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Abstract—The 3GPP machine type communications (MTC)
service is expected to contribute a dominant share of the IoT
traffic via the upcoming fifth generation (5G) mobile cellular
systems. MTC has ambition to connect billions of devices to
communicate their data to MTC applications for further
processing and data analysis. However, for majority of the
applications, collecting all the MTC generated data is inefficient
as the data is typically fed into application-dependent functions
whose outputs determine the application actions. In this paper,
we present a novel MTC architecture that, instead of collecting
raw large-volume MTC data, offers the network function
computation (NFC) as a service. For a given application
demand (function to be computed), different modules (atomic
nodes) of the communication infrastructure are orchestrated
into a (reconfigurable) directed network topology, and each
module is assigned an appropriately defined (reconfigurable)
atomic function over the input data, such that the desired
global network function is evaluated over the MTC data and a
requested MTC-NFC service is delivered. We detail practical
viability of incorporating MTC-NFC within the existing 3GPP
architecture relying on emerging concepts of Network Function
Virtualization and Software Defined Networking. Finally,
throughout the paper, we point to the theoretical foundations
that inspired the presented architecture highlighting challenges
and future directions for designing 3GPP MTC-NFC service.

Index Terms—Internet of Things (IoT), Big Data, Network
Coding, Network Function Computation, Machine learning.

I. INTRODUCTION

Internet of Things (IoT) will connect billions of smart
devices that will collectively generate and upload a deluge of
data to the cloud. By 2020, more than 20 billion of devices
will cumulatively generate the IoT data volume exceeding
4.4 ZB (zettabytes) amounting to 10% of the global “digital
universe” [1]. The 3GPP machine type communications
(MTC) service is expected to contribute a dominant share of
this traffic via the upcoming fifth generation (5G) mobile
cellular systems [2], [3]. However, a critical bottleneck for
the future MTC services is the pressure it puts on the
existing communication infrastructure, requiring transfer and
storage of enormous data volumes.

Within current IoT/cloud integration, communication
infrastructure serves merely to transfer massive raw data to
the cloud where applications based on machine learning
algorithms extract useful knowledge. However, for majority
of services, such an approach is inefficient and wasteful,

since the dimensionality of the collected data is typically
much smaller than the ambient data space. Thus the
approach where communications and data analysis are
separated may eventually become unsustainable, calling for a
fundamental redesign of IoT communications.

In this paper, we present a generic and reconfigurable
MTC architecture, capable of adapting the MTC service to
the subsequent data analysis. The new MTC service is based
on a common generic interface between data communication
and data analysis: the function computation. Thus instead of
collecting raw and high-volume MTC data, the presented
architecture offers the network function computation (NFC)
as a service. For a given MTC application (that defines a
function to be computed), different modules (atomic nodes)
of the involved communication infrastructure (e.g., MTC
devices, base stations, and gateways) are orchestrated into a
(reconfigurable) directed network topology, and each module
is assigned an appropriately defined (reconfigurable) atomic
function over the incoming packets. Ultimately, the desired
NFC service over the MTC-generated data is delivered at the
data center through the composition of the atomic functions.

From the theoretical side, the proposed MTC-NFC service
is inspired by recent works that generalize network coding to
the concept of network function computation [4], [5]. From
the implementation side, we detail a practical viability of
incorporating MTC-NFC into the existing 3GPP architecture
relying on emerging concepts of Software Defined
Networking (SDN) and Network Function Virtualization
(NFV) [6], [7]. As an example, we present random linear
network coding (RLNC) as an MTC-NFC service [8],
however, many other examples can be easily integrated in
MTC-NFC (see an extended version of this paper [9]).

The paper is organized as follows. In Sec. II, we present
the transition between the layered architecture of current
3GPP MTC service on the one hand, and the new
MTC-NFC architecture on the other hand. In Sec. III, we
describe the atomic function computation layer that defines
the basic building block of the MTC-NFC architecture.
Atomic modules are organized into the network function
computation layer, as detailed in Sec. IV. An example of the
application layer in the form of a RLNC-based MTC-NFC
service is discussed in Sec. V. Sec. VI concludes the work.
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Fig. 1. The 3GPP MTC architecture.

