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Abstract— Several expander code constructions and their pa-
rameters are surveyed. New generalized expander codes are
introduced and their properties are compared with the properties
of the existing constructions. Finally, some possible directions to
extend the current research on expander codes are discussed.

I. I NTRODUCTION AND NOTATION

The interest in the field of coding theory has emerged with
the classical work of Shannon back in 1948. A lot of research
has been done since then in the framework of a ‘classical’
coding theory. In the recent years, however, the field has
changed dramatically due to the recent advances in iterative
decoding and list decoding.

The problem of finding code families with good parameters
is a central problem in the field. In particular, the code
families with good trade-offs between the rate and the relative
minimum distance are of great interest. In the present survey,
we will focus on this and the related problems.

We start with the formal definition. A setC of words
of length n over the alphabetΣ is called acode over Σ
of length n. Consider two wordsx = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) in Σn. The Hamming distancebetween
x andy is defined as the number of pairs of symbols(xi, yi),
1 ≤ i ≤ n, such thatxi 6= yi, and is denoted byd(x,y). The
minimum distanceof a codeC is defined as

d = min
x,y∈C, x 6=y

d(x,y).

The relative minimum distanceof C is defined asδ = d/n.
Denote byxT the transpose of the vectorx. A codeC over

a field F = GF(q) is said to be alinear [n, k, d] codeif there
exists matrixH with entries inF with n columns and rank
n − k such that for allx ∈ Fn

Hx
T = 0 ⇔ x ∈ C,

and the minimum distance of the codeC is d. The matrixH
is called aparity-check matrixof the codeC. The valuek is
called thedimensionof the codeC, and the ratioR = k/n is
called therate of the codeC.

Let C be a code of minimum distanced over Σ, and let
y ∈ Σn. The unique decodingproblem consists of finding
c ∈ C (if such c exists), such thatd(c,y) < d/2.

II. RESULTS FORCLASSICAL CODES

A. Gilbert-Varshamov Bound

Let Hq : [0, 1] → [0, 1] be theq-ary entropy function defined
by

Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x) .

The following classical result claims the existence of good
codes.

Theorem 2.1:Let F = GF(q), and letδ ∈ (0, 1 − 1/q]
andR ∈ (0, 1), such that

R ≤ 1 − Hq(δ) . (1)

Then, for large enough values ofn, there exists a linear
[n,Rn,≥ δn] code overF.

The expression in (1) is often referred as the Gilbert-
Varshamov bound. For the binary codes, we denoteδGV (R) =
H

−1
2 (1 −R).
It should be noted that Theorem 2.1 shows only the exis-

tence of the code attaining (1). However, as of yet, there is no
known general explicit way to construct such a code.

The improvements of the Gilbert-Varshamov bound were
studied recently. The reader can refer to [9], [12], [22].

B. Bounds for Concatenated Codes

First, we revisit the definition of concatenated codes [8].
The following ingredients will be used:

• A linear [∆, k = r∆, θ∆] codeC overF = GF(q) (inner
code).

• A linear [n,RΦn, δΦn] code CΦ over Φ = Fk (outer
code).

• A linear one-to-one mappingE : Φ → C.

The respective concatenated codeC of length N = ∆ · n
over F is defined as

C =
{

(c1|c2| · · · |cn) ∈ F
∆n : ci = E(ai) ,

for i ∈ 1, 2, · · · , n, and (a1a2 · · · an) ∈ CΦ

}

.

The rate ofC is known to beR = rRΦ. The relative minimum
distance ofC, δ, is at leastδ ≥ θδΦ.

Generalized minimum distance(GMD) decoder was pro-
posed in [8]. It is able to correct any error pattern of relative
size less than12δ.



A modified version of concatenated codes was proposed by
Justesen in [13]. The proposed codes were shown to satisfy
the Zyablov bound

δ ≥ max
R≤r≤1

(

1 − R
r

)

H
−1
q (1 − r) (2)

for a wide range of rates.
An improvement of the Zyablov bound was obtained in [6]

using amultilevel concatenation. It was shown that multilevel
binary concatenated code (almost) attain the following relation
between the rate and the relative minimum distance, known as
the Blokh-Zyablov bound:

R = 1 − H2(δ) − δ

∫ 1−H2(δ)

0

dx

H
−1
2 (1 − x)

.

