
Formal Methods
in Software Engineering

An Introduction to Model-Based Analyis and Testing

Vesal Vojdani

Department of Computer Science
University of Tartu

Fall 2014

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 1 / 187

Orientation

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 2 / 187

What are formal methods?

formal method = formal model + formal analysis

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 3 / 187

What is a formal model?

A model is formal if it has. . .
I Well-defined syntax.
I Unambiguous1 semantics.

1mathematical
Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 4 / 187

Formal Analysis

1. Automated Theorem Proving
2. Model Checking
3. Abstract Interpretation

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 5 / 187

In General

M � ϕ

I M: a situation or model of the system
I ϕ: a specification of what should hold at situation
M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 6 / 187

Where do models come from?

1. Hand-written from informal specs.
2. Derived automatically from source code.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 7 / 187

Why create a model?

I You can use the model to
1. analyze if the model behaves well.
2. test if the implementation conforms to it.

I For this to be worth it, model must be simpler than
actual implementation.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 8 / 187

Model-Based Analysis

I Model may be simple, but . . .
I execution may be complex (concurrency!)

I Visualize the state graph: manually check
functional conformance to informal spec.

I Automatically check all states of the model for
safety and liveness properties.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 9 / 187

Model-Based Testing

I Automatic test generation requires an oracle.
I The model can be used to automatically generate

unit tests with all checks and assertions inserted.
I We can ensure coverage criteria with respect to all

states of the model.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 10 / 187

Inferring models from code

I The code itself is a formal model!
I It is usually not possible to analyze directly.

I We need bounds and abstractions.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 11 / 187

The goal of this course

I Where should you be in one year?

I You are qualified to engage in research to either
I develop novel verification techniques or
I apply current techniques in novel contexts.

I Where should you do this work?
I Our (PLAS) research group!
I One of the many Estonian companies that are

producing novel tools for the maintenance of complex
systems.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 12 / 187

Must Work Harder

I There will be weekly exercise sheets.
I They will be made available on Friday.
I You may ask questions on Wednesday.
I You will submit electronically on Wednesday evening.
I We will discuss on Friday.

I Three programming projects.
I Probably as group work.
I You may replace this with equivalent thesis work if your

supervisor agrees.

I A final exam.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 13 / 187

Hoare Logic

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 14 / 187

Hoare Triplets

Lφ M P Lψ M

I A Hoare triple is satisfied under partial
correctness:

I for each state satisfying φ,
I if execution reaches the end of P,
I the resulting state satisfies ψ.

I (Total correctness: partial + termination)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 15 / 187

Simple Language

C ::= C1 ; C2

| x := e

| if e then C1 else C2

| while e do C

| skip

| {C}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 16 / 187

FOL with linear arithmetic

φ ::= e arithmetic
| φ1 ∧ φ2 conjunction
| φ1 ∨ φ2 disjunction
| φ1 → φ2 implication
| ∃y : φ existential quantification
| ∀y : φ universal quantification.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 17 / 187

Composition

Lφ M C1 Lη M Lη M C2 Lψ M
Lφ M C1 ; C2 Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 18 / 187

Assignment

Lψ[e/x] M x = e Lψ M

I Is this backwards?
I Consider examples for x := 2 and x := x+ 1.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 19 / 187

Conditional Statements

Lφ∧ e M C1 Lψ M Lφ∧ ¬e M C2 Lψ M
Lφ M if e then C1 else C2 Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 20 / 187

While Statements

Lφ∧ e M C Lφ M
Lφ M while e do C Lφ∧ ¬e M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 21 / 187

Implication

φ ′ ⇒ φ Lφ M C Lψ M ψ⇒ ψ ′

Lφ ′ M C Lψ ′ M

I These end up as verification conditions.
I Automated theorem provers have to dispatch them.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 22 / 187

Hello World!

int abs(int i) {
if (0 <= i)

r := i;
else

r := -i;
}

I Prove: always returns a non-negative value.

I (Where exactly would an overflow invalidate this
proof?)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 23 / 187

Step by step

1. We first have the conditional:

L 0 6 i M r := i L 0 6 r M L i < 0 M r := −i L 0 6 r M
L true M if 0 6 i then r := i else r := −i L 0 6 r M

2. The true-branch follows from the assignment axiom.

3. The false-branch relies on a simple implication:

i < 0⇒ 0 6 −i L 0 6 −i M r := −i L 0 6 r M
L i < 0 M r := −i L 0 6 r M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 24 / 187

Proof trees

L 0 6 i M r := i L 0 6 r M
i < 0 ⇒ 0 6 −i L 0 6 −i M r := −i L 0 6 r M

L i < 0 M r := −i L 0 6 r M
L true M if 0 6 i then r := i else r := −i L 0 6 r M

I The sequential application of inference rules are
often represented as proof trees.

I These trees can grow large. . .

I Instead: annotate the program code!
Tree structure is implicit.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 25 / 187

Tableaux Proofs

Lφ0 M
C1 ;

Lφ1 M
C2 ;

Lφ2 M
...
Lφn−1 M

Cn

Lφn M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 26 / 187

Tableaux: Composition

Lφ M C1 Lη M Lη M C2 Lψ M
Lφ M C1 ; C2 Lψ M

Lφ M
C1 ;

Lη M
C2

Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 27 / 187

Tableaux: Conditional

Lφ∧ e M C1 Lψ M
Lφ∧ ¬e M C2 Lψ M

Lφ M if e then C1 else C2 Lψ M

Lφ M
if e then {

Lφ∧ e M
C1

Lψ M
} else {

Lφ∧ ¬e M
C2

Lψ M
}

Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 28 / 187

Tableaux: Conditional

Lφ∧ e M C1 Lψ M
Lφ∧ ¬e M C2 Lψ M

Lφ M if e then C1 else C2 Lψ M

Lφ M
if e then {

Lφ∧ e M
C1

Lψ M

} else {

Lφ∧ ¬e M
C2

Lψ M

}

Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 28 / 187

Tableaux: Implication

φ ′ ⇒ φ Lφ M C Lψ M ψ⇒ ψ ′

Lφ ′ M C Lψ ′ M

Lφ ′ M
Lφ M
C

Lψ M
Lψ ′ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 29 / 187

The example as tableaux proof
L true M

if (0 6 i) then {

L true ∧ 0 6 i M
r := i

L 0 6 r M
} else {

L true ∧ i < 0 M
L 0 6 −i M

r := −i

L 0 6 r M
}

L 0 6 r M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 30 / 187

Weakest Pre-Conditions

I We have so far only rules for valid Hoare triples.
I Not all triples are equally useful

L false M P Lψ M

I How do we infer these triples?
I We will now move towards a more syntax-driven

method to infer weakest pre-conditions.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 31 / 187

Definition

I We say φ is weaker than φ ′ if

φ ′ ⇒ φ

I For φ = WP JSK ψ, we have

Lφ M S Lψ M is valid
if Lφ ′ M S Lψ M then φ ′ ⇒ φ

I ψ holds after S iff φ holds before.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 32 / 187

Assignment

I Consider sequential composition:

z := x;

z := z+ y;

u := z

I It suffices with definitions:

WP Jx = eK ψ = ψ[e/x]

WP JC1 ; C2K ψ = WP JC1K (WP JC2K ψ)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 33 / 187

A tableaux proof from WPs

L x+ y = 42 M
z := x;

L z+ y = 42 M
z := z+ y;

