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Abstract— Several expander code constructions and their pa- Il. RESULTS FORCLASSICAL CODES
rameters are surveyed. New generalized expander codes are . g
introduced and their properties are compared with the properties A. Gilbert-Varshamov Bound
of the existing constructions. Finally, some possible directions to  LetH, : [0,1] — [0, 1] be theg-ary entropy function defined
extend the current research on expander codes are discussed. py

[. INTRODUCTION AND NOTATION Hy(z) = zlog,(q — 1) — zlog, z — (1 — ) log,(1 — =) .

The interest in the field of coding theory has emerged withhe following classical result claims the existence of good
the classical work of Shannon back in 1948. A lot of resear@?deS:
has been done since then in the framework of a ‘classical’ 1 neorem 2.1iLet ' = GF(g), and letd € (0,1 —1/q]
coding theory. In the recent years, however, the field h@8d € (0,1), such that
changed dramatically due to the recent advances in iterativ R <1—H,(6). (1)
decoding and list decoding. ) )

The problem of finding code families with good parameter&n€n. for large enough values of, there exists a linear
is a central problem in the field. In particular, the cod&:Rn,= dn] code overF. _
families with good trade-offs between the rate and theivglat  1h€ expression in (1) is often referred as the Gilbert-
minimum distance are of great interest. In the present wrvgagshamov bound. For the binary codes, we dedgte(R) =
we will focus on this and the related problems. Hy (1 -R). i

We start with the formal definition. A sef of words It should be noted that Theorem 2.1 shows only the exis-

of length n over the alphabet is called acode over ¥ tence of the code attaining (1). However, as of yet, ther@is n
of length n. Consider two wordse = (21, s, ..., z,) and known general explicit way to construct such a code.

Y = (11,42, -..,y,) in 5. The Hamming’dis’tanc’é)gtween The improvements of the Gilbert-Varshamov bound were
z andy is defined as the number of pairs of symbgis, ;), studied recently. The reader can refer to [9], [12], [22].

1 <4 < n, such thatr; # y;, and is denoted by(x,y). The B. Bounds for Concatenated Codes

minimum distancef a codec is defined as First, we revisit the definition of concatenated codes [8].

d= min d(z,y). The following ingredients will be used:
z,yeC, z#y o Alinear[A,k =rA,0A] codeC overF = GF(q) (inner
The relative minimum distancef C is defined a9 = d/n. Zoclz_le). Ren.s de C o — Fk
Denote byz” the transpose of the vecter A codeC over ~ * cooig;ear [, Ron, don] code Cq over & = F (outer

a fieldF = GF(q) is said to be dinear [n, k, d] codeif there

exists matrix with entries inF with n columns and rank * A inéar one-to-one mapping : & — C.
n — k such that for alke € F» The respective concatenated cadeof length N = A - n

overFF is defined as

T =
Hx —0<:>(E€C, (C:{(61|CQ‘-~-‘Cn)EFAnZCi:(‘:(ai)7

and the minimum distance of the codeis d. The matrixH
is called aparity-check matrixof the codeC. The valuek is
called thedimensionof the codeC, and the ratioR = k/n is The rate ofC is known to beR = rRs. The relative minimum
called therate of the codeC. distance ofC, ¢, is at leasty > 60.

Let C be a code of minimum distancé over X, and let Generalized minimum distand&MD) decoder was pro-
y € X" The unique decodingproblem consists of finding posed in [8]. It is able to correct any error pattern of rekti
c € C (if such ¢ exists), such that(c, y) < d/2. size less thars.

forie1,2,---,n, and(ajaz---ay) e(C@}.



A modified version of concatenated codes was proposed By Expander Codes Mimic Behavior of Concatenated Codes
Justesen in [13]. The proposed codes were shown to satis

the Zyablov bound f¥n [2], the construction in (3) was modified by introducing

so-called ‘dangling edges'. It was shown that the modified

5> max (1 _ R) H'(1—7) 2y construction mimics the behavior of concatenated codes. In
R<r<1 r particular, the parameters of the new codes (almost) attain
for a wide range of rates. Zyablov bound. A linear-time (inV) decoding algorithm was

An improvement of the Zyablov bound was obtained in [G)resented that corrects a fraction of errors equaling todst)
using amultilevel concatenatiant was shown that multilevel half of this minimum distance bound. Independently, anothe
binary concatenated code (almost) attain the followingtieh construction with similar properties was presented in [11]
between the rate and the relative minimum distance, known agn [17], it was shown that the construction in [2] can be

the Blokh-Zyablov bound: thought as a concatenation of a nearly-MDS c@dewith the
1—H4(5) d appropriate inner code, thus providing another explandtio
R =1-Hy() - 6/ m . the properties of the codes in [2]. A GMD-type decoding algo-
0 2 — T

rithm for decoding of those codes was proposed in [20], [17].
Further improvement on the minimum distance of explicitly

built binary codes was obtained in [14] by using concatemati p, Beyond the Zyablov Bound

