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What are formal methods?

formal method = formal model + formal analysis
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What is a formal model?

A model is formal if it has. . .
I Well-defined syntax.
I Unambiguous1 semantics.

1mathematical
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Formal Analysis

1. Automated Theorem Proving
2. Model Checking
3. Abstract Interpretation
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In General

M � ϕ

I M: a situation or model of the system
I ϕ: a specification of what should hold at situation
M
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Where do models come from?

1. Hand-written from informal specs.
2. Derived automatically from source code.
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Why create a model?

I You can use the model to
1. analyze if the model behaves well.
2. test if the implementation conforms to it.

I For this to be worth it, model must be simpler than
actual implementation.
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Model-Based Analysis

I Model may be simple, but . . .
I execution may be complex (concurrency!)

I Visualize the state graph: manually check
functional conformance to informal spec.

I Automatically check all states of the model for
safety and liveness properties.
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Model-Based Testing

I Automatic test generation requires an oracle.
I The model can be used to automatically generate

unit tests with all checks and assertions inserted.
I We can ensure coverage criteria with respect to all

states of the model.
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Inferring models from code

I The code itself is a formal model!
I It is usually not possible to analyze directly.

I We need bounds and abstractions.
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The goal of this course

I Where should you be in one year?

I You are qualified to engage in research to either
I develop novel verification techniques or
I apply current techniques in novel contexts.

I Where should you do this work?
I Our (PLAS) research group!
I One of the many Estonian companies that are

producing novel tools for the maintenance of complex
systems.
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Must Work Harder

I There will be weekly exercise sheets.
I They will be made available on Friday.
I You may ask questions on Wednesday.
I You will submit electronically on Wednesday evening.
I We will discuss on Friday.

I Three programming projects.
I Probably as group work.
I You may replace this with equivalent thesis work if your

supervisor agrees.

I A final exam.
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Hoare Triplets

Lφ M P Lψ M

I A Hoare triple is satisfied under partial
correctness:

I for each state satisfying φ,
I if execution reaches the end of P,
I the resulting state satisfies ψ.

I (Total correctness: partial + termination)
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Simple Language

C ::= C1 ; C2

| x := e

| if e then C1 else C2

| while e do C

| skip

| {C}
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FOL with linear arithmetic

φ ::= e arithmetic
| φ1 ∧ φ2 conjunction
| φ1 ∨ φ2 disjunction
| φ1 → φ2 implication
| ∃y : φ existential quantification
| ∀y : φ universal quantification.
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Composition

Lφ M C1 Lη M Lη M C2 Lψ M
Lφ M C1 ; C2 Lψ M
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Assignment

Lψ[e/x] M x = e Lψ M

I Is this backwards?
I Consider examples for x := 2 and x := x+ 1.
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Conditional Statements

Lφ∧ e M C1 Lψ M Lφ∧ ¬e M C2 Lψ M
Lφ M if e then C1 else C2 Lψ M
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While Statements

Lφ∧ e M C Lφ M
Lφ M while e do C Lφ∧ ¬e M
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Implication

φ ′ ⇒ φ Lφ M C Lψ M ψ⇒ ψ ′

Lφ ′ M C Lψ ′ M

I These end up as verification conditions.
I Automated theorem provers have to dispatch them.
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Hello World!

int abs(int i) {
if (0 <= i)

r := i;
else

r := -i;
}

I Prove: always returns a non-negative value.

I (Where exactly would an overflow invalidate this
proof?)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 23 / 187



Step by step

1. We first have the conditional:

L 0 6 i M r := i L 0 6 r M L i < 0 M r := −i L 0 6 r M
L true M if 0 6 i then r := i else r := −i L 0 6 r M

2. The true-branch follows from the assignment axiom.

3. The false-branch relies on a simple implication:

i < 0⇒ 0 6 −i L 0 6 −i M r := −i L 0 6 r M
L i < 0 M r := −i L 0 6 r M
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Proof trees

L 0 6 i M r := i L 0 6 r M
i < 0 ⇒ 0 6 −i L 0 6 −i M r := −i L 0 6 r M

L i < 0 M r := −i L 0 6 r M
L true M if 0 6 i then r := i else r := −i L 0 6 r M

I The sequential application of inference rules are
often represented as proof trees.

I These trees can grow large. . .

I Instead: annotate the program code!
Tree structure is implicit.
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Tableaux Proofs

Lφ0 M
C1 ;

Lφ1 M
C2 ;

Lφ2 M
...
Lφn−1 M

Cn

Lφn M
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Tableaux: Composition

Lφ M C1 Lη M Lη M C2 Lψ M
Lφ M C1 ; C2 Lψ M

Lφ M
C1 ;

Lη M
C2

Lψ M
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Tableaux: Conditional

Lφ∧ e M C1 Lψ M
Lφ∧ ¬e M C2 Lψ M

Lφ M if e then C1 else C2 Lψ M

Lφ M
if e then {

Lφ∧ e M
C1

Lψ M
} else {

Lφ∧ ¬e M
C2

Lψ M
}

Lψ M
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Tableaux: Implication

φ ′ ⇒ φ Lφ M C Lψ M ψ⇒ ψ ′

Lφ ′ M C Lψ ′ M

Lφ ′ M
Lφ M
C

Lψ M
Lψ ′ M
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The example as tableaux proof
L true M

if (0 6 i) then {

L true ∧ 0 6 i M
r := i

L 0 6 r M
} else {

L true ∧ i < 0 M
L 0 6 −i M

r := −i

L 0 6 r M
}

L 0 6 r M
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Weakest Pre-Conditions

I We have so far only rules for valid Hoare triples.
I Not all triples are equally useful

L false M P Lψ M

I How do we infer these triples?
I We will now move towards a more syntax-driven

method to infer weakest pre-conditions.
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Definition

I We say φ is weaker than φ ′ if

φ ′ ⇒ φ

I For φ = WP JSK ψ, we have

Lφ M S Lψ M is valid
if Lφ ′ M S Lψ M then φ ′ ⇒ φ

I ψ holds after S iff φ holds before.
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Assignment