II. THE MTC-NFC SERVICE ARCHITECTURE

A. The 3GPP MTC Architecture

European Telecommunications Standards Institute (ETSI)
initiated the work on Machine Type Communications (MTC
or M2M) architecture that would serve to connect a massive
amount of devices to wireless mobile cellular networks.
MTC is designed to enable MTC devices to send data to
each other or to a set of MTC servers [2]. Specific parts of
MTC standardization efforts are addressed by 3GPP
standardization as of Release 10 standards and beyond [3].

Fig. 1 illustrates the 3GPP MTC architecture. Abstracted
to its essence, the current 3GPP MTC architecture is
represented by three layers. The data layer, formally named
the MTC device domain, contains billions of MTC devices
that generate data while interacting with the environment.
The communication layer, or formally called the network
domain, merely transfers data by essentially uploading all
the captured data to MTC servers (e.g., in the cloud).
Finally, the application layer, or the MTC application
domain, contains data centres running MTC servers which
provide storage and processing capabilities.

Focusing on the data plane, the figure illustrates the data
path that starts at MTC devices and proceeds via Radio
Access Network (RAN) elements: base stations (eNB) or
small cells (HeNB’s), Evolved Packet Core (EPC) elements:
HeNB gateways (He-GW), service gateways (S-GW) and
packet gateways (P-GW), finishing at MTC servers. For
many applications, cloud-based MTC servers will use
machine learning algorithms to extract actionable knowledge
from the collected data.
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Fig. 2. MTC-NFC architecture.

B. MTC-NFC Architecture: Modules and Layers

In the following, we present a novel MTC architecture
that upgrades 3GPP MTC with the concept of network
function computation (NFC) [9]. Instead of communicating
raw MTC device data, the novel MTC-NFC service delivers
function computations over the data. We present the layered
MTC-NFC architecture that is generic, flexible and
reconfigurable, and is designed to meet the needs of an
increasing number of MTC applications that extract
knowledge from data avoiding wasteful raw data collection.

The MTC-NFC architecture is presented in Fig. 2. It
consists of an interconnected set of basic modules called
atomic function computation (AFC) modules that jointly
comprise the AFC layer. AFC modules evaluate basic
(atomic) functions over the input data packets and deliver
function evaluations as the output data packets. The
collection of interconnected and jointly orchestrated AFC
modules represent the NFC layer that delivers a network
function computation over the source data packets. The
resulting NFC evaluations are the output of the MTC-NFC
service offered to the MTC servers at the application layer.

More formally, we consider an MTC network containing
N MTC devices representing the set of source nodes
(modules) S. A source node s ∈ S produces a packet
xs = (xs[1], xs[2], . . . , xs[L]) containing L symbols from
alphabet A at the output interface (for simplicity, we assume
a single output interface). The MTC network also contains
the set A of M AFC nodes (modules). An AFC node a ∈ A
receives the set of input data packets {x(b)}b∈V(a) on its
input interfaces, which receive data packets from the set V(a)

of AFC nodes. At the output interface, the AFC node a
delivers the output data packet x(a) (for simplicity, we
assume a single output interface). AFC node a associates an
atomic function g(a) to the output interface, where
x(a) = g(a)({x(b)}b∈V(a)). Finally, the MTC network
contains R MTC servers as the set of destination nodes D.

The source nodes S, AFC nodes A and destination nodes
D jointly constitute an NFC graph G = (V = S ∪ A ∪ D, E),
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Fig. 3. Wireless-domain A-AFC module.

where V is the set of nodes (modules) and E ⊆ V × V is the
set of edges (connections between modules). In the case of
directed rooted trees or directed acyclic graphs, the
collection of sets {V(v)}v∈V fully describes the set of
connections between modules in the NFC graph (see Fig. 5).