L z = 42 M
u := z

Lu = 42 M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 34 / 187

Conditional

I Hoare logic:

Lφ∧ e M C1 Lψ M Lφ∧ ¬e M C2 Lψ M
Lφ M if e then C1 else C2 Lψ M

I A more syntax-driven rule:

Lφ1 M C1 Lψ M Lφ2 M C2 Lψ M
Lφ ′ M if e then C1 else C2 Lψ M

where φ ′ = (e→ φ1)∧ (¬e→ φ2)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 35 / 187

Proof Tableaux for Conditional 2.0

L (e→ WP JC1K ψ)∧ (¬e→ WP JC2K ψ) M

if e then {

LWP JC1K ψ M

C1

} else {

LWP JC2K ψ M

C2

}

Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 36 / 187

Proof Tableaux for Conditional 2.0

L (e→ WP JC1K ψ)∧ (¬e→ WP JC2K ψ) M

if e then {

LWP JC1K ψ M
C1

} else {

LWP JC2K ψ M
C2

}

Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 36 / 187

Proof Tableaux for Conditional 2.0

L (e→ WP JC1K ψ)∧ (¬e→ WP JC2K ψ) M
if e then {

LWP JC1K ψ M
C1

} else {

LWP JC2K ψ M
C2

}

Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 36 / 187

The Example Again

L true M
L (0 6 i→ 0 6 i)∧ (i < 0→ 0 6 −i) M

if (0 6 i) then {

L 0 6 i M

r := i

} else {

L 0 6 −i M

r := −i

}

L 0 6 r M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 37 / 187

The Example Again

L true M
L (0 6 i→ 0 6 i)∧ (i < 0→ 0 6 −i) M

if (0 6 i) then {

L 0 6 i M
r := i

} else {

L 0 6 −i M
r := −i

}

L 0 6 r M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 37 / 187

The Example Again

L true M

L (0 6 i→ 0 6 i)∧ (i < 0→ 0 6 −i) M
if (0 6 i) then {

L 0 6 i M
r := i

} else {

L 0 6 −i M
r := −i

}

L 0 6 r M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 37 / 187

The Example Again

L true M
L (0 6 i→ 0 6 i)∧ (i < 0→ 0 6 −i) M

if (0 6 i) then {

L 0 6 i M
r := i

} else {

L 0 6 −i M
r := −i

}

L 0 6 r M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 37 / 187

Loop Invariants

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 38 / 187

Warm-Up

I Consider a simple loop-free program:
int succ(int x) {

a = x + 1;
if (a - 1 == 0)

y = 1;
else

y = a;
return y;

}

I Show that y = x+ 1 at the return statement.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 39 / 187

While Loops

I Recall the proof rule

Lφ∧ e M C Lφ M
Lφ M while e do C Lφ∧ ¬e M

I Given a ψ as post-condition. . .
I How can we apply this rule?
I What is the WP of a while loop?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 40 / 187

Termination?

I Weakest Liberal Preconditions

wp JSKψ ≡ wp JSK true ∧ wlp JSKψ

I We did not care about this distinction
I Termination is an outdated concept. ;)
I Only loops have different definitions.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 41 / 187

WP for while loops

I WP Jwhile e do CK ψ?
I Unrolling the loop:

F0 = while e do skip

Fi = if e then C ; Fi−1 else skip

I WP for “exiting the loop after at most i iterations in
a state satisfying ψ”:

L0 ≡ ψ∧ ¬e

Li ≡ (¬e→ φ)∧ (e→ WP JCK Li−1)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 42 / 187

WLP for while loops

I WLP Jwhile e do CK ψ?
I Unrolling the loop:

F0 = while e do skip

Fi = if e then C ; Fi−1 else skip

I WLP for “if we exit the loop after at most i
iterations, the resulting state satisfies ψ”:

L0 ≡ ψ
Li ≡ (¬e→ φ)∧ (e→ WLP JCK Li−1)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 42 / 187

WLP for while loops

I WLP for “if we exit the loop after at most i
iterations, the resulting state satisfies ψ”:

L0 ≡ ψ
Li ≡ (¬e→ φ)∧ (e→ WLP JCK Li−1)

I We then define

WLP Jwhile e do CK ψ = ∀i ∈ N : Li

I Not very practical. . .

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 42 / 187

Precondition of a While Loop

To push ψ up through while e do C:
1. Guess a potential invariant φ.
2. Make sure φ∧ ¬e =⇒ ψ.
3. Compute φ ′ = WLP JCK φ.
4. Check that φ∧ e =⇒ φ ′.
5. Then, φ is a pre-condition for ψ.

Lφ∧ e M C Lφ M
Lφ M while e do C Lφ∧ ¬e M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 43 / 187

Proof Tableaux for Loops

Lφ M
while e do {

Lφ∧ e M
LWLP JCK φ M

C

Lφ M
}

Lφ∧ ¬E M
Lψ M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 44 / 187

Exercise 1

int fact(int x) {
y = 1;
z = 0;
while (z != x) {

z = z + 1;
y = y * z;

}
return y;

}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 45 / 187

Guessing the invariant

I Doing a trace:

iteration x y z B

0 6 1 0 true
1 6 1 1 true
2 6 2 2 true
3 6 6 3 true
4 6 24 4 true
5 6 120 5 true
6 6 720 6 false
i i! i

I Formulate hypothesis: y = z!

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 46 / 187

Proof obligations

Want to establish ψ ≡ y = x!.
1. Our invariant φ ≡ y = z!

2. Check that φ∧ ¬(z 6= x) =⇒ ψ.

3. Compute WLP of loop body:

φ ′ ≡ y · (z+ 1) = (z+ 1)!

4. Check if φ∧ z 6= x =⇒ φ ′.
5. Continue WLP computation with φ.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 47 / 187

Proof obligations

Want to establish ψ ≡ y = x!.
1. Our invariant φ ≡ y = z!

2. Check that φ∧ ¬(z 6= x) =⇒ ψ.
3. Compute WLP of loop body:

φ ′ ≡ y · (z+ 1) = (z+ 1)!

4. Check if φ∧ z 6= x =⇒ φ ′.
5. Continue WLP computation with φ.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 47 / 187

Proof obligations

Want to establish ψ ≡ y = x!.
1. Our invariant φ ≡ y = z!

2. Check that φ∧ ¬(z 6= x) =⇒ ψ.
3. Compute WLP of loop body:

φ ′ ≡ y · (z+ 1) = (z+ 1)!

4. Check if φ∧ z 6= x =⇒ φ ′.

5. Continue WLP computation with φ.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 47 / 187

Proof obligations

Want to establish ψ ≡ y = x!.
1. Our invariant φ ≡ y = z!

2. Check that φ∧ ¬(z 6= x) =⇒ ψ.
3. Compute WLP of loop body:

φ ′ ≡ y · (z+ 1) = (z+ 1)!

4. Check if φ∧ z 6= x =⇒ φ ′.
5. Continue WLP computation with φ.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 47 / 187

Exercise 2:
Minimal-Sum Section

I Given an integer array a[0],a[1], . . . ,a[n− 1].
I A section of a is a continuous piece
a[i],a[i+ 1], . . . ,a[j] with 0 6 i 6 j < n.

I Section sum: Si,j = a[i] + · · ·+ a[j].

I A minimal-sum section is a section a[i], . . . ,a[j]
s.t. for any other a[i ′], . . . ,a[j ′], we have
Si,j 6 Si ′,j ′.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 48 / 187

What to do?

