 - Every database element is masked by $\log n$ pseudorandom sequences and then the PIR is applied to the masked database. Alice additionally obtains the concrete $\log n$ pseudorandom sequences needed to unmask \mathcal{D}_i by doing $\log n$ 1-out-of-2 OT-s with Bob.

- As said previously, Bob must do something with every database element
- However, this something doesn't have to be public-key encryption — and symmetric key encryption (block ciphers, ...) is often 1000 times faster
- Trivial PIR: Bob transfers the database to Alice. Good performance, linear communication, no privacy for Bob
- [NP99] showed how to transfer any PIR to OT:
 - Every database element is masked by $\log n$ pseudorandom sequences and then the PIR is applied to the masked database. Alice additionally obtains the concrete $\log n$ pseudorandom sequences needed to unmask \mathcal{D}_i by doing $\log n$ 1-out-of-2 OT-s with Bob.
 - Needs n symmetric-key operations and log n public-key encryptions in addition to the computation of PIR.

- As said previously, Bob must do something with every database element
- However, this something doesn't have to be public-key encryption — and symmetric key encryption (block ciphers, ...) is often 1000 times faster
- Trivial PIR: Bob transfers the database to Alice. Good performance, linear communication, no privacy for Bob
- [NP99] showed how to transfer any PIR to OT:
 - Every database element is masked by $\log n$ pseudorandom sequences and then the PIR is applied to the masked database. Alice additionally obtains the concrete $\log n$ pseudorandom sequences needed to unmask \mathcal{D}_i by doing $\log n$ 1-out-of-2 OT-s with Bob.
 - Needs n symmetric-key operations and log n public-key encryptions in addition to the computation of PIR.

• In non-private information retrieval, Alice sends i to Bob, and Bob responds with \mathcal{D}_i . I.e., $\log n + length(\mathcal{D}_i)$ bits.

- In non-private information retrieval, Alice sends i to Bob, and Bob responds with \mathcal{D}_i . I.e., $\log n + length(\mathcal{D}_i)$ bits.
- Thus in PIR, the communication is also lower-bounded by $\log n + length(\mathcal{D}_i)$ bits.

- In non-private information retrieval, Alice sends i to Bob, and Bob responds with \mathcal{D}_i . I.e., $\log n + length(\mathcal{D}_i)$ bits.
- Thus in PIR, the communication is also lower-bounded by $\log n + length(\mathcal{D}_i)$ bits.
- [Lip05]: A PIR with communication $O(\log^2 n + length(\mathcal{D}_i) \cdot \log n)$

- In non-private information retrieval, Alice sends i to Bob, and Bob responds with \mathcal{D}_i . I.e., $\log n + length(\mathcal{D}_i)$ bits.
- Thus in PIR, the communication is also lower-bounded by $\log n + length(\mathcal{D}_i)$ bits.
- [Lip05]: A PIR with communication $O(\log^2 n + length(\mathcal{D}_i) \cdot \log n)$
- [GR05]: communication $O(\log n + length(\mathcal{D}_i))$ but much higher Alice-side computation

- In non-private information retrieval, Alice sends i to Bob, and Bob responds with \mathcal{D}_i . I.e., $\log n + length(\mathcal{D}_i)$ bits.
- Thus in PIR, the communication is also lower-bounded by $\log n + length(\mathcal{D}_i)$ bits.
- [Lip05]: A PIR with communication $O(\log^2 n + length(\mathcal{D}_i) \cdot \log n)$
- [GR05]: communication $O(\log n + length(\mathcal{D}_i))$ but much higher Alice-side computation

Open problem: construct a PIR with sublinear communication o(n) where server does $\ll n$ public-key operations

• Goal: Given Alice's vector $a=(a_1,\ldots,a_n)$ and Bob's vector $b=(b_1,\ldots,b_n)$, Alice needs to know $a\cdot b=\sum a_ib_i$

- Goal: Given Alice's vector $a = (a_1, ..., a_n)$ and Bob's vector $b = (b_1, ..., b_n)$, Alice needs to know $a \cdot b = \sum a_i b_i$
- Cryptographic privacy goals: Alice only learns $a \cdot b$, Bob learns nothing

- Goal: Given Alice's vector $a = (a_1, ..., a_n)$ and Bob's vector $b = (b_1, ..., b_n)$, Alice needs to know $a \cdot b = \sum a_i b_i$
- Cryptographic privacy goals: Alice only learns $a \cdot b$, Bob learns nothing
- Scalar product is another subprotocol that is often needed in data mining

