
University of Tartu
Department of Computer Science

Fall 2014
Vesal Vojdani

Formal Methods in Software Engineering
Exercise sheet 1 (preparation)

Exercise 1: Factorial example from the lecture No Points

This first “exercise” is not really an exercise; it just shows how to write down the full
Tableaux proof on paper. This is the factorial function in original code:

int fact(int x) {
y = 1;
z = 0;
while (z != x) {

z = z + 1;
y = y * z;

}
return y;

}

There is no return statement in the While language. We show that when y is returned
the equality y = x! holds. Last lecture, we stepped through a few iterations of the loop
and guessed that the invariant should be y = z!, which we can use to attempt a proof:

L true M
L 1 = 0! M

y = 1 ;
L y = 0! M

z = 0 ;
L y = z! M

while z 6= x do {
L (y = z!) ∧ (z 6= x) M
L y · (z + 1) = (z + 1)! M

z = z + 1 ;
L y · z = z! M

y = y · z
L y = z! M

}
L (y = z!) ∧ (z = x) M
L x = y! M

1



Exercise 2: What is the invariant? No Points

Consider now the following program:

L true M
x = 2 · y ;
z = 0 ;
while z 6= x do {

z = z + 1 ;
x = x− 1

}
L z = y M

How do we infer an invariant for this program?

Exercise 3: Multiplication Counting Up No Points

Show that this program computes z = x · y:
a = 0;
z = 0;
while (a != y) {

z = z + x;
a = a + 1;

}

Exercise 4: Multiplication Counting Down No Points

Show that this program computes z = x · y:
z = 0;
while (y != 0) {

z = z + x;
y = y - 1;

}

Note that y changes during computation! How can we express this in pre- and post-
conditions?

2


