
Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Cryptographic Techniques in
Privacy-Preserving Data Mining

Helger Lipmaa

University College London

Estonian Theory Days, 28.01.2007, Tutorial

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Outline

1 Motivation And Introduction

2 Some Simple PPDM Algorithms
Private Information Retrieval
Scalar Product Computation

3 Circuit Evaluation: Tool For Complex Protocols

4 Secret Sharing/MPC And Combining Tools

5 Conclusions

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Outline

1 Motivation And Introduction

2 Some Simple PPDM Algorithms
Private Information Retrieval
Scalar Product Computation

3 Circuit Evaluation: Tool For Complex Protocols

4 Secret Sharing/MPC And Combining Tools

5 Conclusions

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Outline

1 Motivation And Introduction

2 Some Simple PPDM Algorithms
Private Information Retrieval
Scalar Product Computation

3 Circuit Evaluation: Tool For Complex Protocols

4 Secret Sharing/MPC And Combining Tools

5 Conclusions

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Outline

1 Motivation And Introduction

2 Some Simple PPDM Algorithms
Private Information Retrieval
Scalar Product Computation

3 Circuit Evaluation: Tool For Complex Protocols

4 Secret Sharing/MPC And Combining Tools

5 Conclusions

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Outline

1 Motivation And Introduction

2 Some Simple PPDM Algorithms
Private Information Retrieval
Scalar Product Computation

3 Circuit Evaluation: Tool For Complex Protocols

4 Secret Sharing/MPC And Combining Tools

5 Conclusions

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Presentation History

This tutorial is based on three earlier tutorials in

ECML/PKDD 2006, the leading European ML/DM conference
Inscrypt 2006, a new data security conference
University of Bristol, 2007 — for a mixed audience of
cryptographers (a majority) and one data miner

The ECML/PKDD 2006 tutorial was aimed for data miners,
and thus spelled out a lot of small cryptographic details that a
cryptographer knows by heart. On the other hand, I assumed
that the audience knows ML/DM.

The current slides still spell out a lot of trivial cryptographic
details but I will skip many of them

Unless you object!
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Research History

Spring 2003: Sven Laur visits me in Finland for a semester,
joint seminars with Heikki Mannila, . . .

02.2004. . . 07.2007: 3.5 year grant on PPDM from Finnish
Academy of Sciences, for Sven’s PhD studies (Sven still there)

01.2006. . . 12.2007: 2 year grant on PPDM from Estonian
Science Foundation

Soon applying for a grant in the UK

Interest from BT (British Telecom), possibility to hire new
postdocs/PhD students

Most of the research is a joint work with Sven Laur
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Privacy-Preserving Data Mining: Motivation

Goal of DM: to build models of real data

Problem of DM: real data is too valuable and thus difficult to
obtain

Solution: add privacy. Only information that is really
necessary will be published.

E.g.,

Parties learn only average values of entries
Linear classification: parties learn only the classifiers of new
data

Many industrial/. . . applications

Medical databases: mining necessary to design new drugs/. . . ,
but many privacy issues — sharing data may even be illegal
Loyal customers: pooling databases helps to provide better
services. Many privacy issues
. . .
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World I: Data Mining

Goal: to model data

Typical task: given a database of transactions, find most
frequent patterns

Many methods are efficient only with “real data” that has
redundancy, good structure etc

Data compression, many algorithms of data mining, special
methods of machine learning. . .
Random data cannot be compressed and does not have
small-sized models

Having real data to test your algorithms with is important

Data representation is important
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World I: Data Mining

Conclusion: world I is data dependent
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World II: Cryptography

General goal: secure (confidential, authentic, . . . )
communication

Subgoal: to hide properties of data

Since cryptographic algorithms must hide (most of the) data,
they must be data independent

A few selected additional properties like the length of the input
may be leaked if hiding such properties is too expensive

For example, oblivious transfer:

Alice has input i ∈ [n], Bob has n strings D1, . . . ,Dn

Alice obtains Di

Cryptographic goal: Alice obtains no more information. Bob
obtains no information at all

OT: everything but Di (and n) should be private
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World II: Cryptography

Cryptography is usually inefficient with large amount of data

Example:

It is a “trivial” task to retrieve the ith element Di of a
database D
Oblivious transfer:

Database server’s computation is Ω(|D|)
“Proof”: If she does not do any work with the jth database
element then she “knows” that i 6= j . QED.
Of course, the constant in Ω is important!
|D| public-key operations is 1000 times slower than |D|
secret-key operations
In addition, one can do the majority of the work “offline”
Total work is still linear!
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In addition, one can do the majority of the work “offline”

Total work is still linear!
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Cryptographic PPDM: A Weird Coctail

Goal: discover a model of the data, but nothing else

Both “model” and “nothing else” must be well-defined!