Further improvement on the minimum distance of explicitly
built binary codes was obtained in [14] by using concatenation
of algebraic-geometric codes with small binary codes. How-
ever, the minimum distance estimates of all these codes lie
below the Gilbert-Varshamov bound.

III. E XPANDER CODES

A. Graphs and Eigenvalues

Consider a∆-regular undirected graphG = (V, E) with a
vertex setV and an edge setE . Denote byAG the adjacency
matrix of G. It is easy to see that∆ is the largest eigenvalue
of AG . Let λ∗ be the second largest absolute value of any
eigenvalue ofAG . It was shown in [1] that lower ratiosλ

∗

∆
imply greater values ofgraph expansion.

An expander graph for which the relation

λ∗ ≤ 2
√

∆ − 1

holds is called aRamanujan graph. Ramanujan graphs have
essentially the smallest possible value ofλ∗ (given ∆) [1]. It
is known that there exist infinite families of such graphs with
the number of vertices approaching infinity for fixed values of
vertex degree∆ [15], [16]. We denote byγG the ratio between
the second largest eigenvalue ofAG and∆.

B. Basic Code Constructions

A method to construct codes using graphs was proposed
by Tanner [21]. Expander codes were proposed in [18], and
modified in [23], [4]. We recall the construction in [4].

Let G be a bipartite graph as above with a vertex setV =
A ∪ B such thatA ∩ B = ∅, |A| = |B| = n, and every
edge has one endpoint inA and one endpoint inB. For every
vertex u ∈ V, we denote byE(u) the set of edges that are
incident withu. Assume an ordering onV, thereby inducing
an ordering on the edges ofE(u) for every u ∈ V. For a
field F and a wordz = (ze)e∈E in F|E|, denote by(z)E(u) the
sub-block ofz that is indexed byE(u).

Let CA and CB be two linear codes of length∆ over F.
Denote N = |E| = ∆n. The codeC = (G, CA : CB) is
defined as the following linear code of lengthN over F:

C =
{

c ∈ F
N : (c)E(u) ∈ CA for everyu ∈ A

and (c)E(v) ∈ CB for everyv ∈ B
}

. (3)

C. Expander Codes Mimic Behavior of Concatenated Codes

In [2], the construction in (3) was modified by introducing
so-called ‘dangling edges’. It was shown that the modified
construction mimics the behavior of concatenated codes. In
particular, the parameters of the new codes (almost) attainthe
Zyablov bound. A linear-time (inN ) decoding algorithm was
presented that corrects a fraction of errors equaling to (almost)
half of this minimum distance bound. Independently, another
construction with similar properties was presented in [11].

In [17], it was shown that the construction in [2] can be
thought as a concatenation of a nearly-MDS codeCΦ with the
appropriate inner code, thus providing another explanation for
the properties of the codes in [2]. A GMD-type decoding algo-
rithm for decoding of those codes was proposed in [20], [17].

D. Beyond the Zyablov Bound

In [3], using a more sophisticated analysis, the authors im-
prove on the minimum-distance bounds for the codes described
in [4] and [2]. In particular, for the binary codes in [4] of rate
R, they bound the relative minimum distance from below by

δ(R) ≥ 1

4
(1 −R)2 · min

δGV ((1+R)/2)≤β≤
1
2

g(β)

H2(β)
, (4)

where the functiong(β) is defined in Appendix.
For the binary codes in [2] of rateR, the relative minimum

distance is bounded from below by

δ(R) ≥ max
R≤r≤1







min
δGV (r)≤β≤

1
2

(

δ0(β, r) · 1 −R/r

H2(β)

)







, (5)

where the functionδ0(β, r) is defined in Appendix.
In particular, it follows that the relative minimum distance

of these two families of codes is higher than the Zyablov
bound (2) for a wide range of code rates.

Further improvement on the minimum distance of expander-
based codes was obtained by elaborating on the ideas in [6].
The family of multilevel expander codes was constructed
in [5], which has the minimum distance similar to that of
the codes in [6]. The linear-time decoding algorithm for these
codes was also presented in [5], it corrects any error pattern of
size which is (almost) half of the lower bound on the minimum
distance.