I Consider sequential composition:

z := x;

z := z+ y;

u := z

I It suffices with definitions:

WP Jx = eK ψ = ψ[e/x]

WP JC1 ; C2K ψ = WP JC1K (WP JC2K ψ)
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A tableaux proof from WPs

L x+ y = 42 M
z := x;

L z+ y = 42 M
z := z+ y;

L z = 42 M
u := z

Lu = 42 M
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Conditional

I Hoare logic:

Lφ∧ e M C1 Lψ M Lφ∧ ¬e M C2 Lψ M
Lφ M if e then C1 else C2 Lψ M

I A more syntax-driven rule:

Lφ1 M C1 Lψ M Lφ2 M C2 Lψ M
Lφ ′ M if e then C1 else C2 Lψ M

where φ ′ = (e→ φ1)∧ (¬e→ φ2)
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Proof Tableaux for Conditional 2.0

L (e→ WP JC1K ψ)∧ (¬e→ WP JC2K ψ) M

if e then {

LWP JC1K ψ M

C1

} else {

LWP JC2K ψ M

C2

}

Lψ M
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The Example Again

L true M
L (0 6 i→ 0 6 i)∧ (i < 0→ 0 6 −i) M

if (0 6 i) then {

L 0 6 i M

r := i

} else {

L 0 6 −i M

r := −i

}

L 0 6 r M
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Warm-Up

I Consider a simple loop-free program:
int succ(int x) {

a = x + 1;
if (a - 1 == 0)

y = 1;
else

y = a;
return y;

}

I Show that y = x+ 1 at the return statement.
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While Loops

I Recall the proof rule

Lφ∧ e M C Lφ M
Lφ M while e do C Lφ∧ ¬e M

I Given a ψ as post-condition. . .
I How can we apply this rule?
I What is the WP of a while loop?
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Termination?

I Weakest Liberal Preconditions

wp JSKψ ≡ wp JSK true ∧ wlp JSKψ

I We did not care about this distinction
I Termination is an outdated concept. ;)
I Only loops have different definitions.
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WP for while loops

I WP Jwhile e do CK ψ?
I Unrolling the loop:

F0 = while e do skip

Fi = if e then C ; Fi−1 else skip

I WP for “exiting the loop after at most i iterations in
a state satisfying ψ”:

L0 ≡ ψ∧ ¬e

Li ≡ (¬e→ φ)∧ (e→ WP JCK Li−1)
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WLP for while loops

I WLP Jwhile e do CK ψ?
I Unrolling the loop:

F0 = while e do skip

Fi = if e then C ; Fi−1 else skip

I WLP for “if we exit the loop after at most i
iterations, the resulting state satisfies ψ”:

L0 ≡ ψ
Li ≡ (¬e→ φ)∧ (e→ WLP JCK Li−1)
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WLP for while loops

I WLP for “if we exit the loop after at most i
iterations, the resulting state satisfies ψ”:

L0 ≡ ψ
Li ≡ (¬e→ φ)∧ (e→ WLP JCK Li−1)

I We then define

WLP Jwhile e do CK ψ = ∀i ∈ N : Li

I Not very practical. . .
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Precondition of a While Loop

To push ψ up through while e do C:
1. Guess a potential invariant φ.
2. Make sure φ∧ ¬e =⇒ ψ.
3. Compute φ ′ = WLP JCK φ.
4. Check that φ∧ e =⇒ φ ′.
5. Then, φ is a pre-condition for ψ.

Lφ∧ e M C Lφ M
Lφ M while e do C Lφ∧ ¬e M
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Proof Tableaux for Loops

Lφ M
while e do {

Lφ∧ e M
LWLP JCK φ M

C

Lφ M
}

Lφ∧ ¬E M
Lψ M
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Exercise 1

int fact(int x) {
y = 1;
z = 0;
while (z != x) {

z = z + 1;
y = y * z;

}
return y;

}
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Guessing the invariant

I Doing a trace:

iteration x y z B

0 6 1 0 true
1 6 1 1 true
2 6 2 2 true
3 6 6 3 true
4 6 24 4 true
5 6 120 5 true
6 6 720 6 false
i i! i

I Formulate hypothesis: y = z!
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Proof obligations

Want to establish ψ ≡ y = x!.
1. Our invariant φ ≡ y = z!

2. Check that φ∧ ¬(z 6= x) =⇒ ψ.

3. Compute WLP of loop body:

φ ′ ≡ y · (z+ 1) = (z+ 1)!

4. Check if φ∧ z 6= x =⇒ φ ′.
5. Continue WLP computation with φ.
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Exercise 2:
Minimal-Sum Section

I Given an integer array a[0],a[1], . . . ,a[n− 1].
I A section of a is a continuous piece
a[i],a[i+ 1], . . . ,a[j] with 0 6 i 6 j < n.

I Section sum: Si,j = a[i] + · · ·+ a[j].

I A minimal-sum section is a section a[i], . . . ,a[j]
s.t. for any other a[i ′], . . . ,a[j ′], we have
Si,j 6 Si ′,j ′.
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What to do?

I Compute the sum of the minimal-sum sections in
linear time.

I Prove that the code is correct!

I For example. . .
I [−1, 3, 15,−6, 4,−5] is −7 for [−6, 4,−5].
I [−2,−1, 3,−3] is −3 for [−2,−1] or [−3].
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The Program

int minsum(int a[]) {
k = 1;
t = a[0];
s = a[0];
while (k != n) {

t = min(t + a[k], a[k]);
s = min(s,t);
k = k + 1;

}
return s;

}
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Post-conditions

I The value s is smaller than the sum of any section.

φ1 = ∀i, j : 0 6 i 6 j < n→ s 6 Si,j

I There is a section whose sum is s

φ2 = ∃i, j : 0 6 i 6 j < n∧ s = Si,j
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Trying to prove φ1

I Suitable Invariant:

φ1 = ∀i, j : 0 6 i 6 j < n→ s 6 Si,j
I1(s,k) = ∀i, j : 0 6 i 6 j < k→ s 6 Si,j

I Additional Invariant

I2(t,k) = ∀i : 0 6 i < k→ t 6 Si,k−1
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The Key Lemma

I In the end, we have to prove that

I1(s,k)∧ I2(t,k)∧ k 6= n
=⇒

I1(min(s, (min(t+ a[k],a[k])),k+ 1)

∧

I2(min(t+ a[k],a[k]),k+ 1)

I This will require human intervention:
proof-assistants.
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Purpose of this lecture

I Get an idea of how verification condition
generation works.