Simplest example: find out average age of all patients (and
nothing else)

More complex example: publish average age of all patients
with symptom X , where X is not public

I.e., database owner must not get to know X

Another example: find 10 most frequent itemsets in the data

Find a model of DNA sequences for patients who have AIDS
and are over 40

In PPDM, data mining provides objectives, cryptography
provides tools (traditionally!)
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Cryptographic PPDM: Good, Bad and Ugly

Good: companies and persons may become more willing to
participate in data mining

Bad: already inefficient data mining algorithms become often
almost intractable

Simpler tasks can still be done

There is no ugly: it’s a nice research area ,

At this moment far from being practical, and thus offers many
open problems
Many of the open problems are really-really tough — is it
good, bad or ugly?
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Randomization Approach

Extremely popular in the data mining community, see
Srikant’s SIGKDD innovation award talk in KDD 2006,
Gehrke’s tutorial in KDD 2006, Xintao Wu’s tutorial in
ECML/PKDD 2006

There are significant differences between cryptographic and
randomization approaches!

. . . and they are studied by completely different communities
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Randomization Approach: Short Overview

Clients have data that is to be published and mined

It is desired that one can build certain models of the data
without violating the privacy of individual records

E.g., compute average age before getting to know the age of
any one person
It is allowed to get to know the average age of say any three
persons

Untrusted publisher model: clients perturb their data and
send their perturbed version to miner who mines the results

Trusted publisher model: clients send original data to a TP,
who perturbs it and sends the results to miner who mines the
results
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Cryptographic Approach: Short Overview

Assume there are n parties (clients, servers, miners) who all
have some private inputs xi , and they must compute some
private outputs yi = fi (~x)

fi etc are defined by the functionality we want to compute —
by data miners

Build a cryptographic protocol that guarantees that after
some rounds, the ith party learns yi and nothing else— with

probability 1− ε
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Cryptographic vs Randomization Approach: Differences

Who owns the database:

Randomization: randomized data is published, and the miner
operates on the perturbed database without contacting any
third parties
Cryptographic: depends on applications

Data is kept by a server, and the miner queries the server
Data is shared by several miners, who can only jointly mine it
. . .
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Cryptographic vs Randomization Approach: Differences

Correctness:

Randomization:

Client “owns” a perturbed database, and must be able to
compute (an approximation to) the desired output from it

Cryptographic:

Client can usually compute the precise output after interactive
communicating with the server
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Cryptographic vs Randomization Approach: Differences

Privacy:
Randomization: one can usually only guarantee that the values
of individual records are somewhat protected

E.g., in Randomized Response Technique, variance depends
on the size of the population
Interval privacy, k-anonymity, . . .

Cryptographic: one can guarantee that only the desired output
will become known to the client

Protect everything as much as possible
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Cryptographic vs Randomization Approach: Differences

Definitional:

Randomization: privacy definitions seem to be ad hoc (to a
cryptographer)
Cryptographic:

A lot of effort has been put into formalizing the definitions of
privacy, the definitions and their implications are well
understood
Cryptographic community has invested dozens of man years to
come up with correct definitions!
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Cryptographic vs Randomization Approach: Differences

Efficiency:
Randomization: randomizing might be difficult but it is done
once by the server; client’s work is usually comparable to her
work in the non-private case

Better efficiency, but privacy depends on data and predicate

Cryptographic: privatization overhead every single time when a
client needs to obtain some data

Better privacy, but efficiency depends on predicate
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Cryptographic vs Randomization Approach: Differences

Communities:

Randomization: bigger community, people from the data
mining community

Too many results to even mention. . .
Randomization is an optimization problem: tweak and your
algorithm might work for some concrete data

Cryptographic: small community

Cryptographic approach is seen to be too resource-consuming
and thus not worth the research time

Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright
and students, myself and Sven Laur, . . .