Finally, we introduce the control elements: topology
processor and function processor. Based on the MTC server
application requirements, the function processor decomposes
a required network function f(x1,x2, . . . ,xN ) into a
composition of local atomic functions {g(a)}a∈A and
configures each AFC module accordingly. The topology
processor interconnects AFC modules into a directed NFC
graph of MTC data flows by defining the set {V(v)}v∈V .
Therefore, the topology and function processors are the NFC
layer entities that manage, connect and orchestrate the AFC
layer entities (source and AFC modules). As we will explain
ahead, the two processors can be naturally implemented
using the concepts of SDN and NFV.

III. ATOMIC FUNCTION COMPUTATION LAYER

The AFC layer is composed of AFC modules that evaluate
atomic functions such as addition, modulo addition,
maximum/minimum, norm, histogram, linear combination,
threshold functions, etc. We consider two types of AFC
modules: i) Analog-domain AFC (A-AFC), and ii)
Digital-domain AFC (D-AFC) modules. The former exploit
superposition of signals in the analog domain, while the
latter evaluate atomic functions straightforwardly in the
digital domain using digital processing in network nodes.

A. Analog-domain Atomic Function Computation (A-AFC)

An A-AFC harness interference in a wireless channel or
signal combining in an optical channel to perform atomic
function evaluations. An example of the technology that can
be easily integrated as an A-AFC module is the Physical
Layer Network Coding (PLNC) [10], where the
corresponding atomic function is the finite field addition.
More recently, the concept of compute-and-forward (CF) has
been proposed, that also fits well as an A-AFC technology.
Therein, linear combinations of input symbols are generated
as the output [11]. Finally, in [12], non-linear function
computation over wireless channels is addressed, where more
general, non-linear functions are computed through
introducing a non-linear preprocessing and post-processing of
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Fig. 4. D-AFC module.

packets before and after the signals have been superimposed
in the channel. Fig. 3 illustrates A-AFC: its position in the
real-world system (left), its representation as an A-AFC
module (central), and as part of the NFC graph (right).

Although above examples demonstrate that A-AFC
modules are viable technology, current research is limited in
terms of the computed functions, and mostly targets wireless
(and not optical) channels. Furthermore, design and
implementation of generic A-AFC in wireless setting
adaptive to the channel impairments (e.g., estimation errors,
timing and frequency offsets, quantization issues, etc.)
represents a challenging problem.

B. Digital-domain Atomic Function Computation (D-AFC)

D-AFC modules evaluate atomic functions in the digital
domain. This is done within the network nodes such as base
stations (eNB or HeNB) and core network gateways
(HeNB-GW, S-GW, P-GW). Although digital-domain
in-node processing offers many possibilities for D-AFC
implementation, we address here two options.

The first option are reconfigurable hardware-based Field
Programmable Gate Array (FPGA) platforms frequently used
in combination with high-speed networking equipment for
high-throughput processing over data packets. FPGAs offer
flexible and reconfigurable high-throughput implementations
of linear or non-linear atomic functions. For example, FPGA
implementation of random linear combinations of incoming
data packets, as part of RLNC in network nodes, is recently
considered in [13].

The second possibility for D-AFC is to use software-based
implementations in high-level programming languages that
run within general processing units, either in network nodes
or externally on dedicated general-purpose servers [14]. This
approach offers full flexibility for atomic function evaluation
for the price of lower processing throughput, as compared to
the FPGA approach. For example, software-based D-AFC
implementation of random linear combinations over
incoming packets, as part of RLNC, is available at [15].

Fig. 4 illustrates D-AFC: its position in the real-world
system (left), its representation as an D-AFC module
(center), and as part of the NFC graph (right).



IV. NETWORK FUNCTION COMPUTATION LAYER

In this section, we review recent fundamental results on
network function computation that underlie the NFC
layer [4], [5]. Then, we describe the implementation
framework using the emerging SDN/NFV concepts.