I We consider the simplest possible implementation.
I This is based on early work on ESC/Java.

I We see some important concepts:
I collecting semantics
I constraint systems
I abstraction
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Quick: What is the Loop Invariant?

y := 5 ;

x := 0 ;

while x 6= 5 do

x := x+ 1

L x = y M
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Generating VCs

I Non-trivial loop-invariants must be supplied, but
everything else automatic.

I Assume program is annotated with
I Pre- & Post-conditions.
I For every while-loop, a supposed loop-invariant.

I How do we check automatically that the
implementation satisfies the contract?
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Verification Conditions

I Consider the triplets:

Lφ M C Lψ M
L x = x ′ M x := x− y L x+ y = x ′ M

I The verification conditions would be

φ→ WP JCK ψ
(x = x ′)→ ((x− y) + y = x ′)
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Asking an SMT Solver

I We then ask an SMT solver if the VC is true.

(x = x ′)→ ((x− y) + y = x ′)

I We want the VC to hold for all parameters.
I Check if the negated formula is satisfiable!

I Think: searching for a falsifying assignment
(failing test case).
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Translation into Flow Graphs

Control Flow Graph G = (N,E, s, r)

I N are program points, and s, r ∈ N are start/return
nodes.

I E = N× C×N are transition, where C is the set
of basic statements.

0 1 2
x :
=
5

y :
=
x+

1
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Basic Edges

C ::= skip skip
| x := e assign
| φ ? assume
| φ ! assert
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FOL with linear arithmetic

φ ::= e arithmetic
| φ1 ∧ φ2 conjunction
| φ1 ∨ φ2 disjunction
| φ1 → φ2 implication
| ∃y : φ existential quantification
| ∀y : φ universal quantification.
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Translating If-Statements

if e then C1 else C2

0

1 2

3

e ? ¬e ?

C1 C2
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Translating While-Statements

while e do C

0

1

2

e ?

¬e ?

C
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Program State
I State σ assigns values to variables:

σ : V → Z

I Example:

σ0 = {x 7→ 0,y 7→ 0}

σ1 = {x 7→ 5,y 7→ 0}

σ2 = {x 7→ 5,y 7→ 6}

0 1 2
x :
=
5

y :
=
x+

1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 65 / 187



Program State
I State σ assigns values to variables:

σ : V → Z

I Example:

σ0 = {x 7→ 0,y 7→ 0}

σ1 = {x 7→ 5,y 7→ 0}

σ2 = {x 7→ 5,y 7→ 6}

0 1 2
x :
=
5

y :
=
x+

1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 65 / 187



Program State
I State σ assigns values to variables:

σ : V → Z

I Example:

σ0 = {x 7→ 0,y 7→ 0}

σ1 = {x 7→ 5,y 7→ 0}

σ2 = {x 7→ 5,y 7→ 6}

0 1 2
x :
=
5

y :
=
x+

1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 65 / 187



Evaluating Expressions

I Given a σ, we evaluate expressions:

JzKσ = z

JxKσ = σx

Je1 + e2Kσ = Je1Kσ+ Je2Kσ
. . .

I For σ = {x 7→ 5,y 7→ 6},

Jx+ yKσ = JxKσ+ JyKσ =

σx+ σy = 5+ 6 = 11
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State satisfies a formula

I Our state is σ : V → Z, but φ may contain
unbound logical variables x ′ 6∈ V .

I A state σ satisfies φ

σ � φ

if φ evaluates to true for some extension of σ:

∃σ ′ : (∀v ∈ V : σ ′ v = σ v)∧ (JφKσ ′ = true)

I And a formula φ is satisfiable if ∃σ : σ � φ.
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A note on triplets

I Consider the triplet

L x = x ′ M x := x+ 1 L x = x ′ + 1 M

where x ′ is a logical variable.

I When we say that the triplet Lφ M C Lψ M is valid
under partial correctness if

∀σ : σ � φ =⇒ JCKσ � ψ

we assume that σ includes logical variables.
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Notation: Updating the State

I We update the mapping σ:

σ ′ = σ [x 7→ z]

where

σ ′ y =

{
z if y = x

σy otherwise

I Useful exercise:

σ � ψ[e/x] ⇐⇒ σ [x 7→ JeKσ] � ψ

Jψ[e/x]Kσ = JψK(σ [x 7→ JeKσ])
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Collecting Semantics

I For every point p ∈ N, we want to know
I The set of states reaching p: Sp.
I If we assume that Ss = S0 = {σ0}.

σ0 v = 0 (∀v ∈ V)

0 1 2
x :
=
5

y :
=
x+

1

{σ0} {σ1} {σ2}
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Starting State

I We need this semantics to validate our WP
computation.

I Therefore, the best choice is Ss = V → Z, so that
only tautologies hold at s.

I We include all logical variables from assume
statements in V .
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For a skip edge

p

q

skip

x := eφ ?φ !

Sq = Sp
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For an assignment edge

p

q

skip

x := e

φ ?φ !

Sq = {σ [x 7→ JeKσ] | σ ∈ Sp}
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For an assume edge

p

q

skipx := e

φ ?

φ !

Sq = {σ | σ ∈ Sp, JφKσ = true}
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For an assert edge

p

q

skipx := eφ ?

φ !

Sq = {σ | σ ∈ Sp, JφKσ = true}

∪ {⊥ | σ ∈ Sp, JφKσ = false}
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Quiz: The Error State

I For any S, what are the results of the edges?

false ? false !