- Goal: Given Alice's vector $a = (a_1, ..., a_n)$ and Bob's vector $b = (b_1, ..., b_n)$, Alice needs to know $a \cdot b = \sum a_i b_i$
- Cryptographic privacy goals: Alice only learns $a \cdot b$, Bob learns nothing
- Scalar product is another subprotocol that is often needed in data mining
 - Finding if a pattern occurs in a transaction is basically a scalar product computation

- Goal: Given Alice's vector $a = (a_1, ..., a_n)$ and Bob's vector $b = (b_1, ..., b_n)$, Alice needs to know $a \cdot b = \sum a_i b_i$
- Cryptographic privacy goals: Alice only learns $a \cdot b$, Bob learns nothing
- Scalar product is another subprotocol that is often needed in data mining
 - Finding if a pattern occurs in a transaction is basically a scalar product computation
 - Etc etc

- Goal: Given Alice's vector $a = (a_1, ..., a_n)$ and Bob's vector $b = (b_1, ..., b_n)$, Alice needs to know $a \cdot b = \sum a_i b_i$
- Cryptographic privacy goals: Alice only learns $a \cdot b$, Bob learns nothing
- Scalar product is another subprotocol that is often needed in data mining
 - Finding if a pattern occurs in a transaction is basically a scalar product computation
 - Etc etc
- Many "private" scalar product products have been proposed in the data mining community, but they are (almost) all insecure

• Assume E is additively homomorphic, $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$

• Assume *E* is additively homomorphic,

$$E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$$

• Alice has $a=(a_1,\ldots,a_n)$, Bob has $b=(b_1,\ldots,b_n)$

- Assume E is additively homomorphic, $E_{nk}(m_1; r_1)E_{nk}(m_2; r_2) = E_{nk}(m_1 + m_2; r_1r_2)$
- Alice has $a = (a_1, \ldots, a_n)$, Bob has $b = (b_1, \ldots, b_n)$
- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$

- Assume E is additively homomorphic, $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$
- Alice has $a=(a_1,\ldots,a_n)$, Bob has $b=(b_1,\ldots,b_n)$
- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- Bob computes $B \leftarrow \prod A_i^{b_i} \cdot E_K(0, *)$ and sends B to Alice

- Assume E is additively homomorphic, $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$
- Alice has $a=(a_1,\ldots,a_n)$, Bob has $b=(b_1,\ldots,b_n)$
- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- Bob computes $B \leftarrow \prod A_i^{b_i} \cdot E_K(0,*)$ and sends B to Alice
- Alice decrypts B

- Assume E is additively homomorphic, $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$
- Alice has $a=(a_1,\ldots,a_n)$, Bob has $b=(b_1,\ldots,b_n)$
- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- Bob computes $B \leftarrow \prod A_i^{b_i} \cdot E_K(0, *)$ and sends B to Alice
- Alice decrypts B
- Correct: $B = \prod A_i^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_i; *)^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_ib_i; \ldots) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; \ldots) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; *)$

- Assume E is additively homomorphic, $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$
- Alice has $a=(a_1,\ldots,a_n)$, Bob has $b=(b_1,\ldots,b_n)$
- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- Bob computes $B \leftarrow \prod A_i^{b_i} \cdot E_K(0,*)$ and sends B to Alice
- Alice decrypts B
- Correct: $B = \prod A_i^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_i; *)^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_ib_i; \ldots) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; \ldots) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; *)$
- Since B is a random encryption of $\sum a_i b_i$, then this protocol is also private

- Assume E is additively homomorphic, $E_{pk}(m_1; r_1)E_{pk}(m_2; r_2) = E_{pk}(m_1 + m_2; r_1r_2)$
- Alice has $a=(a_1,\ldots,a_n)$, Bob has $b=(b_1,\ldots,b_n)$
- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- Bob computes $B \leftarrow \prod A_i^{b_i} \cdot E_K(0,*)$ and sends B to Alice
- Alice decrypts B
- Correct: $B = \prod A_i^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_i; *)^{b_i} \cdot E_{pk}(0; *) = \prod E_{pk}(a_ib_i; \ldots) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; \ldots) \cdot E_{pk}(0; *) = E_{pk}(\sum a_ib_i; *)$
- Since B is a random encryption of $\sum a_i b_i$, then this protocol is also private
- See [GLLM04] for more

• For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$

- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- ② Bob computes $B \leftarrow E_K(0,*) \cdot \prod_{i=1}^n A_i^{b_i}$ and sends B to Alice

- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- ② Bob computes $B \leftarrow E_K(0,*) \cdot \prod_{i=1}^n A_i^{b_i}$ and sends B to Alice
- Alice decrypts B