I Compute the sum of the minimal-sum sections in
linear time.

I Prove that the code is correct!

I For example. . .
I [−1, 3, 15,−6, 4,−5] is −7 for [−6, 4,−5].
I [−2,−1, 3,−3] is −3 for [−2,−1] or [−3].

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 49 / 187

The Program

int minsum(int a[]) {
k = 1;
t = a[0];
s = a[0];
while (k != n) {

t = min(t + a[k], a[k]);
s = min(s,t);
k = k + 1;

}
return s;

}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 50 / 187

Post-conditions

I The value s is smaller than the sum of any section.

φ1 = ∀i, j : 0 6 i 6 j < n→ s 6 Si,j

I There is a section whose sum is s

φ2 = ∃i, j : 0 6 i 6 j < n∧ s = Si,j

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 51 / 187

Trying to prove φ1

I Suitable Invariant:

φ1 = ∀i, j : 0 6 i 6 j < n→ s 6 Si,j
I1(s,k) = ∀i, j : 0 6 i 6 j < k→ s 6 Si,j

I Additional Invariant

I2(t,k) = ∀i : 0 6 i < k→ t 6 Si,k−1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 52 / 187

Trying to prove φ1

I Suitable Invariant:

φ1 = ∀i, j : 0 6 i 6 j < n→ s 6 Si,j
I1(s,k) = ∀i, j : 0 6 i 6 j < k→ s 6 Si,j

I Additional Invariant

I2(t,k) = ∀i : 0 6 i < k→ t 6 Si,k−1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 52 / 187

The Key Lemma

I In the end, we have to prove that

I1(s,k)∧ I2(t,k)∧ k 6= n
=⇒

I1(min(s, (min(t+ a[k],a[k])),k+ 1)

∧

I2(min(t+ a[k],a[k]),k+ 1)

I This will require human intervention:
proof-assistants.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 53 / 187

Verification Condition Generation

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 54 / 187

Purpose of this lecture

I Get an idea of how verification condition
generation works.

I We consider the simplest possible implementation.
I This is based on early work on ESC/Java.

I We see some important concepts:
I collecting semantics
I constraint systems
I abstraction

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 55 / 187

Quick: What is the Loop Invariant?

y := 5 ;

x := 0 ;

while x 6= 5 do

x := x+ 1

L x = y M

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 56 / 187

Generating VCs

I Non-trivial loop-invariants must be supplied, but
everything else automatic.

I Assume program is annotated with
I Pre- & Post-conditions.
I For every while-loop, a supposed loop-invariant.

I How do we check automatically that the
implementation satisfies the contract?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 57 / 187

Verification Conditions

I Consider the triplets:

Lφ M C Lψ M
L x = x ′ M x := x− y L x+ y = x ′ M

I The verification conditions would be

φ→ WP JCK ψ
(x = x ′)→ ((x− y) + y = x ′)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 58 / 187

Asking an SMT Solver

I We then ask an SMT solver if the VC is true.

(x = x ′)→ ((x− y) + y = x ′)

I We want the VC to hold for all parameters.
I Check if the negated formula is satisfiable!

I Think: searching for a falsifying assignment
(failing test case).

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 59 / 187

Translation into Flow Graphs

Control Flow Graph G = (N,E, s, r)

I N are program points, and s, r ∈ N are start/return
nodes.

I E = N× C×N are transition, where C is the set
of basic statements.

0 1 2
x :
=
5

y :
=
x+

1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 60 / 187

Basic Edges

C ::= skip skip
| x := e assign
| φ ? assume
| φ ! assert

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 61 / 187

FOL with linear arithmetic

φ ::= e arithmetic
| φ1 ∧ φ2 conjunction
| φ1 ∨ φ2 disjunction
| φ1 → φ2 implication
| ∃y : φ existential quantification
| ∀y : φ universal quantification.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 62 / 187

Translating If-Statements

if e then C1 else C2

0

1 2

3

e ? ¬e ?

C1 C2

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 63 / 187

Translating While-Statements

while e do C

0

1

2

e ?

¬e ?

C

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 64 / 187

Program State
I State σ assigns values to variables:

σ : V → Z

I Example:

σ0 = {x 7→ 0,y 7→ 0}

σ1 = {x 7→ 5,y 7→ 0}

σ2 = {x 7→ 5,y 7→ 6}

0 1 2
x :
=
5

y :
=
x+

1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 65 / 187

Program State
I State σ assigns values to variables:

σ : V → Z

I Example:

σ0 = {x 7→ 0,y 7→ 0}

σ1 = {x 7→ 5,y 7→ 0}

σ2 = {x 7→ 5,y 7→ 6}

0 1 2
x :
=
5

y :
=
x+

1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 65 / 187

Program State
I State σ assigns values to variables:

σ : V → Z

I Example:

σ0 = {x 7→ 0,y 7→ 0}

σ1 = {x 7→ 5,y 7→ 0}

σ2 = {x 7→ 5,y 7→ 6}

0 1 2
x :
=
5

y :
=
x+

1

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 65 / 187

Evaluating Expressions

I Given a σ, we evaluate expressions:

JzKσ = z

JxKσ = σx

Je1 + e2Kσ = Je1Kσ+ Je2Kσ
. . .

I For σ = {x 7→ 5,y 7→ 6},

Jx+ yKσ = JxKσ+ JyKσ =

σx+ σy = 5+ 6 = 11

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 66 / 187

State satisfies a formula

I Our state is σ : V → Z, but φ may contain
unbound logical variables x ′ 6∈ V .

I A state σ satisfies φ

σ � φ

if φ evaluates to true for some extension of σ:

∃σ ′ : (∀v ∈ V : σ ′ v = σ v)∧ (JφKσ ′ = true)

I And a formula φ is satisfiable if ∃σ : σ � φ.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 67 / 187

A note on triplets

I Consider the triplet

L x = x ′ M x := x+ 1 L x = x ′ + 1 M

where x ′ is a logical variable.

I When we say that the triplet Lφ M C Lψ M is valid
under partial correctness if

∀σ : σ � φ =⇒ JCKσ � ψ

we assume that σ includes logical variables.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 68 / 187

Notation: Updating the State

I We update the mapping σ:

σ ′ = σ [x 7→ z]

where

σ ′ y =

{
z if y = x

σy otherwise

I Useful exercise:

σ � ψ[e/x] ⇐⇒ σ [x 7→ JeKσ] � ψ

Jψ[e/x]Kσ = JψK(σ [x 7→ JeKσ])

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 69 / 187

Notation: Updating the State

I We update the mapping σ:

σ ′ = σ [x 7→ z]

where

σ ′ y =

{
z if y = x

σy otherwise

I Useful exercise:

σ � ψ[e/x] ⇐⇒ σ [x 7→ JeKσ] � ψ

Jψ[e/x]Kσ = JψK(σ [x 7→ JeKσ])

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 69 / 187

Collecting Semantics

I For every point p ∈ N, we want to know
I The set of states reaching p: Sp.
I If we assume that Ss = S0 = {σ0}.

σ0 v = 0 (∀v ∈ V)

0 1 2
x :
=
5

y :
=
x+

1

{σ0} {σ1} {σ2}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 70 / 187

Starting State

I We need this semantics to validate our WP
computation.

I Therefore, the best choice is Ss = V → Z, so that
only tautologies hold at s.

I We include all logical variables from assume
statements in V .

