Loop Invariants

Vesal Vojdani

Department of Computer Science University of Tartu

Formal Methods (2014)

Warm-Up

Consider a simple loop-free program:

```
int succ(int x) {
    a = x + 1;
    if (a - 1 == 0)
        y = 1;
    else
        y = a;
    return y;
}
```

Show that y = x + 1 at the return statement.

While Loops

Recall the proof rule

$$\frac{(\phi \land e) C (\phi)}{(\phi) \text{ while } e \text{ do } C (\phi \land \neg e)}$$

- ▶ Given a ψ as post-condition...
- How can we apply this rule?
- What is the WP of a while loop?

Termination?

Weakest Liberal Preconditions

$$\mathit{wp} \hspace{0.1cm} \llbracket S \rrbracket \hspace{0.1cm} \psi \equiv \mathit{wp} \hspace{0.1cm} \llbracket S \rrbracket \, \mathit{true} \wedge \mathit{wlp} \hspace{0.1cm} \llbracket S \rrbracket \hspace{0.1cm} \psi$$

- We did not care about this distinction
 - Termination is an outdated concept. ;)
 - Only loops have different definitions.

WP for while loops

- ▶ WP [while e do C] ψ ?
- Unrolling the loop:

$$F_0$$
 = while e do skip
 F_i = if e then C ; F_{i-1} else skip

WP for "exiting the loop after at most i iterations in a state satisfying ψ":

$$\begin{split} L_0 &\equiv \psi \wedge \neg e \\ L_i &\equiv (\neg e \to \varphi) \wedge (e \to \mathsf{WP} \llbracket \mathsf{C} \rrbracket \ \, \mathsf{L}_{i-1}) \end{split}$$

WLP for while loops

- ▶ WLP [while e do C] ψ ?
- Unrolling the loop:

$$F_0$$
 = while e do skip
 F_i = if e then C ; F_{i-1} else skip

WLP for "if we exit the loop after at most i iterations, the resulting state satisfies ψ":

$$\begin{split} L_0 &\equiv \psi \\ L_{\textbf{i}} &\equiv (\neg e \rightarrow \varphi) \wedge (e \rightarrow \mathsf{WLP} \, \llbracket \mathsf{C} \rrbracket \, \, \underline{L_{\textbf{i}-1}}) \end{split}$$

WLP for while loops

WLP for "if we exit the loop after at most i iterations, the resulting state satisfies ψ":

$$\begin{split} L_0 &\equiv \psi \\ L_i &\equiv (\neg e \rightarrow \varphi) \wedge (e \rightarrow \mathsf{WLP} \, \llbracket \mathsf{C} \rrbracket \, \, \textcolor{red}{\mathsf{L}_{i-1}}) \end{split}$$

We then define

WLP [while
$$e$$
 do C] $\psi = \forall i \in \mathbb{N} : L_i$

▶ Not very practical...

Precondition of a While Loop

To push ψ up through while e do C:

- 1. Guess a potential invariant ϕ .
- 2. Make sure $\phi \wedge \neg e \implies \psi$.
- 3. Compute $\phi' = \text{WLP} \llbracket \mathbf{C} \rrbracket \phi$.
- 4. Check that $\phi \wedge e \implies \phi'$.
- 5. Then, ϕ is a pre-condition for ψ .

Proof Tableaux for Loops

```
( \phi )
while e do {
           (\phi \wedge e)
           ( \phi )
     ( \phi \land \neg E )
     (\psi)
```

Exercise 1

```
int fact(int x) {
    y = 1;
    z = 0;
    while (z != x) {
        z = z + 1;
        y = y * z;
    }
    return y;
}
```

Guessing the invariant

Doing a trace:

iteration	χ	y	z	В
0	6	1	0	true
1	6	1	1	true
2	6	2	2	true
3	6	6	3	true
4	6	24	4	true
5	6	120	5	true
6	6	720	6	false
i		i!	i	

Formulate hypothesis: y = z!

Want to establish $\psi \equiv y = x!$.

- 1. Our invariant $\phi \equiv y = z!$
- 2. Check that $\phi \land \neg(z \neq x) \implies \psi$.