∅ {⊥}

I The “⊥” should pass through other edges (like
exceptions / maybe monad)

JφK⊥ = false ⊥ [x 7→ e] = ⊥

I We amend the assume rule. . .
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Transfer functions

JskipKS = S

Jx := eKS = {σ [x 7→ JeKσ] | σ ∈ S}

Je ?KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | ⊥ ∈ Sp}

Je !KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | σ ∈ Sp, JeKσ = 0}
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Satisfiability for Sets

I This is lifted as expected:

S � φ ⇐⇒ ∀σ ∈ S : σ � φ

I As the error state satisfies nothing:

∀φ : ⊥ 2 φ

I if ⊥ ∈ S, already S 2 true.
(because some assertions may already have failed.)
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Example

0

1 2

3

4

x < 0 ? 0 6 x ?

x := −x x := x+ 1

x 6= 0 !
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Equation & Constraint Systems
I Recall G = (N,E, s, r).
I First we set the starting state:

Ss = {σs} (or Ss = V → Z)

And for each point q ∈ N:

Sq =
⋃

{JCKSp | (p,C,q) ∈ E}

I As a constraint system:

Ss ⊇ {σs}

Sq ⊇ JCKSp for (p,C,q) ∈ E
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Constraint System Example

I Let xp = {σx | σ ∈ Sp} (and ⊥ if σ = ⊥).
I We start with x0 = xs = Z.

x0 ⊇ Z
x1 ⊇ {z | z ∈ x0, z < 0}

x2 ⊇ {z | z ∈ x0, 0 6 z}
x3 ⊇ {−z | z ∈ x1}
x3 ⊇ {z+ 1 | z ∈ x2}
x4 ⊇ {z | z ∈ x3, z 6= 0}

∪ {⊥ | z ∈ x3, z = 0}

0

1 2

3

4

x < 0 ? 0 6 x ?

x := −x x := x+ 1

x 6= 0 !
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And Now WP. . .

WP JskipK ψ = ψ

WP Jx := eK ψ = ψ[e/x]

WP Jφ ?K ψ = φ→ ψ

WP Jφ !K ψ = φ∧ψ
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Assume versus Assert

I Definitions:

C wpJCKψ wlpJCKψ
φ ! φ∧ψ φ→ ψ
φ ? φ→ ψ φ→ ψ

I Our WP JCK ψ behaves like wp on asserts.
I However, we will abstract away loops, so in

essence this is still partial correctness.
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Equation system for WP

I We now start from the end node r ∈ N.
I Post-conditions are explicitly asserted, so. . .
I We start with ψr = true and for p ∈ N:

ψp =
∧

{WP JcK ψq | (p, c,q) ∈ E}

I Alternatively, as a constraint system:

ψr =⇒ true

ψp =⇒ WP JcK ψq for (p, c,q) ∈ E
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WP and our Semantics

I Assume we have computed the initial precondition
ψs starting from the end node ψr = true.

I If we start the collecting semantics with

Ss = {σ | σ |= ψs}

I Then, we expect:

Sr |= true

which holds whenever ⊥ 6∈ Sr.
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Quiz: Error State Again

I Recall our false assume/assert edges:

false ? false !

∅ {⊥}

I Now what is the WP for these?

WP Jfalse ?K ψ WP Jfalse !K ψ

true false
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Again this example:

0

1 2

3

4

x < 0 ? 0 6 x ?

x := −x x := x+ 1

x 6= 0 !
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Now recall this example. . .

y := 5 ;

x := 0 ;

while x 6= 5 do

x := x+ 1 ;

x = y !
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We could compute this. . .

0

1

2

3 4

y :
=
5 ;
x :
=
0

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !
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VCG: Abstraction of Loops

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)
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WP computation was stuck in this loop

0

1

2

3 4

y :
=
5 ;
x :
=
0

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !
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Havoc (wrong!)

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ∃x : ψ

I Practically, all information about x is lost, except
indirect relations remain:

WP Jhavoc xK (y = x∧ x = z) =⇒ (y = z)
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Havoc (for post-conditions!)

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ∃x : ψ

I Practically, all information about x is lost, except
indirect relations remain (after the assignment):

WP Jhavoc xK (y = x∧ x = z) =⇒ (y = z)
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Pre-Condition of Havoc

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ∀x : ψ

I We need ψ to hold for all values of x. Usually, we
have assumes after havoc, so a typical example is

WP Jhavoc xK ((y = x)→ (x = z)) =⇒ (y = z)
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Pre-Condition of Havoc

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ψ[x ′/x] x ′ is fresh!

I We need ψ to hold for all values of x. Usually, we
have assumes after havoc, so a typical example is

WP Jhavoc xK ((y = x)→ (x = z)) =⇒ (y = z)
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A simple assumption

I We should havoc all variables that are assigned to
in the loop body.

I For simplicity, we assume this is only x.

I (You may think of x as a vector.)
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Normal While Loop

0

1

2

e ?

¬e ?

C
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Abstraction using invariant φ

0 ′

0

1 2 ′

2

φ !
; h
avo

c x
; φ

?

e ?

¬e ?

C ; φ !

false ?
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Why can we do this?

I The construction guarantees that if

⊥ 6∈ S2
we have

S ′2 ⊆ S2

where S ′i are the sets computed for the original
while loop.

I Note: it follows very closely the proof rules of
Hoare logic.
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Now we really can compute a VC

0

1

1 ′

2

3

3 ′

4

y :
=
5 ;
x :
=
0

hav
oc
x

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !

false ?
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What happened?

I Well, there was no invariant to check.
I That’s good because the invariant was trivial.
I The homework requires making this construction

with an invariant.

I Just a note on procedure, and then we prove the
soundness of the construction.
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Procedure Calls

I Given a function P with parameter p and result r
and contract

Lφ M P Lψ M

I We produce the following translation for a call
x = P(e).

p := e

φ !

ψ ?

x := r
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Soundness of the transformation

0

1

2

e ?

¬e ?

C

A

0

1 B

2

φ !
; h
avo

c x
; φ

?

e ?

¬e ?