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 71 / 187

For a skip edge

p

q

skip

x := eφ ?φ !

Sq = Sp

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 72 / 187

For an assignment edge

p

q

skip

x := e

φ ?φ !

Sq = {σ [x 7→ JeKσ] | σ ∈ Sp}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 72 / 187

For an assume edge

p

q

skipx := e

φ ?

φ !

Sq = {σ | σ ∈ Sp, JφKσ = true}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 72 / 187

For an assert edge

p

q

skipx := eφ ?

φ !

Sq = {σ | σ ∈ Sp, JφKσ = true}

∪ {⊥ | σ ∈ Sp, JφKσ = false}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 72 / 187

Quiz: The Error State

I For any S, what are the results of the edges?

false ? false !

∅ {⊥}

I The “⊥” should pass through other edges (like
exceptions / maybe monad)

JφK⊥ = false ⊥ [x 7→ e] = ⊥

I We amend the assume rule. . .

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 73 / 187

Quiz: The Error State

I For any S, what are the results of the edges?

false ? false !

∅ {⊥}

I The “⊥” should pass through other edges (like
exceptions / maybe monad)

JφK⊥ = false ⊥ [x 7→ e] = ⊥

I We amend the assume rule. . .

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 73 / 187

Quiz: The Error State

I For any S, what are the results of the edges?

false ? false !

∅ {⊥}

I The “⊥” should pass through other edges (like
exceptions / maybe monad)

JφK⊥ = false ⊥ [x 7→ e] = ⊥

I We amend the assume rule. . .

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 73 / 187

Transfer functions

JskipKS = S

Jx := eKS = {σ [x 7→ JeKσ] | σ ∈ S}

Je ?KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | ⊥ ∈ Sp}

Je !KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | σ ∈ Sp, JeKσ = 0}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 74 / 187

Satisfiability for Sets

I This is lifted as expected:

S � φ ⇐⇒ ∀σ ∈ S : σ � φ

I As the error state satisfies nothing:

∀φ : ⊥ 2 φ

I if ⊥ ∈ S, already S 2 true.
(because some assertions may already have failed.)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 75 / 187

Example

0

1 2

3

4

x < 0 ? 0 6 x ?

x := −x x := x+ 1

x 6= 0 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 76 / 187

Equation & Constraint Systems
I Recall G = (N,E, s, r).
I First we set the starting state:

Ss = {σs} (or Ss = V → Z)

And for each point q ∈ N:

Sq =
⋃

{JCKSp | (p,C,q) ∈ E}

I As a constraint system:

Ss ⊇ {σs}

Sq ⊇ JCKSp for (p,C,q) ∈ E

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 77 / 187

Equation & Constraint Systems
I Recall G = (N,E, s, r).
I First we set the starting state:

Ss = {σs} (or Ss = V → Z)

And for each point q ∈ N:

Sq =
⋃

{JCKSp | (p,C,q) ∈ E}

I As a constraint system:

Ss ⊇ {σs}

Sq ⊇ JCKSp for (p,C,q) ∈ E

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 77 / 187

Constraint System Example

I Let xp = {σx | σ ∈ Sp} (and ⊥ if σ = ⊥).
I We start with x0 = xs = Z.

x0 ⊇ Z
x1 ⊇ {z | z ∈ x0, z < 0}

x2 ⊇ {z | z ∈ x0, 0 6 z}
x3 ⊇ {−z | z ∈ x1}
x3 ⊇ {z+ 1 | z ∈ x2}
x4 ⊇ {z | z ∈ x3, z 6= 0}

∪ {⊥ | z ∈ x3, z = 0}

0

1 2

3

4

x < 0 ? 0 6 x ?

x := −x x := x+ 1

x 6= 0 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 78 / 187

And Now WP. . .

WP JskipK ψ = ψ

WP Jx := eK ψ = ψ[e/x]

WP Jφ ?K ψ = φ→ ψ

WP Jφ !K ψ = φ∧ψ

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 79 / 187

Assume versus Assert

I Definitions:

C wpJCKψ wlpJCKψ
φ ! φ∧ψ φ→ ψ
φ ? φ→ ψ φ→ ψ

I Our WP JCK ψ behaves like wp on asserts.
I However, we will abstract away loops, so in

essence this is still partial correctness.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 80 / 187

Equation system for WP

I We now start from the end node r ∈ N.
I Post-conditions are explicitly asserted, so. . .
I We start with ψr = true and for p ∈ N:

ψp =
∧

{WP JcK ψq | (p, c,q) ∈ E}

I Alternatively, as a constraint system:

ψr =⇒ true

ψp =⇒ WP JcK ψq for (p, c,q) ∈ E

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 81 / 187

WP and our Semantics

I Assume we have computed the initial precondition
ψs starting from the end node ψr = true.

I If we start the collecting semantics with

Ss = {σ | σ |= ψs}

I Then, we expect:

Sr |= true

which holds whenever ⊥ 6∈ Sr.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 82 / 187

Quiz: Error State Again

I Recall our false assume/assert edges:

false ? false !

∅ {⊥}

I Now what is the WP for these?

WP Jfalse ?K ψ WP Jfalse !K ψ

true false

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 83 / 187

Quiz: Error State Again

I Recall our false assume/assert edges:

false ? false !

∅ {⊥}

I Now what is the WP for these?

WP Jfalse ?K ψ WP Jfalse !K ψ
true false

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 83 / 187

Again this example:

0

1 2

3

4

x < 0 ? 0 6 x ?

x := −x x := x+ 1

x 6= 0 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 84 / 187

Now recall this example. . .

y := 5 ;

x := 0 ;

while x 6= 5 do

x := x+ 1 ;

x = y !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 85 / 187

We could compute this. . .

0

1

2

3 4

y :
=
5 ;
x :
=
0

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 86 / 187

VCG: Abstraction of Loops

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 87 / 187

WP computation was stuck in this loop

0

1

2

3 4

y :
=
5 ;
x :
=
0

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 88 / 187

Havoc (wrong!)

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ∃x : ψ

I Practically, all information about x is lost, except
indirect relations remain:

WP Jhavoc xK (y = x∧ x = z) =⇒ (y = z)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 89 / 187

Havoc (for post-conditions!)

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ∃x : ψ

I Practically, all information about x is lost, except
indirect relations remain (after the assignment):

WP Jhavoc xK (y = x∧ x = z) =⇒ (y = z)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 89 / 187

Pre-Condition of Havoc

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ∀x : ψ

I We need ψ to hold for all values of x. Usually, we
have assumes after havoc, so a typical example is

WP Jhavoc xK ((y = x)→ (x = z)) =⇒ (y = z)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 90 / 187

Pre-Condition of Havoc

I Concrete semantics:

Jhavoc xKS = {σ [x 7→ z] | σ ∈ S, z ∈ Z}

I WP for havoc:

WP Jhavoc xK ψ = ψ[x ′/x] x ′ is fresh!

I We need ψ to hold for all values of x. Usually, we
have assumes after havoc, so a typical example is

WP Jhavoc xK ((y = x)→ (x = z)) =⇒ (y = z)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 90 / 187

A simple assumption

I We should havoc all variables that are assigned to
in the loop body.

I For simplicity, we assume this is only x.

I (You may think of x as a vector.)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 91 / 187

Normal While Loop

0

1

2

e ?

¬e ?

C

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 92 / 187

Abstraction using invariant φ

0 ′

0

1 2 ′

2

φ !
; h
avo

c x
; φ

?

e ?