Want to establish $\psi \equiv y = x!$.

- 1. Our invariant $\phi \equiv y = z!$
- 2. Check that $\phi \land \neg(z \neq x) \implies \psi$.
- 3. Compute WLP of loop body:

Want to establish $\psi \equiv y = x!$.

- 1. Our invariant $\phi \equiv y = z!$
- 2. Check that $\phi \wedge \neg (z \neq x) \implies \psi$.
- 3. Compute WLP of loop body:

$$\phi' \equiv y \cdot (z+1) = (z+1)!$$

4. Check if $\phi \land z \neq x \implies \phi'$.

Want to establish $\psi \equiv y = x!$.

- 1. Our invariant $\phi \equiv y = z!$
- 2. Check that $\phi \wedge \neg (z \neq x) \implies \psi$.
- 3. Compute WLP of loop body:

$$\phi' \equiv y \cdot (z+1) = (z+1)!$$

- 4. Check if $\phi \land z \neq x \implies \phi'$.
- 5. Continue WLP computation with ϕ .

Exercise 2: Minimal-Sum Section

- ▶ Given an integer array $\alpha[0]$, $\alpha[1]$, . . . , $\alpha[n-1]$.
- A section of α is a continuous piece $\alpha[i], \alpha[i+1], \ldots, \alpha[j]$ with $0 \leqslant i \leqslant j < n$.
- ▶ Section sum: $S_{i,j} = a[i] + \cdots + a[j]$.
- A minimal-sum section is a section $\alpha[i], \ldots, \alpha[j]$ s.t. for any other $\alpha[i'], \ldots, \alpha[j']$, we have $S_{i,j} \leqslant S_{i',j'}$.

What to do?

- Compute the sum of the minimal-sum sections in linear time.
- Prove that the code is correct!
- ▶ For example...
 - -1, 3, 15, -6, 4, -5] is -7 for [-6, 4, -5].
 - [-2, -1, 3, -3] is -3 for [-2, -1] or [-3].

The Program

```
int minsum(int a[]) {
    k = 1;
    t = a[0];
    s = a[0];
    while (k != n) {
        t = min(t + a[k], a[k]);
        s = min(s,t);
        k = k + 1;
    return s;
```

Post-conditions

▶ The value s is smaller than the sum of any section.

$$\varphi_1 = \forall i,j: 0 \leqslant i \leqslant j < n \rightarrow s \leqslant S_{i,j}$$

There is a section whose sum is s

$$\varphi_2 = \exists i,j: 0 \leqslant i \leqslant j < \mathfrak{n} \wedge s = S_{i,j}$$

Trying to prove ϕ_1

Suitable Invariant:

$$\begin{split} \varphi_1 = \forall i,j: 0 \leqslant i \leqslant j < n \rightarrow s \leqslant S_{i,j} \\ I_1(s,k) = \forall i,j: 0 \leqslant i \leqslant j < k \rightarrow s \leqslant S_{i,j} \end{split}$$

Trying to prove ϕ_1

Suitable Invariant:

$$\begin{split} \varphi_1 = \forall i,j: 0 \leqslant i \leqslant j < n \rightarrow s \leqslant S_{i,j} \\ I_1(s,k) = \forall i,j: 0 \leqslant i \leqslant j < k \rightarrow s \leqslant S_{i,j} \end{split}$$

Additional Invariant

$$I_2(t,k) = \forall i : 0 \leqslant i < k \rightarrow t \leqslant S_{i,k-1}$$

The Key Lemma

In the end, we have to prove that

$$\begin{split} I_1(s,k) & \wedge I_2(t,k) \wedge k \neq \mathfrak{n} \\ & \Longrightarrow \\ I_1(\mathsf{min}(s,(\mathsf{min}(t+\mathfrak{a}[k],\mathfrak{a}[k])),k+1) \\ & \wedge \\ I_2(\mathsf{min}(t+\mathfrak{a}[k],\mathfrak{a}[k]),k+1) \end{split}$$

This will require human intervention: proof-assistants.