- For $i \in \{1, ..., n\}$, Alice sends to Bob $A_i \leftarrow E_{pk}(a_i; *)$
- **2** Bob computes $B \leftarrow E_K(0;*) \cdot \prod_{i=1}^n A_i^{b_i}$ and sends B to Alice
- Alice decrypts B

Alice does n + 1 decryptions

Bob does n exponentiations

One can optimize it significantly, see [GLLM04]

Homomorphic Protocols: SWOT Analysis

Bad:

- Applicable mostly only if client's/server's outputs are affine functions of their inputs:
 - E.g., scalar product
- Some additional functionality can be included:
 - PIR uses a selector function: Client gets back some value if her input is equal to some other specific value

Good:

- "Efficient" whenever applicable
- Security proofs are standard and modular, client's privacy comes directly from the security of the cryptosystem, sender's privacy is also often simply proven
- Easy to implement (if you have a correct implementation of the cryptosystem)

 Take, e.g., an algorithm where some steps are conditional on some value being positive

- Take, e.g., an algorithm where some steps are conditional on some value being positive
 - E.g., (kernel) perceptron algorithm (explained later)

- Take, e.g., an algorithm where some steps are conditional on some value being positive
 - E.g., (kernel) perceptron algorithm (explained later)
- Condition a > 0 can be checked by using affine operations but it is cumbersome and relatively inefficient

- Take, e.g., an algorithm where some steps are conditional on some value being positive
 - E.g., (kernel) perceptron algorithm (explained later)
- Condition a > 0 can be checked by using affine operations but it is cumbersome and relatively inefficient
- Thus, in many protocols we need tools that make it possible to efficiently implement non-affine functionalities

Need For More Complex Tools

- Take, e.g., an algorithm where some steps are conditional on some value being positive
 - E.g., (kernel) perceptron algorithm (explained later)
- Condition a > 0 can be checked by using affine operations but it is cumbersome and relatively inefficient
- Thus, in many protocols we need tools that make it possible to efficiently implement non-affine functionalities
- Circuit evaluation: a well-known tool that is efficient whenever the functionality has a small Boolean complexity

Secret Sharing: Multi-Party Model

- Sharing a secret X: X is shared between different parties so that only legitimate coalitions of parties can reconstruct it, and any smaller coalition has no information about X
- Well-known, well-studied solutions starting from [Shamir 1979]
- Multi-Party Computation:
 - n parties secretly share their inputs
 - The protocol is executed on shared inputs
 - Intermediate values and output will be shared
 - Only legitimate coalitions can recover the output
- MPC: well-known, well-studied since mid 80-s
- Contemporary solutions quite efficient
- Needs more than two parties: 2/3rd fraction of parties must be honest ©

Combining Tools

- Most algorithms are not affine and have a high Boolean complexity
- Many algorithms can be decomposed into smaller pieces, such that some pieces are affine, some have low Boolean complexity
- Solve every piece of the algorithm by using an appropriate tool: homomorphic protocols, circuit evaluation or MPC
- Internal states of the algorithm should not become public and must therefore be secretly shared between different participants
- All more complex cryptographic PPDM protocols have this structure, see [LP00] or [LLM06]

• Classifying data: given a collection of existing data vectors $\vec{y} \in \{-1,1\}^n$ and their classification to two sets -1 and 1 (good/bad, rich/poor, ...), predict the classification of new data vectors

- Classifying data: given a collection of existing data vectors $\vec{y} \in \{-1,1\}^n$ and their classification to two sets -1 and 1 (good/bad, rich/poor, ...), predict the classification of new data vectors
- Linear classification: assume vectors \vec{y} are in n-dimensional space and that there exists an (n-1)-dimensional hyperplane that divides this space into two halves, the "bad" and the "good" datapoints. Find this hyperplane!

- Classifying data: given a collection of existing data vectors $\vec{y} \in \{-1,1\}^n$ and their classification to two sets -1 and 1 (good/bad, rich/poor, ...), predict the classification of new data vectors
- Linear classification: assume vectors \vec{y} are in n-dimensional space and that there exists an (n-1)-dimensional hyperplane that divides this space into two halves, the "bad" and the "good" datapoints. Find this hyperplane!
- Support Vector Machine: a separating hyperplane P that has maximum distance $\min_i d(P, \vec{y_i})$ from all data vectors

Most of the datasets are not linearly separable!