¬e ?

C ; φ !

false ?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 93 / 187

Why can we do this?

I The construction guarantees that if

⊥ 6∈ S2
we have

S ′2 ⊆ S2

where S ′i are the sets computed for the original
while loop.

I Note: it follows very closely the proof rules of
Hoare logic.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 94 / 187

Now we really can compute a VC

0

1

1 ′

2

3

3 ′

4

y :
=
5 ;
x :
=
0

hav
oc
x

x 6= 5 ?

x = 5 ?

x := x+ 1

x = y !

false ?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 95 / 187

What happened?

I Well, there was no invariant to check.
I That’s good because the invariant was trivial.
I The homework requires making this construction

with an invariant.

I Just a note on procedure, and then we prove the
soundness of the construction.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 96 / 187

Procedure Calls

I Given a function P with parameter p and result r
and contract

Lφ M P Lψ M

I We produce the following translation for a call
x = P(e).

p := e

φ !

ψ ?

x := r

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 97 / 187

Soundness of the transformation

0

1

2

e ?

¬e ?

C

A

0

1 B

2

φ !
; h
avo

c x
; φ

?

e ?

¬e ?

C ; φ !

false ?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 98 / 187

Proof Plan

1. Write down constraint systems S and S ′.
2. Separate assertions into

I the conditions they impose
I constraint system for values

3. Show that the value system satisfies the
constraints of S.

4. This implies that any solution of S ′ is greater than
the least solution of S.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 99 / 187

Constraint System S

S0 ⊇ S
S0 ⊇ JCKS1
S1 ⊇ Je ?KS0
S2 ⊇ J¬e ?KS0

0

1

2

e ?

¬e ?

C

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 100 / 187

Constraint System S ′

S ′A ⊇ S
S ′0 ⊇ Jφ ?K {σ[x 7→ z] | z ∈ Z,

σ ∈ Jφ !KS ′A}
S ′1 ⊇ Je ?KS ′0
S ′B ⊇ Jφ !K (JCKS ′1)
S ′2 ⊇ J¬e ?KS ′0 ∪ {⊥ | ⊥ ∈ S ′B}

A

0

1 B

2

φ !
; h
avo

c x
; φ

?

e ?

¬e ?

C ; φ !

false ?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 101 / 187

Splitting S ′ based on ⊥ ∈ S ′2
I We can be sure ⊥ 6∈ S ′2 if we have

S � φ

JCKS ′1 � φ

I Letting Sx = {σ[x 7→ z] | z ∈ Z,σ ∈ S}, the
following constraints remain:

S ′0 ⊇ Jφ ?KSx
S ′1 ⊇ Je ?KS ′0
S ′2 ⊇ J¬e ?KS ′0

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 102 / 187

Splitting S ′ based on ⊥ ∈ S ′2
I We can be sure ⊥ 6∈ S ′2 if we have

S � φ

JCKS ′1 � φ

I Letting Sx = {σ[x 7→ z] | z ∈ Z,σ ∈ S}, we obtain
the following solution:

S ′0 = {σ ∈ Sx | σ � φ}
S ′1 = {σ ∈ Sx | σ � φ∧ e}

S ′2 = {σ ∈ Sx | σ � φ∧ ¬e}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 102 / 187

Solution to original system?

I Given the solution and conditions:

S ′0 = {σ ∈ Sx | σ � φ} S � φ

S ′1 = {σ ∈ Sx | σ � φ∧ e} JCKS ′1 � φ
S ′2 = {σ ∈ Sx | σ � φ∧ ¬e}

I We check if the original constraints are satisfied:

S ′0 ⊇ S S ′0 ⊇ JCKS ′1
S ′1 ⊇ Je ?KS ′0 S ′2 ⊇ J¬e ?KS ′0

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 103 / 187

What did we just do?

I We had two systems:

X ⊇ F(X)
X ⊇ F ′(X)

I We showed that for any Y

Y ⊇ F ′(Y) =⇒ Y ⊇ F(Y)

I What did we conclude?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 104 / 187

Data Flow Analysis

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 105 / 187

Data Flow Analysis

I We now consider how to check assertions using
data flow analysis.

I Before we do that, we must to understand the
basics of classical data flow analysis frameworks.

I We need to reason about soundness.
I Statements about programs are ordered. . .

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 106 / 187

Partial Orders

Definition
A set D together with a relation v is a partial order if for
all a,b, c ∈ D,

a v a reflexivity
a v b∧ b v a =⇒ a = b anti-symmetry
a v b∧ b v c =⇒ a v c transitivity

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 107 / 187

Examples

1. D = 2{a,b,c} with the relation “⊆”
2. Z with the relation “=”
3. Z with the relation “6”
4. Z⊥ = Z ∪ {⊥} with the ordering:

x v y ⇐⇒ (x = ⊥)∨ (x = y)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 108 / 187

Facts about the program

I Our domain elements represent propositions about
the program.

I Let p |= x denote “x holds whenever execution
reaches program point p”.

I We order these propositions such that

x v y whenever (p |= x) =⇒ (p |= y)

I Consider examples:
I The set of possibly live variables.
I The set of definitely initialized variables.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 109 / 187

Combining information

I Assume there are two paths to reach p
(true-branch and false-branch).

I If we have x along one path and y along the other,
how can we combine this information?

x t y

I We want something that is true of both paths, and
I as precise as possible.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 110 / 187

Least Upper Bounds

I d ∈ D is called an upper bound for X ⊆ D if

x v d for all x ∈ X

I d is called a least upper bound if
1. d is an upper bound and
2. d v y for every upper bound y of X.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 111 / 187

Do least upper bounds always exist?

>

a cb

e f g

h i

⊥

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 112 / 187

Do least upper bounds always exist?

>

a cb

e f g

h i

⊥

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 112 / 187

Do least upper bounds always exist?

>

a cb

e f g

h i

⊥

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 112 / 187

Do least upper bounds always exist?

>

a cb

e f g

h i

⊥

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 112 / 187

Complete Lattice

Definition
A complete lattice D is a partial ordering where every
subset X ⊆ D has a least upper bound

⊔
X ∈ D.

Every complete lattice has
I a least element ⊥ =

⊔
∅ ∈ D;

I a greatest element > =
⊔
D ∈ D.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 113 / 187

Which are complete lattices?

1. D = 2{a,b,c}

2. D = Z with “=”.
3. D = Z with “6”.
4. D = Z⊥.

5. Z>⊥ = Z ∪ {⊥,>}.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 114 / 187

Which are complete lattices?

1. D = 2{a,b,c}

2. D = Z with “=”.
3. D = Z with “6”.
4. D = Z⊥.
5. Z>⊥ = Z ∪ {⊥,>}.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 114 / 187

Proof demo: Greatest Lower Bounds

Recall the definition
A complete lattice D is a partial ordering where every
subset X ⊆ D has a least upper bound

⊔
X ∈ D.

Theorem
If D is a complete lattice, then every subset X ⊆ D has
a greatest lower bound

d
X.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 115 / 187

Proof

I L = {l | ∀x ∈ X : l v x}.
I Let g =

⊔
L.

I (Least upper bound of the lower bounds.)

I We show that g =
d
X.