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Cryptographic vs Randomization Approach: Differences

Communities:
Randomization: bigger community, people from the data
mining community

Too many results to even mention. . .
Randomization is an optimization problem: tweak and your
algorithm might work for some concrete data

Cryptographic: small community

Cryptographic approach is seen to be too resource-consuming
and thus not worth the research time
Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright
and students, myself and Sven Laur, . . .

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Cryptographic vs Randomization Approach: Differences

Communities:
Randomization: bigger community, people from the data
mining community

Too many results to even mention. . .
Randomization is an optimization problem: tweak and your
algorithm might work for some concrete data

Cryptographic: small community

Cryptographic approach is seen to be too resource-consuming
and thus not worth the research time
Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright
and students, myself and Sven Laur, . . .

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Cryptographic vs Randomization Approach: Differences

Communities:
Randomization: bigger community, people from the data
mining community

Too many results to even mention. . .
Randomization is an optimization problem: tweak and your
algorithm might work for some concrete data

Cryptographic: small community

Cryptographic approach is seen to be too resource-consuming
and thus not worth the research time
Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright
and students, myself and Sven Laur, . . .

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Cryptographic vs Randomization Approach: Differences

Communities:
Randomization: bigger community, people from the data
mining community

Too many results to even mention. . .
Randomization is an optimization problem: tweak and your
algorithm might work for some concrete data

Cryptographic: small community

Cryptographic approach is seen to be too resource-consuming
and thus not worth the research time
Some people: Benny Pinkas, Kobby Nissim, Rebecca Wright
and students, myself and Sven Laur, . . .

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Private Information Retrieval
Scalar Product Computation

Private Information Retrieval

Alice (client) has index i ∈ [n], Bob (database server) has
database D = (D1, . . . ,Dn)

Functional goal: Alice obtains Di , Bob does not have to
obtain anything

Cryptographic privacy goal I: Bob does not obtain any
information about i

“Private information retrieval”

Cryptographic privacy goal II: Alice does not obtain any
information about Dj for any j 6= i

PIR + goal II = (“relaxed” secure) oblivious transfer

Cryptographic security/correctness goal III: the string that
Alice obtains is really equal to Di

goal I + II + III = secure oblivious transfer
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PIR: Computational vs Statistical Client-Privacy

Privacy can be defined to be statistical or computational

Statistical client-privacy:

Alice’s messages that correspond to any two queries i0 and i1
come from similar distributions
Then even an unbounded adversary cannot distinguish between
messages that correspond to any two different queries

Even if the queries i0/i1 are chosen by the adversary

Well-known fact: communication of statistically client-private
information retrieval with database D is at least |D| bits.

I.e., the trivial solution — Bob sends to Alice his whole
database, Alice retrieves Di — is also the optimal one
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PIR: Computational Client-Privacy (Intuition)

Computational client-privacy: no computationally bounded
Bob can distinguish between the distributions corresponding
to any two queries i0 and i1

I.e., the distributions of Alice’s messages A(i0) and A(i1)
corresponding to i0 and i1 are computationally
indistinguishable
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PIR: Formal Definition of Client-Privacy

Consider the next “game”:

B picks two indices i0 and i1, and sends them to A
A picks a random bit b ∈ {0, 1} and sends A(ib) to B
B(i0, i1,A(ib)) outputs a bit b′

B is successful if b′ = b

PIR is (ε, τ)-computationally client-private if no τ -time
adversary B has better success than |2ε− 1|
If B tosses a coin then it has success 1/2 and thus is a
(0, τ)-adversary for some small τ

IND-CPA security: INDistinguishability against Chosen
Plaintext Attacks
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OT: Formal Definition of Server-Security

Difference with client-privacy:

Client obtains an output Di and thus can distinguish between
databases D,D′ with Di 6= D′

i

This must be taken into account

We can achieve statistical server-privacy

With communication Θ(log |D|)
Since server gets no output, server-privacy=server-security

Recall goal III
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OT: Formal Definition of Server-Security

Consider the next ideal world with a completely trusted third
party T :

A sends her input i to T , B sends the database D to T
(secretly, authenticatedly)
T sends Di to A (secretly, authenticatedly)

This clearly models what we want to achieve!