of algebraic-geometric codes with small binary codes. How-

ever, the minimum distance estimates of all these codes lig" [3], using a more sophisticated analysis, the authors im-
below the Gilbert-Varshamov bound. prove on the minimum-distance bounds for the codes destribe

in [4] and [2]. In particular, for the binary codes in [4] oftea

1. EXPANDER CODES R, they bound the relative minimum distance from below by
A. Graphs and Eigenvalues )
Consider aA-regular undirected grapf = (V,£) with a d(R) > Z(1 -R)*. min ﬁ(ﬁ) . 4
vertex setV and an edge se&t. Denote byAg the adjacency 6cv((1+7€)/2)§5§% 2(0)
matrix of G. It is easy to see thah is the largest eigenvalue ) ] ] ] ]
of Ag. Let A* be the second largest absolute value of arfyhere the functiory(5) is defined in Appendix.
An expander graph for which the relation
N <2VA -1 §(R) > max min (6005 L)L s
Rersl |5 (r)<,6<l Ha(8)
holds is called eRamanujan graphRamanujan graphs have GVII=P=2

essentially the smallest possible valueXdf(given A) [1]. It

is known that there exist infinite families of such graphshwit
the number of vertices approaching infinity for fixed valués
vertex degree\ [15], [16]. We denote byyg the ratio between
the second largest eigenvalue 4§ and A.

where the functiordy (5, ) is defined in Appendix.

In particular, it follows that the relative minimum distanc
f these two families of codes is higher than the Zyablov
bound (2) for a wide range of code rates.

Further improvement on the minimum distance of expander-
B. Basic Code Constructions based codes was obtained by elaborating on the ideas in [6].

A method to construct codes using graphs was propos'éhe family of multilevel expander codes was constructed
by Tanner [21]. Expander codes were proposed in [18], aiftl [5], which has the minimum distance similar to that of

modified in [23], [4]. We recall the construction in [4]. the codes in [6]. The linear-time decoding algorithm forsthe
Let G be a bipartite graph as above with a vertex 8et codes was also presented in [5], it corrects any error padter
AU B such thatA N B = 0, |A| = |B] = n, and every size which is (almost) half of the lower bound on the minimum

edge has one endpoint it and one endpoint id. For every distance.
vertexu € V, we denote by (u) the set of edges that are In Figure 1, the bounds (4) and (5) are compared with the
incident withu. Assume an ordering oW, thereby inducing Zyablov bound, the Blokh-Zyablov bound and the Gilbert-
an ordering on the edges @f(u) for everyu € V. For a Varshamov bound. The bounds (4) and (5) appear in Figure 1
field F and a wordz = (z.).ce in FIZ!, denote by(z):.., the as “Barg-Zemor bound 1" and “Barg-Zemor bound 2", respec-
sub-block ofz that is indexed byt (u). tively.

Let C, andCg be two linear codes of lengthh over F.
Denote N = |£|] = An. The codeC = (G,C4 : Cp) is E. Toward Gilbert-Varshamov Bound

defined as the following linear code of length over A probabilistic construction of binary linear codes megtin

C= {c €Y & (C)euy €Ca for everyu € A the Gilbert-Varshamov bound for very low rates was presente
in [10]. These codes admit polynomial-time encoding and
and ()., € Cp for everyv € B} . (3)  decoding up to half minimum distance.



Comparison of Bounds
T T T

, , (for n = 0,1, or for C; = Cs, the codeC defined herein
" Bmozemoonds || coincides with its counterpart defined in (3) ).
Barg-Zemor bound 2

Blokh-Zyablov bound A . .
v cienvasamovond | B. Properties of generalized expander codes

Assume that); > J,. The following two theorems present
simple bounds on the rate and minimum distance of general-
ized expander codes.

Theorem 4.1:The rate of the generalized expander code
C is at least
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o Theorem 4.2:Let the codeC be defined as above and let

o4 — 0a/0
<Az 0V0al0 s e
— 1—1g
0 T . .. . . g
o T S S 1 . Then, the relative minimum distanéeof C satisfies
Code rate 2/3

0 >0da(01 — %yg ).

It follows from these two theorems that for some selection
of parameters the codé attains the Zyablov bound. In [19,
Chapter 4], we present a linear-time decoding algorithm for
the codes in (6). We show that & > 272/* and (7) holds,
then the decoder corrects any error pattern of size ufi-to

Fig. 1. Comparison of minimum distance bounds

IV. OUR APPROACH

A. Construction of generalized expander codes where

In [19, Chapter 4], we aim at improving minimum dis- 16—/ <1+ 2 (51 _275/3))
tance bounds for expander codes. We generalize the code j. 2 -S4 An .
constructions presented in [4], [2]: the codes thereingfary 1 —ng

vertex in the setd (or B), have the same set of constraintThus, the number of correctable errors for this algorithm is
defined by the cod€, (or Cg). By contrast, for the codes (almost) half of the Zyablov bound.