1. Show that g is a lower bound of X.
2. Show that g is the greatest lower bound.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 116 / 187

Solving constraint systems

I Recall the concrete semantics:

Sq ⊇ JcKSp for (p, c,q) ∈ E

I In general:
xi w fi(x1, . . . , xn)

I We rewrite multiple constraints:

x w d1 ∧ · · ·∧ x w dk ⇐⇒ x w
⊔

{d1, . . . ,dk}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 117 / 187

So how to do it?

I In order to solve:

xi w fi(x1, . . . , xn)

I We need fi to be monotonic.

I A mapping f is monotonic if

a v b =⇒ f(a) v f(b)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 118 / 187

Monotonicity

I A mapping f is monotonic if

a v b =⇒ f(a) v f(b)

I Which of the following is not monotonic?

inc x = x+ 1 dec x = x− 1

top x = > bot x = ⊥
id x = x inv x = −x

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 119 / 187

Monotonicity

I A mapping f is monotonic if

a v b =⇒ f(a) v f(b)

I Which of the following is not monotonic?

inc x = x+ 1 dec x = x− 1

top x = > bot x = ⊥

id x = x inv x = −x

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 119 / 187

Monotonicity

I A mapping f is monotonic if

a v b =⇒ f(a) v f(b)

I Which of the following is not monotonic?

inc x = x+ 1 dec x = x− 1

top x = > bot x = ⊥
id x = x inv x = −x

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 119 / 187

Vector function

I We want to solve:

xi w fi(x1, . . . , xn)

I Construct vector function F : Dn → Dn

F(x1, . . . , xn) = (y1, . . . ,yn)

where yi = fi(x1, . . . , xn)

I If fi are monotonic, so is F.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 120 / 187

Kleene iteration

I Successively iterate from ⊥:

⊥, F(⊥), F2(⊥), . . .

I Stop if we reach some X = Fn(⊥) with

F(X) = X

I Will this terminate?
I Is this the least solution?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 121 / 187

Simple Example

I For D = 2{a,b,c}

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I The Iteration

0 1 2 3 4

x1 ∅

{a} {a, c} {a, c} X

x2 ∅

∅ ∅ {a} X

x3 ∅

{c} {a, c} {a, c} X

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 122 / 187

Simple Example

I For D = 2{a,b,c}

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I The Iteration

0 1 2 3 4

x1 ∅ {a}

{a, c} {a, c} X

x2 ∅ ∅

∅ {a} X

x3 ∅ {c}

{a, c} {a, c} X

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 122 / 187

Simple Example

I For D = 2{a,b,c}

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I The Iteration

0 1 2 3 4

x1 ∅ {a} {a, c}

{a, c} X

x2 ∅ ∅ ∅

{a} X

x3 ∅ {c} {a, c}

{a, c} X

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 122 / 187

Simple Example

I For D = 2{a,b,c}

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I The Iteration

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c}

X

x2 ∅ ∅ ∅ {a}

X

x3 ∅ {c} {a, c} {a, c}

X

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 122 / 187

Simple Example

I For D = 2{a,b,c}

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I The Iteration

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} X
x2 ∅ ∅ ∅ {a} X
x3 ∅ {c} {a, c} {a, c} X

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 122 / 187

Why Kleene iteration works

1. ⊥, F(⊥), F2(⊥), . . . is an ascending chain

⊥ v F(⊥) v F2(⊥) v · · ·

2. If Fk(⊥) = Fk+1(⊥), it is the least solution.
3. If all ascending chains in D are finite, Kleene

iteration terminates.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 123 / 187

Discussion

I What if D does contain infinite ascending chains?
I In particular, our concrete semantics was defined

as the set of states with σ ∈ V → N.

I How do we know there aren’t better solutions to
the constraint system?

x = f(x) x w f(x)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 124 / 187

Answer to the first question

Theorem (Knaster-Tarski)

Assume D is a complete lattice. Then every monotonic
function f : D→ D has a least fixpoint d0 ∈ D where

d0 =
l
P P = {d ∈ D | d w f(d)}

1. Show that d0 ∈ P.
2. Show that d0 is a fixpoint.
3. Show that d0 is the least fixpoint.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 125 / 187

Answer to the second question

I Could there be better solutions to the constraint
system than the least fixpoint?

I According to the theorem:

d0 =
l

{d ∈ D | d w f(d)}

I Thus, d0 is a lower bound for all solutions to the
constraint system d w f(d).

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 126 / 187

Chaotic iteration

1. Set all xi to ⊥ and W = {1, . . . ,n}.
2. Take some i ∈W out of W.

(if W = ∅, exit).
3. Compute n := fi(x1, . . . , xn).
4. If xi w n, goto 2.
5. Set xi := xi t n and reset W := {1, . . . ,n}.
6. Goto 2.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 127 / 187

Data flow versus paths

I We want to verify that “whenever execution
reaches program point p, a certain assertion
holds.”

I We need to check every path leading to p.

I Then: Why are we solving data flow constraint
systems??

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 128 / 187

Path Semantics

I We define a path π inductively:

π = ε empty path
π = π ′e where e ∈ E

I If π is a path from p to q, we write π : p→ q.

I We define the path semantics:

JεKS = S

Jπ(p, c,q)KS = JcK (JπKS)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 129 / 187

Merge Over All Paths

I For a complete lattice D, we solved

xs w ds
xq w JcK xp (p, c,q) ∈ E

I But we are really interested in:

yp =
⊔

{JπKds | π : s→ p}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 130 / 187

Example: Merge Over All Paths

0

1 2

3

4 5

skip skip

x := 4 x := −4

y := x2 y = 16 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 131 / 187

When do solutions coincide?

I For our collecting semantics, they do.
I All functions JcK are distributive.
I In reality, we compute an abstract semantics.

xs w ds
xq w JcK] xp (p, c,q) ∈ E

I Transfer functions JcK] : D→ D are monotonic.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 132 / 187

Soundness of LFP Solutions

Theorem (Kam, Ullman, 1975)

Let xi satisfy the following constraint system:

xs w ds
xq w JcK] xp (p, c,q) ∈ E

where JcK] are monotonic. Then, for every p ∈ N, we
have

xp w
⊔

{JπK] ds | π : s→ p}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 133 / 187

Proof

I We need to show that for each π : s→ p:

xp w JπK] ds

I By induction on the length of π (assume the above
holds for all paths of length 6 n to any node).

I Base case.
I There is only one zero-length path: π = ε.
I We have xs w JεK] ds from the first constraint.

I Inductive step: Let π = π ′(p, c,q).
I We have xp w Jπ ′K] ds from the inductive hypothesis.
I We need xq w JπK] ds = JcK] (Jπ ′K] ds).
I From monotonicity: xq w JcK] xp w JcK] (Jπ ′K] ds).

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 134 / 187

On Distributivity

I A function f : D1 → D2 is distributive if for all
∅ 6= X ⊆ D1:

f
(⊔

X
)
=
⊔

{f x | x ∈ X}

I It is strict if
f⊥ = ⊥

I It is totally distributive if both distributive and strict
(distributes also ∅).

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 135 / 187

Why these distinctions?