A protocol is server-secure if:

For any attack that A can mount against B in the protocol,
there exists an adversary A∗ that can mount the same attack
against B in the described ideal world

Technical differences: real world is always asynchronous, but it
does not matter here
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Note on Security Definitions

Security definitions are uniform and modular, and remain the
same for most protocols

The previous definitions work for any two-party protocol where
on client’s input a and server’s input b, client must obtain an
output f (a, b) for some f , and server must obtain no output

Computational client-privacy: client’s messages corresponding
to any, even chosen-by-server, inputs a and a′ must be
computationally indistinguishable

Statistical server-security: consider an ideal world where client
gives a to T , server gives b to T and T returns f (a, b) to
client. Show that any attacker in real protocol can be used to
attack the ideal world with comparable efficiency.
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Tool: Additively Homomorphic Public-Key Crypto

E is a semantically/IND-CPA secure public-key cryptosystem
iff

Every user has a public key pk and secret key sk
Encryption is probabilistic: c = Epk(m; r) for some random
bitstring r
Decryption is successful: Dsk(Epk(m; r)) = m
Semantical/IND-CPA security: Distributions corresponding to
the encryptions of any m0 and m1 are computationally
indistinguishable
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Additionally, E is additively homomorphic iff

Dsk(Epk(m1; r1) · Epk(m2; r2)) = m1 + m2 ,

where plaintexts reside in some finite groupM and
ciphertexts reside in some finite group C.

Thus also Dsk(Epk(m; r)a) = am

Fact: such IND-CPA secure public-key cryptosystems exist
and are well-known [Paillier, 1999]

There M = ZN , C = ZN2 for some large composite N = pq
If you care: Epk(m; r) = (1 + mN)rN mod N2

Theorem Paillier cryptosystem is IND-CPA secure if it is
computationally difficult to distinguish the Nth random
residues modulo N2 from random integers modulo N2
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Simple PIR

Inputs: Alice has query i ∈ [n], Bob has D = (D1, . . . ,Dn) where
Dj ∈ ZN

1 Alice generates a new public/private key pair (pk, sk) for an
additively homomorphic secure public-key cryptosystem E

2 Alice generates her message a← Epk(i ; ∗) and sends
A(i)← (pk, a) to Bob. Bob stops if pk is not a valid public
key or a is not a valid ciphertext.

3 Bob does for every j ∈ {1, . . . , n}:
Set bj ← (a/Epk(j ; 1))∗ · Epk(Dj ; ∗)= Epk(∗(i − j) +Dj ; ∗)

4 Bob sends (b1, . . . , bn) to Alice, Alice decrypts bi and obtains
thus Di = Dsk(bi )

See [AIR01]
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AIR PIR: Correctness/Security

Bob does for every j ∈ {1, . . . , n}:

Set bj ← (a/Epk(j ; 1))∗ · Epk(Dj ; ∗)
Since a = Epk(i ; ∗) then

bj = (Epk(i ; ∗)/Epk(j ; 1))∗ · Epk(Dj ; ∗)

Because E is additively homomorphic then

bj = (Epk(i − j ; ∗))∗ · Epk(Dj ; ∗) = (Epk(∗ · (i − j); r)) · Epk(Dj ; ∗)

for some r
If i = j then

bj = Epk(0; r) · Epk(Dj ; ∗) = Epk(Dj ; ∗)

and thus Dsk(bi ) = Di

Thus Alice obtains Di
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bj = (Epk(i − j ; ∗))∗ · Epk(Dj ; ∗) = (Epk(∗(i − j); r)) · Epk(Dj ; ∗)

for some r
If gcd(i − j ,N) = 1 then ∗ · (i − j) = ∗ is a random element of
ZN and thus

bj = Epk(∗; r) · Epk(Dj ; ∗) = Epk(∗; ∗) ,

and thus Dsk(bj) = ∗, i.e., bj gives no information about Dj

Thus Alice obtains Di and nothing else!
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AIR 1-out-of-n PIR: Security Properties

Alice’s query is computationally “IND-CPA” private: Bob sees
its encryption, and the cryptosystem is IND-CPA private by
assumption

Bob’s database is statistically private: Alice sees an encryption
of Di together with n − 1 encryptions of random strings

We can construct a simulator who, only knowing Di and
nothing else about Bob’s database, sends

(Epk(∗; ∗), . . . ,Epk(∗; ∗),Epk(Di ; ∗),Epk(∗; ∗), . . . ,Epk(∗; ∗))

to Alice.
Simulator’s output is the same as honest Bob’s output and
was constructed, only knowing Di⇒ protocol is statistically
private for Bob
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AIR PIR: Full Server-Security Proof

Proof.