In Figure 1, the bounds (4) and (5) are compared with the
Zyablov bound, the Blokh-Zyablov bound and the Gilbert-
Varshamov bound. The bounds (4) and (5) appear in Figure 1
as “Barg-Zemor bound 1” and “Barg-Zemor bound 2”, respec-
tively.

E. Toward Gilbert-Varshamov Bound

A probabilistic construction of binary linear codes meeting
the Gilbert-Varshamov bound for very low rates was presented
in [10]. These codes admit polynomial-time encoding and
decoding up to half minimum distance.
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Fig. 1. Comparison of minimum distance bounds

IV. OUR APPROACH

A. Construction of generalized expander codes

In [19, Chapter 4], we aim at improving minimum dis-
tance bounds for expander codes. We generalize the code
constructions presented in [4], [2]: the codes therein, forevery
vertex in the setA (or B), have the same set of constraints
defined by the codeCA (or CB). By contrast, for the codes
described in [19, Chapter 4], there is more than one different
set of constraints for the vertices in the setA (or B). We
call such codesgeneralizedexpander codes. In the sequel,
we present the results of the parameter analysis of a family
of generalized expander codes. We also present a linear-
time decoding algorithm for the above codes. Moreover, we
obtain that the binary codes in [19, Chapter 4] have minimum
distance at least as good as the minimum distance of the codes
in [3], for a broad range of code rates.

We recall the definition first. LetG = (V = A∪B, E) be a
bipartite∆-regular undirected connected graph as before. We
divide B into two sets,B1 andB2, such thatB1 ∩ B2 = ∅,
B1 ∪B2 = B. Let |B2| = ηn, and thus|B1| = (1− η)n. The
valueη ∈ [0, 1] will be defined in the sequel.

Let F = GF(q) and assume thatCA, C1 and C2 are linear
[∆, rA∆, δA∆], [∆, r1∆, δ1∆] and [∆, r2∆, δ2∆] codes over
F, respectively. Below, we generalize the codeC as follows:
for any codewordc ∈ C, the sub-word(c)E(u) is in the code
C1 if u ∈ B1, and(c)E(u) is in C2 if u ∈ B2.

More specifically, we define the codeC = (G, CA, C1, C2)
as the following linear code of lengthN = ∆n over F:

C =
{

c ∈ F
N : (c)E(u) ∈ CA for everyu ∈ A,

(c)E(u) ∈ C1 for everyu ∈ B1

and (c)E(u) ∈ C2 for everyu ∈ B2
}

(6)

(for η = 0, 1, or for C1 = C2, the codeC defined herein
coincides with its counterpart defined in (3) ).

B. Properties of generalized expander codes

Assume thatδ1 ≥ δ2. The following two theorems present
simple bounds on the rate and minimum distance of general-
ized expander codes.

Theorem 4.1:The rate of the generalized expander code
C is at least

R ≥ rA + (1 − η)r1 + ηr2 − 1 .

Theorem 4.2:Let the codeC be defined as above and let

η <
δA − γG

√

δA/δ2

1 − γG
− γ

2/3
G . (7)

Then, the relative minimum distanceδ of C satisfies

δ > δA(δ1 − 1
2γ

2/3
G ) .

It follows from these two theorems that for some selection
of parameters the codeC attains the Zyablov bound. In [19,
Chapter 4], we present a linear-time decoding algorithm for
the codes in (6). We show that ifδ1 > 2γ

2/3
G and (7) holds,

then the decoder corrects any error pattern of size up toJC,
where

JC

△
=

1
2δ1 − γ

2/3
G

(

1 +

√

2
(

δ1 − 2γ
2/3
G

)

)

1 − γG
· δA∆n .

Thus, the number of correctable errors for this algorithm is
(almost) half of the Zyablov bound.

C. Better distance bounds

By using ideas from [3], we are able to prove the following
theorem, which is a counterpart of Theorem 14 therein.

Theorem 4.3:Let |F| be a power of 2. There exists a
polynomial-time constructible family of binary linear codesC

as above of lengthN = n∆, n → ∞, and sufficiently large
but constant∆ = ∆(ε), whose relative minimum distance
satisfies

δ′′(R) ≥

max
R≤rA≤1

{

min
δGV (rA)≤β≤1/2

(

δ0(β, rA)
1 −R/rA

H2(β)

)}

− ε. (8)

It follows from Theorem 4.3 that the codes in (6) are at
least as good (from the point of view of their rate-distance
trade-offs) as the codes in [3].