I Many useful analyses are distributive, but. . .
I we generally do not have strict transfer functions.
I Instead, we assume each node v is reachable from

the start node.
I Under these assumptions, distributivity suffices for

our coinidence theorem.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 136 / 187

Intraprocedural Coincidence

Theorem (Kildall, 1972)

Let xi satisfy the following constraint system:

xs w ds
xq w JcK] xp (p, c,q) ∈ E

where JcK] are distributive. Then, for every p ∈ N, we
have

xp =
⊔

{JπK] ds | π : s→ p}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 137 / 187

Proof I

I Note that any distributive function is also
monotonic. Simple proof using:

x v y ⇐⇒ x t y = y

I Thus, we only need to show this direction:

xp v
⊔

{JπK] ds | π : s→ p}

I For this, we show that the MOP solution satisfies
our constraint system. (WHY?)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 138 / 187

Proof II
I We show for an edge (p, c,q):

xq w JcK] xp

I We compute:

xq =
⊔

{JπK] ds | π : s→ q}

w
⊔

{JπK] ds | π : s→ p→ q}

=
⊔

{JcK] (JπK] ds) | π : s→ p}

= JcK]
(⊔

{JπK] ds | π : s→ p}
)

= JcK] xp

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 139 / 187

Implementing a constraint solver

I Given the definitions:

as : D value at program start

JsK] : D→ D abstract semantics

I Solve the following system:

xq w ds q entry point

xq w JcK] xp (p, c,q) edge

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 140 / 187

Representation of Right-Hand Sides

I For each variable x ∈ V , we have a single
constraint fx.

I Given the sets

V : Constraint Variables (Unknowns)
D : The abstract value domain.

I The type of right hand sides are

fx : (V → D)→ D

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 141 / 187

The example encoded

I Mathematical formulation:

x1 w {a} ∪ x3
x2 w x3 ∩ {a,b}

x3 w x1 ∪ {c}

I Functional encoding:

fx1 = λσ. {a} ∪ σx3
fx2 = λσ. σx3 ∩ {a,b}

fx3 = λσ. σx1 ∪ {c}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 142 / 187

Encoding in Haskell

data V = X1 | X2 | X3 deriving (Eq,Show)

class FSet v where vars :: [v]
instance FSet V where vars = [X1,X2,X3]

f X1 = \σ → S.fromList [’a’] ∪ (σ X3)
f X2 = \σ → (σ X3) ∩ S.fromList [’a’,’b’]
f X3 = \σ → (σ X1) ∪ S.fromList [’c’]

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 143 / 187

Assignments and Solutions

I Given a variable assignment σ : V → D,
I we can evaluate a right-hand-side f σ ∈ D.

I An assignment σ satisfies a constraint x w fx iff

σx w fx σ

I When σ satisfies all constrains, it is a solution.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 144 / 187

Haskell Code: Check Solution

type RHS v d = (v → d) → d
type Sys v d = v → RHS v d
type Sol v d = v → d

verify σ f = all verifyVar vars where
verifyVar v = σ v w f v σ

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 145 / 187

Kleene Iteration

I We iterate a monotonic function starting from ⊥:

⊥ v f⊥ v f (f⊥) v · · · v fi⊥

I Until (hopefully) we reach an i, such that

fi⊥ w fi−1⊥

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 146 / 187

Haskell Code: Domains

class Domain t where
(v) :: t → t → Bool
(t) :: t → t → t
bot :: t

lfp :: Domain d => (d → d) → d
lfp f = stable (iterate f bot)

stable (x:fx:tl) | fx v x = x
| otherwise = stable (fx:tl)

matt.might.net/articles/partial-orders/ iterate f x = x : iterate f (f x)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 147 / 187

Haskell Code: Vector Function

instance (FSet v, Domain d) =>
Domain (v → d)

where
f v g = all (\v → f v v g v) vars
f t g = \v → f v t g v
bot = \v → bot

solve f = lfp (flip f)

f : V → (V → D)→ D
flip f : (V → D)→ (V → D)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 148 / 187

Testing the Simple Solver

instance Ord e => Domain (Set e) where
x v y = x ⊆ y
x t y = x ∪ y
bot = empty

f X1 = \σ → S.fromList [’a’] ∪ (σ X3)
f X2 = \σ → (σ X3) ∩ S.fromList [’a’,’b’]
f X3 = \σ → (σ X1) ∪ S.fromList [’c’]

--

*Simple> solve f
X1 → fromList "ac"
X2 → fromList "a"
X3 → fromList "ac"

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 149 / 187

Assertion Checking with Static
Analysis

Vesal Vojdani

Department of Computer Science
University of Tartu

Formal Methods (2014)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 150 / 187

Assertion Checking

I Track values of variables.
I Combine with WP computation.
I Infer invariants for loops.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 151 / 187

Value Domains

I Characterize the possible values of variables
whenever we reach program point p.

I A non-relational value domain:

D = V → DZ

I We consider two simple value domains:
1. Kildall’s constant propagation domain.
2. The Interval Domain.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 152 / 187

Non-relational Domains

I For a complete lattice D and finite set V ,
I the set of functions D→ V with the point-wise

ordering

f1 v f2 ⇐⇒ ∀v ∈ V : f1(v) v f2(v)

is also a complete lattice.
I For example: D = V → 2Z.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 153 / 187

Abstract Evaluation

I Just like for concrete state σ ∈ V → Z:

JzKσ = z

JxKσ = σx

Je1 + e2Kσ = Je1Kσ+ Je2Kσ

I Now, we need abstract operators such that for
d ∈ D = V → DZ, we evaluate:

JzK]d = z]

JxK]d = dx

Je1 + e2K]d = Je1K]d+] Je2K]d

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 154 / 187

What the domain must supply

1. Lattice operations.
2. Lifting of constants:

∀z ∈ Z : z] ∈ DZ

3. Abstract operations:

∀z1, z2 ∈ DZ : z1 +
] z2 ∈ DZ

(not just for +; also unary, comparisons, logical,
etc.)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 155 / 187

Kildall’s Domain

1. Lattice is the flat lattice.
2. Constants are already elements of DZ:

z] = z

3. Operators are essentially lifted:

a+] b =


⊥ if a = ⊥ or b = ⊥
> if a = > or b = >
a+ b otherwise

(More precise, e.g., for multiplication?)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 156 / 187

Interval Domain

1. Lattice is Z× Z with 〈l1,u1〉 v 〈l2,u2〉 if

〈l2 6 l1〉∧ 〈u1 6 u2〉

2. Constants are singleton intervals:

z] = 〈z, z〉

3. Operators are generally defined as:

〈l1,u1〉 ∗] 〈l2,u2〉 = 〈l,u〉 where
l = min {a ∗ b | a ∈ {l1,u1}, b ∈ {l2,u2}}

u = max{a ∗ b | a ∈ {l1,u1}, b ∈ {l2,u2}}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 157 / 187

The Analysis

I We define abstract transfer functions.
I The simple ones:

JskipK] d = d

Jx := eK] d = d [x 7→ JeK]d]

I Much like the concrete semantics:

JskipKS = S

Jx := eKS = {σ [x 7→ JeKσ] | σ ∈ S}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 158 / 187

The Bottom Value

I The bottom element is the mapping

d v = ⊥ (∀v ∈ V)

I As soon as ∃v with d v = ⊥, we would set all
variables to ⊥.

I The bottom value then denotes non-reachability.
I All transfer functions would strictly let ⊥ pass

through.
I Why allow ⊥ in the value domains at all?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 159 / 187

Assume edges
I The concrete semantics:

Je ?KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | ⊥ ∈ Sp}

I We will handle errors separately.
I Abstract value sets:

Je ?K] d =

{
⊥ if JeK]d = 0

d u dt otherwise

where
dt =

⊔
minimal elems {d | JeK]d 6= 0}

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 160 / 187

Example 1: Dead Code

0

1

2 3

4

5

x := 5

x = 5 ? x 6= 5 ?

y := 9 y := 6

y = 9 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 161 / 187

Example 2: Restricting Values

0

1 2

3

4

x = 5 ? x 6= 5 ?

x := x+ 1 x := 6

x = 6 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 162 / 187

Correctness

I We have a monotonic concretization function γ.
I For the value domains γ : DZ → 2Z.