C ; φ !

false ?
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Proof Plan

1. Write down constraint systems S and S ′.
2. Separate assertions into

I the conditions they impose
I constraint system for values

3. Show that the value system satisfies the
constraints of S.

4. This implies that any solution of S ′ is greater than
the least solution of S.
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Constraint System S

S0 ⊇ S
S0 ⊇ JCKS1
S1 ⊇ Je ?KS0
S2 ⊇ J¬e ?KS0

0

1

2

e ?

¬e ?

C
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Constraint System S ′

S ′A ⊇ S
S ′0 ⊇ Jφ ?K {σ[x 7→ z] | z ∈ Z,

σ ∈ Jφ !KS ′A}
S ′1 ⊇ Je ?KS ′0
S ′B ⊇ Jφ !K (JCKS ′1)
S ′2 ⊇ J¬e ?KS ′0 ∪ {⊥ | ⊥ ∈ S ′B}

A

0

1 B

2

φ !
; h
avo

c x
; φ

?

e ?

¬e ?

C ; φ !

false ?
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Splitting S ′ based on ⊥ ∈ S ′2
I We can be sure ⊥ 6∈ S ′2 if we have

S � φ

JCKS ′1 � φ

I Letting Sx = {σ[x 7→ z] | z ∈ Z,σ ∈ S}, the
following constraints remain:

S ′0 ⊇ Jφ ?KSx
S ′1 ⊇ Je ?KS ′0
S ′2 ⊇ J¬e ?KS ′0
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Splitting S ′ based on ⊥ ∈ S ′2
I We can be sure ⊥ 6∈ S ′2 if we have

S � φ

JCKS ′1 � φ

I Letting Sx = {σ[x 7→ z] | z ∈ Z,σ ∈ S}, we obtain
the following solution:

S ′0 = {σ ∈ Sx | σ � φ}
S ′1 = {σ ∈ Sx | σ � φ∧ e}

S ′2 = {σ ∈ Sx | σ � φ∧ ¬e}
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Solution to original system?

I Given the solution and conditions:

S ′0 = {σ ∈ Sx | σ � φ} S � φ

S ′1 = {σ ∈ Sx | σ � φ∧ e} JCKS ′1 � φ
S ′2 = {σ ∈ Sx | σ � φ∧ ¬e}

I We check if the original constraints are satisfied:

S ′0 ⊇ S S ′0 ⊇ JCKS ′1
S ′1 ⊇ Je ?KS ′0 S ′2 ⊇ J¬e ?KS ′0
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What did we just do?

I We had two systems:

X ⊇ F(X)
X ⊇ F ′(X)

I We showed that for any Y

Y ⊇ F ′(Y) =⇒ Y ⊇ F(Y)

I What did we conclude?
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Data Flow Analysis

Vesal Vojdani
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Data Flow Analysis

I We now consider how to check assertions using
data flow analysis.

I Before we do that, we must to understand the
basics of classical data flow analysis frameworks.

I We need to reason about soundness.
I Statements about programs are ordered. . .
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Partial Orders

Definition
A set D together with a relation v is a partial order if for
all a,b, c ∈ D,

a v a reflexivity
a v b∧ b v a =⇒ a = b anti-symmetry
a v b∧ b v c =⇒ a v c transitivity
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Examples

1. D = 2{a,b,c} with the relation “⊆”
2. Z with the relation “=”
3. Z with the relation “6”
4. Z⊥ = Z ∪ {⊥} with the ordering:

x v y ⇐⇒ (x = ⊥)∨ (x = y)
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Facts about the program

I Our domain elements represent propositions about
the program.

I Let p |= x denote “x holds whenever execution
reaches program point p”.

I We order these propositions such that

x v y whenever (p |= x) =⇒ (p |= y)

I Consider examples:
I The set of possibly live variables.
I The set of definitely initialized variables.
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Combining information

I Assume there are two paths to reach p
(true-branch and false-branch).

I If we have x along one path and y along the other,
how can we combine this information?

x t y

I We want something that is true of both paths, and
I as precise as possible.
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Least Upper Bounds

I d ∈ D is called an upper bound for X ⊆ D if

x v d for all x ∈ X

I d is called a least upper bound if
1. d is an upper bound and
2. d v y for every upper bound y of X.
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Do least upper bounds always exist?

>

a cb

e f g

h i

⊥
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Complete Lattice

Definition
A complete lattice D is a partial ordering where every
subset X ⊆ D has a least upper bound

⊔
X ∈ D.

Every complete lattice has
I a least element ⊥ =

⊔
∅ ∈ D;

I a greatest element > =
⊔
D ∈ D.
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Which are complete lattices?

1. D = 2{a,b,c}

2. D = Z with “=”.
3. D = Z with “6”.
4. D = Z⊥.

5. Z>⊥ = Z ∪ {⊥,>}.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 114 / 187



Which are complete lattices?

1. D = 2{a,b,c}

2. D = Z with “=”.
3. D = Z with “6”.
4. D = Z⊥.
5. Z>⊥ = Z ∪ {⊥,>}.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 114 / 187



Proof demo: Greatest Lower Bounds

Recall the definition
A complete lattice D is a partial ordering where every
subset X ⊆ D has a least upper bound

⊔
X ∈ D.

Theorem
If D is a complete lattice, then every subset X ⊆ D has
a greatest lower bound

d
X.
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Proof

I L = {l | ∀x ∈ X : l v x}.
I Let g =

⊔
L.

I (Least upper bound of the lower bounds.)

I We show that g =
d
X.

1. Show that g is a lower bound of X.
2. Show that g is the greatest lower bound.
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Solving constraint systems

I Recall the concrete semantics:

Sq ⊇ JcKSp for (p, c,q) ∈ E

I In general:
xi w fi(x1, . . . , xn)

I We rewrite multiple constraints:

x w d1 ∧ · · ·∧ x w dk ⇐⇒ x w
⊔

{d1, . . . ,dk}
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So how to do it?

I In order to solve:

xi w fi(x1, . . . , xn)

I We need fi to be monotonic.