A. Theoretical Aspects of NFC Layer

Consider a finite directed acyclic graph G = (V, E),
consisting of M AFC nodes in A, N sources in S , and R
destinations in D, such that S ∩ D = ∅. The network uses a
finite alphabet A, called network alphabet. Each source s
generates K random symbols σs[1], σs[2], . . . , σs[K] ∈ A.
Here, we say that the source symbol σs[k] belongs to the
k-th generation of the source symbols.

Each packet sent over a network link is a vector of length
L over A. Suppose that each of the R destination nodes
requests computation of a (vector-valued) function f of the
incoming MTC device vectors σs, s = 1, ..., N . The target
vector function is of the form f : AN ·K → BK , where B is a
function alphabet, and each component function f : AN → B
is of the same form, applied to each source’s k-th symbol,
k = 1, ...,K. More precisely, we wish to compute
f (σ1[k], ..., σN [k]), k = 1, ...,K.

With each arc a → v outgoing an AFC node a ∈ A, we
associate the atomic function g(a→v) (·), which takes the |V(a)|
length-L incoming vectors x(u→a), u ∈ V(a), and produces the
length-L outgoing vector x(a→v), i.e.:

x(a→v) = g(a→v)
(
{x(u→a)}u∈V(a)

)
.

Similarly, with each arc s → v outgoing a source
node s ∈ S , the atomic function g(s→v) (·) takes the |V(s)|
length-L incoming vectors x(u→s), u ∈ V(s) (allowing input
edges to source nodes), as well as the K generated symbols
σs = (σs[1], ..., σs[K]), and produces the length-L outgoing
vector x(s→v), i.e.:

x(s→v) = g(s→v)
(
{x(u→s)}u∈V(s) ; σs

)
.

We refer to both g(a→v)’s and g(s→v)’s as encoding functions.
Finally, a destination node d ∈ D takes its |V(d)| incoming

length-L messages and performs decoding, i.e., it produces
the vector of function evaluation estimates
f̂ (d) =

(
f̂ (d)[1], ..., f̂ (d)[K]

)
, as follows:

f̂ (d) = Ψ(d)
(
{x(u→d)}u∈V(d)

)
,

where Ψ(d)(·) is the destination node d’s function. Note that
a decoding function Ψ(d)(·) recovers back the
K-dimensional vector from the L-dimensional incoming
quantities (where L > K).

The destination d ∈ D computes the function f : AN → B,
if for every generation k ∈ {1, ...,K}, it holds that:

f̂ (d)[k] = f (σ1[k], ..., σN [k]) .

Further, the problem of computing f is solvable if there exist
atomic functions g(s→v) (·), g(a→v) (·) across all arcs in E
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Fig. 5. Mapping between MTC network and NFC graph.

and decoding functions Ψ(d) (·), d = 1, ..., R, such that f is
computed at all destinations d ∈ D.

In order to understand the fundamental limits on solvability
of the general function computation problem, the authors of [5]
define the computing capacity of a network as follows

C(G, f) = sup

{
K

L
: computing f in G is solvable

}
.

They derive a general min-cut type upper bound on the
computing capacity, and a number of specific lower bounds.
For an extended discussion on NFC, see [9].

B. Implementation Aspects of NFC Layer

The NFC layer can be naturally implemented within the
SDN/NFV architecture [6], [7]. In particular, the topology
processor (TP) fits as an SDN application running on top of
the SDN controller within the SDN architecture. The
function processor (FP) role may be set within a NFV
manager entity, taking the role of the NFV orchestrator.
Using the SDN/NFV framework, MTC-NFC service can be
quickly set and flexibly reconfigured according to requests
arriving from a diverse set of MTC applications. In other
words, the NFC layer should deal with control and
management tasks of establishing and maintaining an NFC
graph of AFC modules (Fig. 5) for a given service request.

The TP module manages the MTC data flows via the SDN
control plane. For all nodes in a directed acyclic graph, the
TP provides the set of children nodes {V(v)}v∈V from which
to accept MTC data flows, and identify the exact MTC data
flows that will be filtered within the MTC-NFC service.