γ z =


∅ if a = ⊥
Z if a = >
{z} otherwise

I For the variable assignments:

γ d =

{
∅ if ∃v : d v = ⊥
{ρ | ∀v : ρ v ∈ γ (d v)} otherwise

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 163 / 187

Correctness condition

I All our transfer functions need to satisfy:

JcK (γd) v γ (JcK] d)

I Then, then the least solutions also satisfy:

Sp ⊆ γxp

I Because if we have f(γx) v γ(f] x) and d = f] d,
then

f(γd) v γ(f] d) = γd

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 164 / 187

Assert edges

I Their effect on values is like assume:

Je !KS = {σ | σ ∈ Sp, JeKσ 6= 0}

∪ {⊥ | σ ∈ Sp, JeKσ = 0}

I So how to check assertions? (next slide)
I Let xp be the value analysis:

x0 w d0
xq w JcK] xp for (p, c,q) ∈ E

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 165 / 187

Assertion Checking

I We can just check for each assertion edge
(p, e !,q)

1] v JeK]xp
If the above does not hold, the the assertion
definitely fails.

I If we want to be sound:

JeK]xp v 1]

If this holds, the assertion is verified.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 166 / 187

Example 3: Distributivity

0

1 2

3

4 5

skip skip

x := 4 x := −4

y := x2 y = 16 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 167 / 187

Can we do better?

I We combine with WP computation.
I Recall the constraint system:

φp ⇒ WP JcK φq for (p, c,q) ∈ E

I What is the ordering of the domain?

I How do we combine?
I We can set up such a system for each assertion. . .

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 168 / 187

Discussion

I It is safe if we can only approximate implication.
I What is important for soundness?
I Our domain can be sets of conjucts.
I At program point p, we can safely dismiss a

conjunct φ if
JφK]xp v 1]

I If the solution for the system has φ0 ≡ true, we
are happy.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 169 / 187

Conclusion

I This works for the simple example.
I WP computation would not terminate for a loop.
I Also, what is the concretization of this combined

analysis?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 170 / 187

What about loops?

0

1

2

3 4

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 171 / 187

For the Kildall domain:

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 172 / 187

For the Kildall domain:

0

1

2

3 4

>

0

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 172 / 187

For the Kildall domain:

0

1

2

3 4

>

0

0

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 172 / 187

For the Kildall domain:

0

1

2

3 4

>

0

>

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 172 / 187

For the Kildall domain:

0

1

2

3 4

>

0

>
>

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 172 / 187

For the Kildall domain:

0

1

2

3 4

>

0

>
> Fail!

x :
=
0

x < 5 ?

x > 5 ?

x := x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 172 / 187

For the interval domain

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 0]

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 0]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 1]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 1]

[0, 2]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 2]

[0, 2]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 2]

[0, 3]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 3]

[0, 3]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 3]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 5]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

For the interval domain

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success?
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 173 / 187

Not really. . .

I This was not really static analysis.
I Termination not guaranteed.

I All ascending chains must stabilize.
I Enforce this by a widening operator O.
I Then, Kleene iteration will reach a (not necessarily

least) fixpoint.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 174 / 187

Widening

O : D× D→ D is a widening operator if

1. ∀x,y ∈ D : (x v xOy)∧ (y v xOy)
2. for every chain x0 v x1 v x2 v · · · ,

y0 = x0
y1 = y0Ox1
y2 = y1Ox2
· · ·

is not strictly increasing.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 175 / 187

Iteration with widening

I Our non-terminating iteration:

x0 = ⊥
xi+1 = f(xi)

I Iteration with widening:

y0 = ⊥

yi+1 =

{
yi if f(yi) v yi
yiOf(yi) otherwise

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 176 / 187

Widening for Intervals

I [l1,u1]O[l2,u2] = [l,u] where

l =

{
l1 if l1 6 l2
−∞ otherwise

u =

{
u1 if u2 6 u1∞ otherwise

I This is not commutative
I First argument: previous iteration.
I Second argument: new value!

I Idea: give up if bounds are increasing.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 177 / 187

Example with widening

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0, 0]

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0, 0]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0, 0]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0,∞]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Example with widening

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞] Fail!
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 178 / 187

Why did we fail?

I We are above the least solution.
I In particular, conditional constraints are

over-approximated:

x2 w Jx < 5 ?K] x1
[0,∞] w Jx < 5 ?K] [0,∞]

[0,∞] w [0, 4]

I Idea: why not just iterate a few times more?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 179 / 187

Refining the solution

I Let x denote a solution to our constraint system:

x w f(x)

I If f is monotonic, then further iterations are all safe!

x w f(x) w f2(x) w · · ·

I We can stop after 5 minutes if we don’t hit a
fixpoint.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 180 / 187

Post-fixpoint iteration

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 181 / 187

Post-fixpoint iteration

0

1

2

3 4

>

[0,∞]

[5,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 181 / 187

Post-fixpoint iteration

0

1

2

3 4

>
[5,∞]

[0, 4]

[0, 5]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 181 / 187

Post-fixpoint iteration

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 181 / 187

Post-fixpoint iteration

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success!
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 181 / 187

Success finally?

I Well, we were lucky and hit a fix-point.
I Termination for post-fixpoint iteration can be

guaranteed.
I We require a narrowing operator4.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 182 / 187

Narrowing

4 : D× D→ D is a narrowing operator if

1. ∀x,y ∈ D : (y v x) =⇒ (y v x4y v x)
2. for every chain x0 w x1 w x2 w · · · ,

y0 = x0
y1 = y04x1
y2 = y14x2
· · ·

is not strictly decreasing.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 183 / 187

Narrowing iteration

I Let x0 be a solution, i.e.,

x0 w f(x0)

I Post-fixpoint iteration with narrowing

y0 = x0
yi+1 = yi4f(yi)

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 184 / 187

Narrowing for Intervals

I [l1,u1]O[l2,u2] = [l,u] where

l =

{
l2 if l1 = −∞
l1 otherwise

u =

{
u2 if u1 =∞
u1 otherwise

I Idea: Only restore lost bounds.

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 185 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

[0, 0]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

[0, 1]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 0]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[0,∞]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[0,∞]

[5,∞]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0,∞]

[5,∞]

[0, 4]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>
[5,∞]

[0, 4]

[0, 5]

x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5]x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Replay with Widening/Narrowing

0

1

2

3 4

>

[0, 4]

[0, 5]

[5, 5] Success!
x :
=
0

x < 5 ?

x > 5 ?

x = x+ 1

x = 5 !

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 186 / 187

Conclusion

I This example does not require narrowings.
I Can you think of a simple modification to this

example where narrowing would be essential?

Vesal Vojdani (University of Tartu) Formal Methods in SW Engineering Fall 2014 187 / 187

	Introduction
	Models
	This Course

	Hoare Logic
	Weakest Pre-Conditions
	Loop Invariants

	VC generation
	Control Flow Graphs
	State and Satisfiability
	Collecting Semantics
	VC Generation
	Soundness

	Data Flow Analysis
	Haskell Solver
	Assertion Checking