described in [19, Chapter 4], there is more than one difteren i
set of constraints for the vertices in the sét(or B). We C. Better distance bounds

call such codegeneralizedexpander codes. In the sequel, By using ideas from [3], we are able to prove the following
we present the results of the parameter analysis of a famiifygorem, which is a counterpart of Theorem 14 therein.

of generalized expander codes. We also present a linear- Theorem 4.3:Let |F| be a power of 2. There exists a
time decoding algorithm for the above codes. Moreover, waolynomial-time constructible family of binary linear cesiC
obtain that the binary codes in [19, Chapter 4] have minimugs above of lengthv. = nA, n — oo, and sufficiently large
distance at least as good as the minimum distance of the collg constantA = A(e), whose relative minimum distance

in [3], for a broad range of code rates. satisfies
We recall the definition first. Le§ = (V = AUB,&) bea  sn R) >
bipartite A-regular undirected connected graph as before. We - 1—R/r
divide B into two sets,B! and B?, such thatB' N B =),  max { min (50(6, rA)A>} —e. (8
B'UB? = B. Let|B?| =, and thugB'| = (1 —n)n. The ~*=74st Lavra)spsi/z Ha2(8)

valuen € [0, 1] will be defined in the sequel.

Let F = GF(q) and assume that,, C; andC, are linear
[A,raA64A] [A,r1 A5 A] and [A, A, 62 A] codes over
F, respectively. Below, we generalize the cddeas follows:
for any codewordc € C, the sub-wordc)¢(,, is in the code D. Discussion

It follows from Theorem 4.3 that the codes in (6) are at
least as good (from the point of view of their rate-distance
trade-offs) as the codes in [3].

Ciif ue B, and(c)e(y) is in Cy if u € B Consider a binary cod€ in (6) with parameter; slightly
More specifically, we define the code = (G,Ca,C1,C2) less than the right-hand side in inequality (7). From Theo-
as the following linear code of length' = An over F: rem 4.3, the relative minimum distance of that code (of rate
‘R) is bounded from below by the expression in (8).
C= {c EFN i () €Ca for everyu € 4, By contrast, consider a binary coflewith parameter = 0.

Then, the size of the sé&? is zero, and therefore the code
) coincides with the code in (3). The relative minimum dis&anc
and (c)e., € C for everyu € B } (6) of that code (of rateR), §'(R), is shown in [3] to satisfy (4).

(€)eqw) € C; for everyu € B!



We can see that the boudtl(R) is superior to the Zyablov  Moreover, let
bound for a wide range of rates. It is also interesting to 5 v (R)
compare the bound§(R) andé”(R). We see that the bound =g B Halav(R)
§"(R) is superior for low rates, while the bountl(R) is 2 2\oev
superior for high rates. It would be nice to derive a combinednd

analytical bound which will be at least as good as both these b — dav(R) By — 51 e (R))
Eounds. One appdro:;ch ‘COhUI(rj] bedto.(;akefawv)aluedtsliding’ i L= Ha(0av (R)) ! Ho(51) v '

etween zero and the right-hand side o , and to establis . . ) .
the point at which the value af maximizes the appropriate hl'he functiong(3) is defined in [3] as
value of the relative minimum distance of the corresponding dav(R) :
code C. It seems that this research direction was not fully - if 8<dcv(R)
explored.

V. OPENPROBLEMS H2(3)
g = .

To this end, we mention some interesting research problems af+b if dev(R) < B < b,
related to the discussed topics. B —dav(R) 0284 <R<1

« Minimum distance bound¥Ve discussed several bounds 3

on the minimum distance of binary classical and expander hd) if 81 <p1<1,0284<R<1
2

codes. Further improvements on the minimum distance . _ _
bounds of the existing codes, as well as constructions of The functiond, (3, r) is defined to be,**(3) for dgv (r) <
new codes with better parameters is an important opén< (1, where

problem. " . r
« Bounds on error-correcting capabilities of the decoders. ~ «w™(8) =78+ (1 —r)H; (1 — 1= TH2(5)> :
Improvements on the number of correctable errors by the _ )
existing algorithms, as well as constructions of new cod@8d 51 is the only root of the equation
having better decoders, is another related open problem. Sav(r) =w*(8),
« Other types of expander graphale discussed bounds on
the minimum distance and on the number of correctabléhere
errors of expander codes. The techniques involved in 8 = (1 _r)((gHz(ﬁ)/ﬁJrl)—l
the analysis were based on the eigenvalues properties o
expander graphs. Recently, new explicit constructions for B (1 ~ Hs ((2H2(,8)/ﬁ i 1)71» ) )
expander graphs were discovered, for example the zig-zag Ha2(5)

construction in [7]. This construction has better vertex- B < B < L the functiondy(s,r) is defined to
expansion properties than Ramanujan graphs have, Biil, o tangent to the function™* () drawn from the point
on the other hand, its eigenvalue separation property s w*(;))

5))

not as good as that of the Ramanujan counterparts. '/’
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