VCG: Abstraction of Loops

Vesal Vojdani

Department of Computer Science University of Tartu

Formal Methods (2014)

WP computation was stuck in this loop

Havoc (wrong!)

Concrete semantics:

$$\llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, \mathsf{S} = \{ \sigma[\mathsf{x} \mapsto \mathsf{z}] \mid \sigma \in \mathsf{S}, \, \mathsf{z} \in \mathbb{Z} \}$$

WP for havoc:

$$\mathsf{WP} \llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, \psi = \exists \mathsf{x} : \psi$$

Practically, all information about x is lost, except indirect relations remain:

$$\mathsf{WP} \llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, (\mathsf{y} = \mathsf{x} \land \mathsf{x} = \mathsf{z}) \implies (\mathsf{y} = \mathsf{z})$$

Havoc (for post-conditions!)

Concrete semantics:

$$\llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, \mathsf{S} = \{ \sigma[\mathsf{x} \mapsto \mathsf{z}] \mid \sigma \in \mathsf{S}, \, \mathsf{z} \in \mathbb{Z} \}$$

WP for havoc:

$$\mathsf{WP} \llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, \psi = \exists \mathsf{x} : \psi$$

Practically, all information about x is lost, except indirect relations remain (after the assignment):

$$\mathsf{WP} \llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, (\mathsf{y} = \mathsf{x} \land \mathsf{x} = \mathsf{z}) \implies (\mathsf{y} = \mathsf{z})$$

Pre-Condition of Havoc

Concrete semantics:

$$\llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, \mathsf{S} = \{ \sigma[\mathsf{x} \mapsto \mathsf{z}] \mid \sigma \in \mathsf{S}, \, \mathsf{z} \in \mathbb{Z} \}$$

WP for havoc:

$$\mathsf{WP} \llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, \psi = \forall \mathsf{x} : \psi$$

• We need ψ to hold for all values of x. Usually, we have assumes after havoc, so a typical example is

$$\mathsf{WP} \llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, ((\mathsf{y} = \mathsf{x}) \to (\mathsf{x} = \mathsf{z})) \implies (\mathsf{y} = \mathsf{z})$$

Pre-Condition of Havoc

Concrete semantics:

$$\llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, \mathsf{S} = \{ \sigma[\mathsf{x} \mapsto \mathsf{z}] \mid \sigma \in \mathsf{S}, \, \mathsf{z} \in \mathbb{Z} \}$$

WP for havoc:

WP
$$[havoc x] \psi = \psi[x'/x]$$
 x' is fresh!

• We need ψ to hold for all values of x. Usually, we have assumes after havoc, so a typical example is

$$\mathsf{WP} \llbracket \mathsf{havoc} \, \mathsf{x} \rrbracket \, ((\mathsf{y} = \mathsf{x}) \to (\mathsf{x} = \mathsf{z})) \implies (\mathsf{y} = \mathsf{z})$$

A simple assumption

- We should havoc all variables that are assigned to in the loop body.
- For simplicity, we assume this is only x.
- You may think of x as a vector.)

Normal While Loop

Abstraction using invariant φ

Why can we do this?

The construction guarantees that if

$$\perp \not \in S_2$$

we have

$$S_2' \subseteq S_2$$

where S_i' are the sets computed for the original while loop.

Note: it follows very closely the proof rules of Hoare logic.

Now we really can compute a VC

What happened?

- Well, there was no invariant to check.
- That's good because the invariant was trivial.
- ► The homework requires making this construction with an invariant.
- Just a note on procedure, and then we prove the soundness of the construction.

Procedure Calls

Given a function P with parameter p and result r and contract

$$(\phi) P (\psi)$$

• We produce the following translation for a call x = P(e).

$$p := e$$

$$\phi !$$

$$\psi ?$$

$$x := r$$

Soundness of the transformation

Proof Plan

- 1. Write down constraint systems S and S'.
- 2. Separate assertions into
 - the conditions they impose
 - constraint system for values
- 3. Show that the value system satisfies the constraints of S.
- 4. This implies that any solution of S' is greater than the least solution of S.

Constraint System S

$$\begin{split} S_0 &\supseteq S \\ S_0 &\supseteq \llbracket C \rrbracket \, S_1 \\ S_1 &\supseteq \llbracket e \, ? \rrbracket \, S_0 \\ S_2 &\supseteq \llbracket \neg e \, ? \rrbracket \, S_0 \end{split}$$

Constraint System S'

$$S'_{A} \supseteq S$$

$$S'_{0} \supseteq \llbracket \varphi ? \rrbracket \{ \sigma[x \mapsto z] \mid z \in \mathbb{Z}, \\ \sigma \in \llbracket \varphi ! \rrbracket S'_{A} \}$$

$$S'_{1} \supseteq \llbracket e ? \rrbracket S'_{0}$$

$$S'_{B} \supseteq \llbracket \varphi ! \rrbracket (\llbracket C \rrbracket S'_{1})$$

$$S'_{2} \supseteq \llbracket \neg e ? \rrbracket S'_{0} \cup \{ \bot \mid \bot \in S'_{B} \}$$

Splitting S' based on $\bot \in S_2'$

▶ We can be sure $\bot \notin S_2'$ if we have

$$S \vDash \phi$$

$$\llbracket \mathbf{C} \rrbracket S_1' \vDash \phi$$

▶ Letting $S_x = {\sigma[x \mapsto z] \mid z \in \mathbb{Z}, \sigma \in S}$, the following constraints remain:

$$S'_0 \supseteq \llbracket \varphi ? \rrbracket S_x$$

$$S'_1 \supseteq \llbracket e ? \rrbracket S'_0$$

$$S'_2 \supseteq \llbracket \neg e ? \rrbracket S'_0$$

Splitting S' based on $\bot \in S_2'$

▶ We can be sure $\bot \notin S_2'$ if we have

$$S \vDash \mathbf{\phi}$$
$$[\![\mathbf{C}]\!] S_1' \vDash \mathbf{\phi}$$

▶ Letting $S_x = {\sigma[x \mapsto z] \mid z \in \mathbb{Z}, \sigma \in S}$, we obtain the following solution:

$$S_0' = \{ \sigma \in S_x \mid \sigma \vDash \varphi \}$$

$$S_1' = \{ \sigma \in S_x \mid \sigma \vDash \varphi \land e \}$$

$$S_2' = \{ \sigma \in S_x \mid \sigma \vDash \varphi \land \neg e \}$$

Solution to original system?

Given the solution and conditions:

$$S'_0 = \{ \sigma \in S_x \mid \sigma \vDash \varphi \}$$

$$S'_1 = \{ \sigma \in S_x \mid \sigma \vDash \varphi \land e \}$$

$$[C] S'_1 \vDash \varphi$$

$$S'_2 = \{ \sigma \in S_x \mid \sigma \vDash \varphi \land \neg e \}$$

We check if the original constraints are satisfied:

$$\begin{array}{lll} S_0' \supseteq S & S_0' \supseteq \llbracket C \rrbracket \, S_1' \\ S_1' \supseteq \llbracket e \, ? \rrbracket \, S_0' & S_2' \supseteq \llbracket \neg e \, ? \rrbracket \, S_0' \end{array}$$

What did we just do?

We had two systems:

$$X \supseteq F(X)$$

 $X \supseteq F'(X)$

We showed that for any Y

$$Y\supseteq F'(Y)\implies Y\supseteq F(Y)$$

What did we conclude?