I A mapping f is monotonic if

a v b =⇒ f(a) v f(b)
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Monotonicity

I A mapping f is monotonic if

a v b =⇒ f(a) v f(b)

I Which of the following is not monotonic?

inc x = x+ 1 dec x = x− 1

top x = > bot x = ⊥
id x = x inv x = −x
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Vector function

I We want to solve:

xi w fi(x1, . . . , xn)

I Construct vector function F : Dn → Dn

F(x1, . . . , xn) = (y1, . . . ,yn)

where yi = fi(x1, . . . , xn)

I If fi are monotonic, so is F.
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Kleene iteration

I Successively iterate from ⊥:

⊥, F(⊥), F2(⊥), . . .

I Stop if we reach some X = Fn(⊥) with

F(X) = X

I Will this terminate?
I Is this the least solution?
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Simple Example

I For D = 2{a,b,c}

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I The Iteration

0 1 2 3 4

x1 ∅

{a} {a, c} {a, c} X

x2 ∅

∅ ∅ {a} X

x3 ∅

{c} {a, c} {a, c} X
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Why Kleene iteration works

1. ⊥, F(⊥), F2(⊥), . . . is an ascending chain

⊥ v F(⊥) v F2(⊥) v · · ·

2. If Fk(⊥) = Fk+1(⊥), it is the least solution.
3. If all ascending chains in D are finite, Kleene

iteration terminates.
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Discussion

I What if D does contain infinite ascending chains?
I In particular, our concrete semantics was defined

as the set of states with σ ∈ V → N.

I How do we know there aren’t better solutions to
the constraint system?

x = f(x) x w f(x)
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Answer to the first question

Theorem (Knaster-Tarski)

Assume D is a complete lattice. Then every monotonic
function f : D→ D has a least fixpoint d0 ∈ D where

d0 =
l
P P = {d ∈ D | d w f(d)}

1. Show that d0 ∈ P.
2. Show that d0 is a fixpoint.
3. Show that d0 is the least fixpoint.
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Answer to the second question

I Could there be better solutions to the constraint
system than the least fixpoint?

I According to the theorem:

d0 =
l

{d ∈ D | d w f(d)}

I Thus, d0 is a lower bound for all solutions to the
constraint system d w f(d).
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Chaotic iteration

1. Set all xi to ⊥ and W = {1, . . . ,n}.
2. Take some i ∈W out of W.

(if W = ∅, exit).
3. Compute n := fi(x1, . . . , xn).
4. If xi w n, goto 2.
5. Set xi := xi t n and reset W := {1, . . . ,n}.
6. Goto 2.
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Data flow versus paths

I We want to verify that “whenever execution
reaches program point p, a certain assertion
holds.”

I We need to check every path leading to p.

I Then: Why are we solving data flow constraint
systems??
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Path Semantics

I We define a path π inductively:

π = ε empty path
π = π ′e where e ∈ E

I If π is a path from p to q, we write π : p→ q.

I We define the path semantics:

JεKS = S

Jπ(p, c,q)KS = JcK (JπKS)
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Merge Over All Paths

I For a complete lattice D, we solved

xs w ds
xq w JcK xp (p, c,q) ∈ E

I But we are really interested in:

yp =
⊔

{JπKds | π : s→ p}
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Example: Merge Over All Paths

0

1 2

3

4 5

skip skip

x := 4 x := −4

y := x2 y = 16 !
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When do solutions coincide?

I For our collecting semantics, they do.
I All functions JcK are distributive.
I In reality, we compute an abstract semantics.

xs w ds
xq w JcK] xp (p, c,q) ∈ E

I Transfer functions JcK] : D→ D are monotonic.
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Soundness of LFP Solutions

Theorem (Kam, Ullman, 1975)

Let xi satisfy the following constraint system:

xs w ds
xq w JcK] xp (p, c,q) ∈ E

where JcK] are monotonic. Then, for every p ∈ N, we
have

xp w
⊔

{JπK] ds | π : s→ p}
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Proof

I We need to show that for each π : s→ p:

xp w JπK] ds

I By induction on the length of π (assume the above
holds for all paths of length 6 n to any node).

I Base case.
I There is only one zero-length path: π = ε.
I We have xs w JεK] ds from the first constraint.

I Inductive step: Let π = π ′(p, c,q).
I We have xp w Jπ ′K] ds from the inductive hypothesis.
I We need xq w JπK] ds = JcK] (Jπ ′K] ds).
I From monotonicity: xq w JcK] xp w JcK] (Jπ ′K] ds).
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On Distributivity

I A function f : D1 → D2 is distributive if for all
∅ 6= X ⊆ D1:

f
(⊔

X
)
=
⊔

{f x | x ∈ X}

I It is strict if
f⊥ = ⊥

I It is totally distributive if both distributive and strict
(distributes also ∅).
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Why these distinctions?

I Many useful analyses are distributive, but. . .
I we generally do not have strict transfer functions.
I Instead, we assume each node v is reachable from

the start node.
I Under these assumptions, distributivity suffices for

our coinidence theorem.
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Intraprocedural Coincidence

Theorem (Kildall, 1972)

Let xi satisfy the following constraint system:

xs w ds
xq w JcK] xp (p, c,q) ∈ E

where JcK] are distributive. Then, for every p ∈ N, we
have

xp =
⊔

{JπK] ds | π : s→ p}
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Proof I

I Note that any distributive function is also
monotonic. Simple proof using:

x v y ⇐⇒ x t y = y

I Thus, we only need to show this direction:

xp v
⊔

{JπK] ds | π : s→ p}

I For this, we show that the MOP solution satisfies
our constraint system. (WHY?)
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Proof II
I We show for an edge (p, c,q):

xq w JcK] xp

I We compute:

xq =
⊔

{JπK] ds | π : s→ q}

w
⊔

{JπK] ds | π : s→ p→ q}

=
⊔

{JcK] (JπK] ds) | π : s→ p}

= JcK]
(⊔

{JπK] ds | π : s→ p}
)

= JcK] xp
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Implementing a constraint solver

I Given the definitions:

as : D value at program start

JsK] : D→ D abstract semantics

I Solve the following system:

xq w ds q entry point

xq w JcK] xp (p, c,q) edge
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Representation of Right-Hand Sides

I For each variable x ∈ V , we have a single
constraint fx.