- Most of the datasets are not linearly separable!
- Kernel algorithms:

- Most of the datasets are not linearly separable!
- Kernel algorithms:
 - Design an application-specific kernel function K that maps n_1 -dimensional vectors into n_2 -dimensional space, $n_2 > n_1$, such that the data points will be linearly separable there

- Most of the datasets are not linearly separable!
- Kernel algorithms:
 - Design an application-specific kernel function K that maps n_1 -dimensional vectors into n_2 -dimensional space, $n_2 > n_1$, such that the data points will be linearly separable there
 - Apply the original algorithm in the n_2 -dimensional space
- Kernel perceptron is a concrete well-known kernel linear classifier

- Most of the datasets are not linearly separable!
- Kernel algorithms:
 - Design an application-specific kernel function K that maps n_1 -dimensional vectors into n_2 -dimensional space, $n_2 > n_1$, such that the data points will be linearly separable there
 - Apply the original algorithm in the n_2 -dimensional space
- Kernel perceptron is a concrete well-known kernel linear classifier
- ... not the most efficient one but relatively easy to secure [LLM06]

Kernel Perceptron

Input: Kernel matrix K, class labels $\vec{y} \in \{-1, 1\}^n$.

Output: A weight vector $\vec{\alpha} \in \mathbb{Z}^n$.

- 2 repeat
 - **1** for i = 1 to n do
 - end for
- until convergence
- lacktriangledown return $\vec{\alpha}$

Or: keep $\vec{\alpha}$ secret and use it to predict new classifiers

Conclusions

- Cryptography and Data-Mining two different worlds
- Cryptographic PPDM: data itself is not made public, different parties obtain their values by interactively communicating with the database servers
- Security definitions are precise and well-understood (?)
- Security guarantees are very strong: no adversary working in time 2^{80} can violate privacy with probability $\geq 2^{-80}$ (?)
- Computational/communication overhead makes many protocols impractical
- Constructing a protocol that is practical enough may require breakthroughs in cryptography and/or data mining

Further work?

- From cryptographic side:
 - Construct faster public-key cryptosystems
 - Superhomomorphic public-key cryptosystems that allow to do more than just add on ciphertexts
 - PIR with o(n) communication and o(n) public-key operations
 - Cryptography with weaker security guarantees
 - E.g., securing standard data structures structure itself reveals some information about the data, but how much, and how much is acceptable?
- From data mining side:
 - Construct privacy-friendly versions of various algorithms that are easy to implement cryptographically
 - E.g.: a version of SVM algorithm that is faster than adatron but privacy-friendly

Questions?

 Slides will be soon available from http://www.adastral.ucl.ac.uk/~helger

References I

William Aiello, Yuval Ishai, and Omer Reingold.

Priced Oblivious Transfer: How to Sell Digital Goods.

In Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 119–135, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag.

Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen.

On Private Scalar Product Computation for Privacy-Preserving Data Mining.

In Choonsik Park and Seongtaek Chee, editors, Information Security and Cryptology - ICISC 2004, volume 3506 of Lecture Notes in Computer Science, pages 104–120, Seoul, Korea, December 2–3, 2004. Springer-Verlag.

Craig Gentry and Zulfikar Ramzan.

Single-Database Private Information Retrieval with Constant Communication Rate.

In Luis Caires, Guiseppe F. Italiano, Luis Monteiro, Catuscia Palamidessi, and Moti Yung, editors, *The 32nd International Colloquium on Automata, Languages and Programming, ICALP 2005*, volume 3580 of Lecture Notes in Computer Science, pages 803–815, Lisboa, Portugal, 2005. Springer-Verlag.

Helger Lipmaa.

An Oblivious Transfer Protocol with Log-Squared Communication.

In Jianying Zhou and Javier Lopez, editors, *The 8th Information Security Conference (ISC'05)*, volume 3650 of Lecture Notes in Computer Science, pages 314–328, Singapore, September 20–23, 2005. Springer-Verlag.

References II

Sven Laur, Helger Lipmaa, and Taneli Mielikäinen.

Cryptographically Private Support Vector Machines.

In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, *Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 618–624, Philadelphia, PA, USA, August 20–23, 2006. ACM.

Yehuda Lindell and Benny Pinkas.

Privacy-Preserving Data Mining.

In Mihir Bellare, editor, *Advances in Cryptology — CRYPTO 2000*, volume 1880 of *Lecture Notes in Computer Science*, pages 36–54, Santa Barbara, USA, August 20–24 2000. Springer-Verlag.

Moni Naor and Benny Pinkas.

Oblivious Transfer and Polynomial Evaluation.

In Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Computing, pages 245–254, Atlanta, Georgia, USA, May 1–4, 1999. ACM Press.