We must assume that simulator is unbounded (this is ok since
malicious Alice can also be unbounded, and thus simulator may
need a lot of time to check her work).

Alice sends (pk, a) to Bob.
Unbounded simulator finds corresponding sk and computes
i∗ ← Dsk(a). If there is no such sk or a is not a valid ciphertext
then simulator returns “reject”. Otherwise, simulator sends i∗ to
T . Bob sends D to T . T sends Di∗ to simulator. Simulator sends

(Epk(∗; ∗), . . . ,Epk(∗; ∗),Epk(Di ; ∗),Epk(∗; ∗), . . . ,Epk(∗; ∗))

to Alice. Clearly in this case, even a malicious Alice sees
messages from the same distribution as in the real world.
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AIR PIR: Security Fineprints

It takes some additional work to ascertain that the protocol is
secure if i is chosen maliciously such that for some j ∈ [n],
gcd(i − j ,N) > 1.

We have a relaxed-secure oblivious transfer protocol: privacy
of both parties is guaranteed but Alice has no guarantee that
bi decrypts to anything sensible
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AIR 1-out-of-n PIR: Efficiency

1 Alice generates a new public/private key pair (pk, sk) for an
additively homomorphic secure public-key cryptosystem E

2 Alice generates her message a← Epk(i ; ∗) and sends A(i)← (pk, a)
to Bob. Bob stops if pk is not a valid public key or a is not a valid
ciphertext.

3 Bob does for every j ∈ {1, . . . , n}:
Set bj ← (a/Epk(j ; 1))∗ · Epk(Dj ; ∗)= Epk(∗(i − j) +Dj ; ∗)

4 Bob sends (b1, . . . , bn) to Alice, Alice decrypts bi and obtains thus
Di = Dsk(bi )

Alice’s computation: one encryption at first, and one
decryption at the end. Good
Bob’s computation: 2n encryptions, n exponentiations, etc.
Bad but cannot improve to o(n)!
Communication: Alice sends 1 ciphertext, Bob sends n
ciphertexts, in total n + 1 ciphertexts. Bad, can be improved.
One encryption ≈ one exponentiation

On 2048-bit integers, ≈ 1024 2048-bit multiplications or
≈ 10242 2048-bit additions
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AIR PIR: Lessons

It is possible to design provably secure PPDM algorithms

Design is often complicated

Bear in mind that PIR is the simplest possible PPDM
algorithm!

With a well-constructed protocol, proofs can become
straightforward

Existing designs can be (hopefully?) explained to
non-specialists

Even for really simple tasks, computational overhead can
crash the party
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More Efficient PIRs: Computation

As said previously, Bob must do something with every
database element

However, this something doesn’t have to be public-key
encryption — and symmetric key encryption (block ciphers,
. . . ) is often 1000 times faster
Trivial PIR: Bob transfers the database to Alice. Good
performance, linear communication, no privacy for Bob
[NP99] showed how to transfer any PIR to OT:

Every database element is masked by log n pseudorandom
sequences and then the PIR is applied to the masked database.
Alice additionally obtains the concrete log n pseudorandom
sequences needed to unmask Di by doing log n 1-out-of-2
OT-s with Bob.
Needs n symmetric-key operations and log n public-key
encryptions in addition to the computation of PIR.
Linear-communication OT with log n public-key encryptions!
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More Efficient PIRs: Communication

In non-private information retrieval, Alice sends i to Bob, and
Bob responds with Di . I.e., log n + length(Di ) bits.

Thus in PIR, the communication is also lower-bounded by
log n + length(Di ) bits.

[Lip05]: A PIR with communication
O(log2 n + length(Di ) · log n)

[GR05]: communication O(log n + length(Di )) but much
higher Alice-side computation

Open problem: construct a PIR with sublinear communication
o(n) where server does � n public-key operations

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Private Information Retrieval
Scalar Product Computation

More Efficient PIRs: Communication

In non-private information retrieval, Alice sends i to Bob, and
Bob responds with Di . I.e., log n + length(Di ) bits.

Thus in PIR, the communication is also lower-bounded by
log n + length(Di ) bits.