I Given the sets

V : Constraint Variables (Unknowns)
D : The abstract value domain.

I The type of right hand sides are

fx : (V → D)→ D
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The example encoded

I Mathematical formulation:

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I Functional encoding:

fx1 = λσ. {a} ∪ σx3
fx2 = λσ. σx3 ∩ {a,b}

fx3 = λσ. σx1 ∪ {c}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 142 / 187



Encoding in Haskell

data V = X1 | X2 | X3 deriving (Eq,Show)

class FSet v where vars :: [v]
instance FSet V where vars = [X1,X2,X3]

f X1 = \σ → S.fromList [’a’] ∪ (σ X3)
f X2 = \σ → (σ X3) ∩ S.fromList [’a’,’b’]
f X3 = \σ → (σ X1) ∪ S.fromList [’c’]
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Assignments and Solutions

I Given a variable assignment σ : V → D,
I we can evaluate a right-hand-side f σ ∈ D.

I An assignment σ satisfies a constraint x w fx iff

σx w fx σ

I When σ satisfies all constrains, it is a solution.
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Haskell Code: Check Solution

type RHS v d = (v → d) → d
type Sys v d = v → RHS v d
type Sol v d = v → d

verify σ f = all verifyVar vars where
verifyVar v = σ v w f v σ
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Kleene Iteration

I We iterate a monotonic function starting from ⊥:

⊥ v f⊥ v f (f⊥) v · · · v fi⊥

I Until (hopefully) we reach an i, such that

fi⊥ w fi−1⊥
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Haskell Code: Domains

class Domain t where
(v) :: t → t → Bool
(t) :: t → t → t
bot :: t

lfp :: Domain d => (d → d) → d
lfp f = stable (iterate f bot)

stable (x:fx:tl) | fx v x = x
| otherwise = stable (fx:tl)

matt.might.net/articles/partial-orders/ iterate f x = x : iterate f ( f x)
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Haskell Code: Vector Function

instance (FSet v, Domain d) =>
Domain (v → d)

where
f v g = all (\v → f v v g v) vars
f t g = \v → f v t g v
bot = \v → bot

solve f = lfp (flip f)

f : V → (V → D)→ D
flip f : (V → D)→ (V → D)
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Testing the Simple Solver

instance Ord e => Domain (Set e) where
x v y = x ⊆ y
x t y = x ∪ y
bot = empty

f X1 = \σ → S.fromList [’a’] ∪ (σ X3)
f X2 = \σ → (σ X3) ∩ S.fromList [’a’,’b’]
f X3 = \σ → (σ X1) ∪ S.fromList [’c’]

------------------------------------------

*Simple> solve f
X1 → fromList "ac"
X2 → fromList "a"
X3 → fromList "ac"
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Assertion Checking with Static
Analysis

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)
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Assertion Checking

I Track values of variables.
I Combine with WP computation.
I Infer invariants for loops.
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Value Domains

I Characterize the possible values of variables
whenever we reach program point p.

I A non-relational value domain:

D = V → DZ

I We consider two simple value domains:
1. Kildall’s constant propagation domain.
2. The Interval Domain.
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Non-relational Domains

I For a complete lattice D and finite set V ,
I the set of functions D→ V with the point-wise

ordering

f1 v f2 ⇐⇒ ∀v ∈ V : f1(v) v f2(v)

is also a complete lattice.
I For example: D = V → 2Z.
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Abstract Evaluation

I Just like for concrete state σ ∈ V → Z:

JzKσ = z

JxKσ = σx

Je1 + e2Kσ = Je1Kσ+ Je2Kσ

I Now, we need abstract operators such that for
d ∈ D = V → DZ, we evaluate:

JzK]d = z]

JxK]d = dx

Je1 + e2K]d = Je1K]d+] Je2K]d
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What the domain must supply

1. Lattice operations.
2. Lifting of constants:

∀z ∈ Z : z] ∈ DZ

3. Abstract operations:

∀z1, z2 ∈ DZ : z1 +
] z2 ∈ DZ

(not just for +; also unary, comparisons, logical,
etc.)
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Kildall’s Domain

1. Lattice is the flat lattice.
2. Constants are already elements of DZ:

z] = z

3. Operators are essentially lifted:

a+] b =


⊥ if a = ⊥ or b = ⊥
> if a = > or b = >
a+ b otherwise

(More precise, e.g., for multiplication?)
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Interval Domain

1. Lattice is Z× Z with 〈l1,u1〉 v 〈l2,u2〉 if

〈l2 6 l1〉∧ 〈u1 6 u2〉

2. Constants are singleton intervals:

z] = 〈z, z〉

3. Operators are generally defined as:

〈l1,u1〉 ∗] 〈l2,u2〉 = 〈l,u〉 where
l = min {a ∗ b | a ∈ {l1,u1}, b ∈ {l2,u2}}

u = max{a ∗ b | a ∈ {l1,u1}, b ∈ {l2,u2}}
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The Analysis

I We define abstract transfer functions.
I The simple ones:

JskipK] d = d

Jx := eK] d = d [x 7→ JeK]d]

I Much like the concrete semantics:

JskipKS = S

Jx := eKS = {σ [x 7→ JeKσ] | σ ∈ S}
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The Bottom Value

I The bottom element is the mapping

d v = ⊥ (∀v ∈ V)

I As soon as ∃v with d v = ⊥, we would set all
variables to ⊥.

I The bottom value then denotes non-reachability.
I All transfer functions would strictly let ⊥ pass

through.
I Why allow ⊥ in the value domains at all?
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Assume edges
I The concrete semantics:

Je ?KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | ⊥ ∈ Sp}

I We will handle errors separately.
I Abstract value sets:

Je ?K] d =

{
⊥ if JeK]d = 0

d u dt otherwise

where
dt =

⊔
minimal elems {d | JeK]d 6= 0}
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Example 1: Dead Code

0

1

2 3

4

5

x := 5

x = 5 ? x 6= 5 ?

y := 9 y := 6

y = 9 !
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Example 2: Restricting Values

0

1 2

3

4

x = 5 ? x 6= 5 ?

x := x+ 1 x := 6

x = 6 !
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Correctness

I We have a monotonic concretization function γ.
I For the value domains γ : DZ → 2Z.