D. Discussion

Consider a binary codeC in (6) with parameterη slightly
less than the right-hand side in inequality (7). From Theo-
rem 4.3, the relative minimum distance of that code (of rate
R) is bounded from below by the expression in (8).

By contrast, consider a binary codeC with parameterη = 0.
Then, the size of the setB2 is zero, and therefore the codeC

coincides with the code in (3). The relative minimum distance
of that code (of rateR), δ′(R), is shown in [3] to satisfy (4).

3



We can see that the boundδ′′(R) is superior to the Zyablov
bound for a wide range of rates. It is also interesting to
compare the boundsδ′(R) andδ′′(R). We see that the bound
δ′′(R) is superior for low rates, while the boundδ′(R) is
superior for high rates. It would be nice to derive a combined
analytical bound which will be at least as good as both these
bounds. One approach could be to take a value ofη ‘sliding’
between zero and the right-hand side of (7), and to establish
the point at which the value ofη maximizes the appropriate
value of the relative minimum distance of the corresponding
code C. It seems that this research direction was not fully
explored.

V. OPEN PROBLEMS

To this end, we mention some interesting research problems
related to the discussed topics.

• Minimum distance bounds.We discussed several bounds
on the minimum distance of binary classical and expander
codes. Further improvements on the minimum distance
bounds of the existing codes, as well as constructions of
new codes with better parameters is an important open
problem.

• Bounds on error-correcting capabilities of the decoders.
Improvements on the number of correctable errors by the
existing algorithms, as well as constructions of new codes
having better decoders, is another related open problem.

• Other types of expander graphs.We discussed bounds on
the minimum distance and on the number of correctable
errors of expander codes. The techniques involved in
the analysis were based on the eigenvalues properties of
expander graphs. Recently, new explicit constructions for
expander graphs were discovered, for example the zig-zag
construction in [7]. This construction has better vertex-
expansion properties than Ramanujan graphs have, but,
on the other hand, its eigenvalue separation property is
not as good as that of the Ramanujan counterparts. It
would be interesting if better properties could be obtained
for codes constructed from non-Ramanujan expanders, in
particular from the expanders in [7].

• Generalized expander codes.We presented generalized
expander codes and showed that their parameters are at
least as good as the parameters of the expander codes
in [3]. It might be interesting to further explore the prop-
erties of the generalized expander codes. An interesting
question to answer is whether the generalized expander
codes have any advantage over the known expander
codes, similarly to the strength of irregular LDPC codes
compared with regular LDPC codes.

APPENDIX

Let β1 be the largest root of the equation

H2(β)

(

β − H2(β) · δGV (R)

1 −R

)

= − (β − δGV (R)) · log2(1 − β) .

Moreover, let

a1 =
β1

H2(β1)
− δGV (R)

H2(δGV (R))
,

and

b1 =
δGV (R)

H2(δGV (R))
· β1 −

β1

H2(β1)
· δGV (R)) .

The functiong(β) is defined in [3] as

g(β) =































































δGV (R)

1 −R if β ≤ δGV (R)

β

H2(β)
if δGV (R) ≤ β andR ≤ 0.284

a1β + b1

β1 − δGV (R)
if δGV (R) ≤ β ≤ β1,

0.284 < R ≤ 1

β

H2(β)
if β1 < β1 ≤ 1, 0.284 < R ≤ 1

The functionδ0(β, r) is defined to beω⋆⋆(β) for δGV (r) ≤
β ≤ β1, where

ω⋆⋆(β) = rβ + (1 − r)H−1
2

(

1 − r

1 − r
H2(β)

)

,

andβ1 is the only root of the equation

δGV (r) = w⋆(β) ,

where

w⋆(β) = (1 − r)
(

(2H2(β)/β + 1)−1

+
β

H2(β)

(

1 − H2

(

(2H2(β)/β + 1)−1
)) )

.

For β1 ≤ β ≤ 1
2 , the function δ0(β, r) is defined to

be a tangent to the functionω⋆⋆(β) drawn from the point
(

1
2 , ω⋆( 1

2 )
)

.
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