[Lip05]: A PIR with communication
O(log2 n + length(Di ) · log n)

[GR05]: communication O(log n + length(Di )) but much
higher Alice-side computation

Open problem: construct a PIR with sublinear communication
o(n) where server does � n public-key operations

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Private Information Retrieval
Scalar Product Computation

More Efficient PIRs: Communication

In non-private information retrieval, Alice sends i to Bob, and
Bob responds with Di . I.e., log n + length(Di ) bits.

Thus in PIR, the communication is also lower-bounded by
log n + length(Di ) bits.

[Lip05]: A PIR with communication
O(log2 n + length(Di ) · log n)

[GR05]: communication O(log n + length(Di )) but much
higher Alice-side computation

Open problem: construct a PIR with sublinear communication
o(n) where server does � n public-key operations

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Private Information Retrieval
Scalar Product Computation

More Efficient PIRs: Communication

In non-private information retrieval, Alice sends i to Bob, and
Bob responds with Di . I.e., log n + length(Di ) bits.

Thus in PIR, the communication is also lower-bounded by
log n + length(Di ) bits.

[Lip05]: A PIR with communication
O(log2 n + length(Di ) · log n)

[GR05]: communication O(log n + length(Di )) but much
higher Alice-side computation

Open problem: construct a PIR with sublinear communication
o(n) where server does � n public-key operations

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Private Information Retrieval
Scalar Product Computation

More Efficient PIRs: Communication

In non-private information retrieval, Alice sends i to Bob, and
Bob responds with Di . I.e., log n + length(Di ) bits.

Thus in PIR, the communication is also lower-bounded by
log n + length(Di ) bits.

[Lip05]: A PIR with communication
O(log2 n + length(Di ) · log n)

[GR05]: communication O(log n + length(Di )) but much
higher Alice-side computation

Open problem: construct a PIR with sublinear communication
o(n) where server does � n public-key operations

Helger Lipmaa Cryptographic Techniques in Privacy-Preserving Data Mining



Motivation And Introduction
Some Simple PPDM Algorithms

Circuit Evaluation: Tool For Complex Protocols
Secret Sharing/MPC And Combining Tools

Conclusions

Private Information Retrieval
Scalar Product Computation

Private Scalar Product

Goal: Given Alice’s vector a = (a1, . . . , an) and Bob’s vector
b = (b1, . . . , bn), Alice needs to know a · b =

∑
aibi

Cryptographic privacy goals: Alice only learns a · b, Bob learns
nothing

Scalar product is another subprotocol that is often needed in
data mining

Finding if a pattern occurs in a transaction is basically a scalar
product computation
Etc etc

Many “private” scalar product products have been proposed in
the data mining community, but they are (almost) all insecure
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GLLM04 Private Scalar Product Protocol

Assume E is additively homomorphic,
Epk(m1; r1)Epk(m2; r2) = Epk(m1 + m2; r1r2)

Alice has a = (a1, . . . , an), Bob has b = (b1, . . . , bn)

For i ∈ {1, . . . , n}, Alice sends to Bob Ai ← Epk(ai ; ∗)
Bob computes B ←

∏
Abi

i · EK (0; ∗) and sends B to Alice

Alice decrypts B

Correct: B =
∏

Abi
i · Epk(0; ∗) =

∏
Epk(ai ; ∗)bi · Epk(0; ∗) =∏

Epk(aibi ; . . .) · Epk(0; ∗) = Epk(
∑

aibi ; . . .) · Epk(0; ∗) =
Epk(

∑
aibi ; ∗)

Since B is a random encryption of
∑

aibi , then this protocol
is also private

See [GLLM04] for more
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GLLM04: Complexity

1 For i ∈ {1, . . . , n}, Alice sends to Bob Ai ← Epk(ai ; ∗)

2 Bob computes B ← EK (0; ∗) ·
∏n

i=1 Abi
i and sends B to Alice

3 Alice decrypts B

Alice does n + 1 decryptions
Bob does n exponentiations
One can optimize it significantly, see [GLLM04]
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Homomorphic Protocols: SWOT Analysis

Bad:
Applicable mostly only if client’s/server’s outputs are affine
functions of their inputs:

E.g., scalar product

Some additional functionality can be included:

PIR uses a selector function: Client gets back some value if
her input is equal to some other specific value

Good:

“Efficient” whenever applicable
Security proofs are standard and modular, client’s privacy
comes directly from the security of the cryptosystem, sender’s
privacy is also often simply proven
Easy to implement (if you have a correct implementation of
the cryptosystem)
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Need For More Complex Tools

Take, e.g., an algorithm where some steps are conditional on
some value being positive

E.g., (kernel) perceptron algorithm (explained later)

Condition a > 0 can be checked by using affine operations but
it is cumbersome and relatively inefficient

Thus, in many protocols we need tools that make it possible
to efficiently implement non-affine functionalities

Circuit evaluation: a well-known tool that is efficient
whenever the functionality has a small Boolean complexity
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to efficiently implement non-affine functionalities

Circuit evaluation: a well-known tool that is efficient
whenever the functionality has a small Boolean complexity
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Secret Sharing: Multi-Party Model

Sharing a secret X : X is shared between different parties so
that only legitimate coalitions of parties can reconstruct it,
and any smaller coalition has no information about X

Well-known, well-studied solutions starting from [Shamir 1979]

Multi-Party Computation:

n parties secretly share their inputs
The protocol is executed on shared inputs
Intermediate values and output will be shared
Only legitimate coalitions can recover the output

MPC: well-known, well-studied since mid 80-s

Contemporary solutions quite efficient

Needs more than two parties: 2/3rd fraction of parties must
be honest /
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Combining Tools

Most algorithms are not affine and have a high Boolean
complexity

Many algorithms can be decomposed into smaller pieces, such
that some pieces are affine, some have low Boolean complexity

Solve every piece of the algorithm by using an appropriate
tool: homomorphic protocols, circuit evaluation or MPC

Internal states of the algorithm should not become public and
must therefore be secretly shared between different
participants

All more complex cryptographic PPDM protocols have this
structure, see [LP00] or [LLM06]
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Combining Example: Private Kernel Perceptron

Classifying data: given a collection of existing data vectors
~y ∈ {−1, 1}n and their classification to two sets −1 and 1
(good/bad, rich/poor, . . . ), predict the classification of new
data vectors

Linear classification: assume vectors ~y are in n-dimensional
space and that there exists an (n − 1)-dimensional hyperplane
that divides this space into two halves, the “bad” and the
“good” datapoints. Find this hyperplane!

Support Vector Machine: a separating hyperplane P that has
maximum distance mini d(P, ~yi ) from all data vectors
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Combining Example: Private Kernel Perceptron

Most of the datasets are not linearly separable!

Kernel algorithms:

Design an application-specific kernel function K that maps
n1-dimensional vectors into n2-dimensional space, n2 > n1,
such that the data points will be linearly separable there
Apply the original algorithm in the n2-dimensional space

Kernel perceptron is a concrete well-known kernel linear
classifier

. . . not the most efficient one but relatively easy to
secure [LLM06]
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Combining Example: Private Kernel Perceptron

Kernel Perceptron

Input: Kernel matrix K , class labels ~y ∈ {−1, 1}n.
Output: A weight vector ~α ∈ Zn.

1 Set ~α← ~0.
2 repeat

1 for i = 1 to n do

1 if yi ·
∑n

j=1 kijαj ≤ 0 then αi ← αi + yi

2 end for

3 until convergence

4 return ~α

Or: keep ~α secret and use it to predict new classifiers
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Conclusions

Cryptography and Data-Mining — two different worlds

Cryptographic PPDM: data itself is not made public, different
parties obtain their values by interactively communicating
with the database servers

Security definitions are precise and well-understood (?)

Security guarantees are very strong: no adversary working in
time 280 can violate privacy with probability ≥ 2−80 (?)

Computational/communication overhead makes many
protocols impractical

Constructing a protocol that is practical enough may require
breakthroughs in cryptography and/or data mining
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Further work?

From cryptographic side:

Construct faster public-key cryptosystems
Superhomomorphic public-key cryptosystems that allow to do
more than just add on ciphertexts
PIR with o(n) communication and o(n) public-key operations
Cryptography with weaker security guarantees

E.g., securing standard data structures — structure itself
reveals some information about the data, but how much, and
how much is acceptable?

From data mining side:

Construct privacy-friendly versions of various algorithms that
are easy to implement cryptographically
E.g.: a version of SVM algorithm that is faster than adatron
but privacy-friendly
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Questions?

Slides will be soon available from
http://www.adastral.ucl.ac.uk/˜helger
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