Based on the MTC server requests and the configured
topology, the FP module processes the global function
request and generates the set of atomic functions to be used:
{g(a)}a∈A. Note that, as described before, AFC modules
may be: i) A-AFC modules (e.g., PLNC module), ii)
hardware-based D-AFC modules (e.g., FPGA module), and
ii) software-based D-AFC modules. For example, for the
most flexible case of software-based D-AFC modules, a
library of AFC implementations could be installed in



network nodes where each atomic function from the library
can be remotely instantiated via the NFV concept. We note
that a similar approach is recently suggested for RLNC as a
service in [8].

V. APPLICATION LAYER

As a simple example, we consider the MTC-NFC service
that delivers random linear combinations in a finite field
applied over the MTC device data. We note that this instance
of MTC-NFC services may be considered as implementing a
special case of RLNC as a service [8]. Although the RLNC
example does not reduce the MTC data traffic, i.e., it is
equivalent to computing the identity function over the input
data, it is instructive as it is simple and its components are
already available technology. However, it is important to note
that the proposed MTC-NFC service targets computation of
a wide range of linear and non-linear functions over the
input data. We refer the interested reader to [9] for additional
examples of minimization of a population risk (statistical
estimation/learning of an unknown vector-valued parameter),
and non-linear classification via neural networks.

For simplicity, we assume that graph G is a directed rooted
tree. Each of the N MTC devices has a packet xs containing
L symbols from a finite field F. The goal is to use standard
RLNC approach to robustly deliver the whole packet vector
x = (x1, ...,xN ) to the destination node d [16]. Within the
process, each atomic node a generates the message pair(
x(a), c(a)

)
(to be sent to the parent node) based on the

received messages from its children nodes
(
x(b), c(b)

)
, where

b ∈ V(a). The message x(a) ∈ FL is by construction a linear
combination of the input packets xb ∈ FL, b ∈ V(a). Quantity
c(a) = (c(a)[1], ..., c(a)[N ]) ∈ FN is usually called global
encoding vector. Once the destination (root) node d receives
all its incoming messages, it has available a random linear
combination over all the MTC’s packets x1, ...,xN :
x(d),1 =

∑N
s=1 c

(d),1[s] · xs and the corresponding global
encoding vector c(d),1 =

(
c(d),1[1], ..., c(d),1[N ]

)
. The

process is repeated sequentially such that the data center
obtains N ′ pairs

(
x(d),k, c(d),k

)
, k = 1, 2, ..., N ′. It can be

shown that, as long as N ′ is slightly larger than N , MTC
data vector x = (x1, ...,xN ) can be recovered with high
probability through solving the linear system of equations
with unknowns xs: x(d),k =

∑N
s=1 c

(d),k[s] xs,k = 1, ..., N ′.
Note that, for this application example, each atomic function
is linear. Moreover, there is no requirement on the
coordination of the atomic functions which correspond to
different atomic nodes, as they are generated randomly and
mutually independently. Hence, this application does not
require a centralized control by the function processor. For
more involved examples, we refer the interested reader to [9]

Finally, when certain a priori knowledge on x is available
(e.g., sparsity), the recovery probability close to one can be
achieved even when the number of linear combinations N ′

at the MTC server is significantly smaller than N . Omitting
details, this could be in principle achieved using the theories
of compressed sensing and sparse recovery, e.g., [17].

VI. CONCLUSIONS

In this paper, we presented a novel architecture for
knowledge acquisition of the MTC data, referred to as
Condense [9]. The architecture is designed to provide a
generic, flexible and reconfigurable function computation
service for MTC applications. The novel MTC-NFC service
offers transfer of only the desired function of the
MTC-generated data (as required by the given application at
hand) – and not the raw data in its entirety – to the data
center of interest. This transformational approach has the
potential to dramatically reduce the pressure on the 3GPP
MTC communication infrastructure.
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