γ z =


∅ if a = ⊥
Z if a = >
{z} otherwise

I For the variable assignments:

γ d =

{
∅ if ∃v : d v = ⊥
{ρ | ∀v : ρ v ∈ γ (d v)} otherwise
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Correctness condition

I All our transfer functions need to satisfy:

JcK (γd) v γ (JcK] d)

I Then, then the least solutions also satisfy:

Sp ⊆ γxp

I Because if we have f(γx) v γ(f] x) and d = f] d,
then

f(γd) v γ(f] d) = γd
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Assert edges

I Their effect on values is like assume:

Je !KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | σ ∈ Sp, JeKσ = 0}

I So how to check assertions? (next slide)
I Let xp be the value analysis:

x0 w d0
xq w JcK] xp for (p, c,q) ∈ E
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Assertion Checking

I We can just check for each assertion edge
(p, e !,q)

1] v JeK]xp
If the above does not hold, the the assertion
definitely fails.

I If we want to be sound:

JeK]xp v 1]

If this holds, the assertion is verified.
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Example 3: Distributivity

0

1 2

3

4 5

skip skip

x := 4 x := −4

y := x2 y = 16 !
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Can we do better?

I We combine with WP computation.
I Recall the constraint system:

φp ⇒ WP JcK φq for (p, c,q) ∈ E

I What is the ordering of the domain?

I How do we combine?
I We can set up such a system for each assertion. . .
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Discussion

I It is safe if we can only approximate implication.
I What is important for soundness?
I Our domain can be sets of conjucts.
I At program point p, we can safely dismiss a

conjunct φ if
JφK]xp v 1]

I If the solution for the system has φ0 ≡ true, we
are happy.
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Conclusion

I This works for the simple example.
I WP computation would not terminate for a loop.
I Also, what is the concretization of this combined

analysis?
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What about loops?

0

1

2

3 4

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !
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For the Kildall domain:

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !
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For the Kildall domain:

0

1

2

3 4

>

0

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !
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0

1

2

3 4
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1

2

3 4
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>
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For the Kildall domain:

0

1

2

3 4

>

0

>
>

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !
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For the Kildall domain:

0

1

2

3 4

>

0

>
> Fail!

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 0]

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187



For the interval domain

0

1

2

3 4

>

[0, 0]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 1]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 1]

[0, 2]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 2]

[0, 2]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 2]

[0, 3]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 3]

[0, 3]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 3]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 5]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success?
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Not really. . .

I This was not really static analysis.
I Termination not guaranteed.

I All ascending chains must stabilize.
I Enforce this by a widening operator O.
I Then, Kleene iteration will reach a (not necessarily

least) fixpoint.
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Widening

O : D× D→ D is a widening operator if

1. ∀x,y ∈ D : (x v xOy)∧ (y v xOy)
2. for every chain x0 v x1 v x2 v · · · ,

y0 = x0
y1 = y0Ox1
y2 = y1Ox2
· · ·

is not strictly increasing.
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Iteration with widening

I Our non-terminating iteration:

x0 = ⊥
xi+1 = f(xi)

I Iteration with widening:

y0 = ⊥

yi+1 =

{
yi if f(yi) v yi
yiOf(yi) otherwise
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Widening for Intervals

I [l1,u1]O[l2,u2] = [l,u] where

l =

{
l1 if l1 6 l2
−∞ otherwise

u =

{
u1 if u2 6 u1∞ otherwise

I This is not commutative
I First argument: previous iteration.
I Second argument: new value!

I Idea: give up if bounds are increasing.
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Example with widening

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Example with widening

0

1

2

3 4

>

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Example with widening

0

1

2

3 4

>

[0, 0]

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Example with widening

0

1

2

3 4

>

[0, 0]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Example with widening

0

1

2

3 4

>

[0, 0]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Example with widening

0

1

2

3 4

>

[0,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Example with widening

0

1

2

3 4

>

[0,∞]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Example with widening

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187



Example with widening

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞] Fail!
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Why did we fail?

I We are above the least solution.
I In particular, conditional constraints are

over-approximated:

x2 w Jx < 5 ?K] x1
[0,∞] w Jx < 5 ?K] [0,∞]

[0,∞] w [0, 4]

I Idea: why not just iterate a few times more?
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Refining the solution

I Let x denote a solution to our constraint system:

x w f(x)

I If f is monotonic, then further iterations are all safe!

x w f(x) w f2(x) w · · ·

I We can stop after 5 minutes if we don’t hit a
fixpoint.
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Post-fixpoint iteration

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Post-fixpoint iteration

0

1

2

3 4

>

[0,∞]

[5,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Post-fixpoint iteration

0

1

2

3 4

>
[5,∞]

[0, 4]

[0, 5]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Post-fixpoint iteration

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Post-fixpoint iteration

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success!
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Success finally?

I Well, we were lucky and hit a fix-point.
I Termination for post-fixpoint iteration can be

guaranteed.
I We require a narrowing operator4.
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Narrowing

4 : D× D→ D is a narrowing operator if

1. ∀x,y ∈ D : (y v x) =⇒ (y v x4y v x)
2. for every chain x0 w x1 w x2 w · · · ,

y0 = x0
y1 = y04x1
y2 = y14x2
· · ·

is not strictly decreasing.
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Narrowing iteration

I Let x0 be a solution, i.e.,

x0 w f(x0)

I Post-fixpoint iteration with narrowing

y0 = x0
yi+1 = yi4f(yi)
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Narrowing for Intervals

I [l1,u1]O[l2,u2] = [l,u] where

l =

{
l2 if l1 = −∞
l1 otherwise

u =

{
u2 if u1 =∞
u1 otherwise

I Idea: Only restore lost bounds.
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Replay with Widening/Narrowing

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187



Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[5,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>
[5,∞]

[0, 4]

[0, 5]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success!
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !
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Conclusion

I This example does not require narrowings.
I Can you think of a simple modification to this

example where narrowing would be essential?
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