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Abstract—Security aspects of the Index Coding with Side
Information (ICSI) problem are investigated. Building on the
results of Bar-Yossef et al. (2006), the properties of linear
index codes are further explored. The notion of weak security,
considered by Bhattad and Narayanan (2005) in the context
of network coding, is generalized to block security. It is shown
that the linear index code based on a matrix L, whose column
space code C(L) has length n, minimum distance d and dual
distance d⊥, is (d− 1− t)-block secure (and hence also weakly
secure) if the adversary knows in advance t ≤ d− 2 messages,
and is completely insecure if the adversary knows in advance
more than n− d⊥ messages. Strong security is examined under
the conditions that the adversary: (i) possesses t messages in
advance; (ii) eavesdrops at most µ transmissions; (iii) corrupts
at most δ transmissions. We prove that for sufficiently large q, an
optimal linear index code, which is strongly secure against such
an adversary, has length κq+µ+2δ. Here κq is a generalization
of the min-rank over Fq of the side information graph for the
ICSI problem in its original formulation in the work of Bar-
Yossef et al.

I. INTRODUCTION

A. Background

The problem of Index Coding with Side Information (ICSI)
was introduced by Birk and Kol [1]. It considers a commu-
nications scenario with one server and many clients. Each
client misses a certain part of the data, due to intermittent
reception, limited storage capacity or any other reasons. Before
the transmission starts, the clients let the server know which
packets they already have in their possession, and which
packets they are interested to receive. The server needs to
deliver all the messages each client requests, yet spending a
minimum number of transmissions. As it was shown in [1],
the server can significantly reduce the number of transmissions
by coding the messages.

Possible applications of index coding include communica-
tions scenarios, in which a satellite or a server broadcasts a set
of messages to a set clients, such as daily newspaper delivery
or video-on-demand. ICSI can also be used in opportunistic
wireless networks [2].

The ICSI problem has been a subject of several recent
studies [3]–[8]. This problem can be viewed as a special case
of the Network Coding (NC) problem [9], [10]. In particular,
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it was shown in [7] that every instance of the NC problem can
be reduced to an instance of the ICSI problem.

B. Our contribution

In this paper, we initiate a study of the security aspects of
linear index coding schemes. For each linear index code, we
have a matrix L, which represents a linear encoding function
(it will be defined formally in the sequel). We introduce a
notion of block security and establish two bounds on the
security level of a deterministic linear index code based on
L. The analysis makes use of the minimum distance and
the dual distance of C(L), the code spanned by the columns
of L. While the dimension of this code corresponds to the
number of transmissions in the scheme, the minimum distance
characterizes its security strength.

We also introduce a natural generalization of the ICSI
problem, called the Index Coding with Side and Restricted
Information (ICSRI) problem. The results on the security of
linear index codes are employed to analyze the existence of
solutions to the ICSRI problem.

Finally, we consider linear index codes which use random
messages. We establish new bounds on the length of such
linear ICs, which are resistant to errors, eavesdropping, and
information leaking. We also show that the coset coding
technique (which has been successfully employed in network
coding literature, see [11], [12]) yields an optimal strongly
secure linear index code.

Whereas most of the known results on the security aspects
of network coding were derived for the multicast scenario,
the ICSI problem can be modeled as a special case of the
non-multicast NC problem ( [7], [8]). Being modeled in that
way, the symbols transmitted on a set of special edges, which
carry the side information, are not allowed to be corrupted.
By contrast, for network coding any edge can be corrupted.
These two differences suggest that the existing results on the
security in network coding can not be directly generalized to
index coding.

For detailed proofs, we refer the reader to the full version
of this paper [13].

II. PRELIMINARIES

Let Fq be the finite field of q elements, where q is a power
of prime, and F∗q = Fq\{0}. Let [n] = {1, 2, . . . , n}. The



support of a vector u ∈ Fnq is defined by supp(u)
4
= {i ∈

[n] : ui 6= 0}. Suppose E ⊆ [n]. We write u C E whenever
supp(u) ⊆ E. Let ei denote the unit vector, which has a
one at the ith position, and zeros elsewhere. In the sequel,
we use many standard notions from coding theory such as
(Hamming) weight, minimum distance, dual distance, linear
[n, k, d]q codes, dual codes, MDS codes (for instance, see
[14]). We recall the following well-known result in coding
theory.

Theorem 2.1 ( [15], p. 66): Let C be an [n, k, d]q code
with dual distance d⊥ and M denote the qk×n matrix whose
qk rows are codewords of C. If r ≤ d⊥ − 1 then each r-tuple
from Fq appears in an arbitrary set of r columns of M exactly
qk−r times.

For a vector Y = (Y1, Y2, . . . , Yn) and a subset B =
{i1, i2, . . . , ib} of [n], where i1 < i2 < · · · < ib, let Y B

denote the vector (Yi1 , Yi2 , . . . , Yib). For an n× k matrix M ,
let M i denote the ith row of M , and M [j] its jth column.
For a set E ⊆ [n], let ME denote the |E| × k sub-matrix of
M formed by rows of M which are indexed by the elements
of E. For a set F ⊆ [k], let M [F ] denote the n × |F | sub-
matrix of M formed by columns of M which are indexed by
the elements of F .

III. INDEX CODING AND SOME BASIC RESULTS

The Index Coding with Side Information problem considers
the following scenario. There is a unique sender (or source)
S, who has a vector of messages x = (x1, x2, . . . , xn) ∈ Fnq
in his possession, which is a realized value of a random
vector X = (X1, X2, . . . , Xn). X1, X2, . . . , Xn hereafter
are assumed to be independent uniformly distributed random
variables over Fq . There are also m receivers R1, R2, . . . , Rm.
For each i ∈ [m], Ri has some side information, i.e. Ri owns
a subset of messages {xj}j∈Xi

, Xi ( [n]. In addition, each
Ri, i ∈ [m], is interested in receiving the message xf(i),
for some demand function f : [m] → [n]. Here we assume
that f(i) /∈ Xi for all i ∈ [m]. Let X = (X1,X2, . . . ,Xm).
An instance of the ICSI problem is given by a quadruple
(m,n,X , f).

Definition 3.1: A (deterministic) index code (IC) over Fq
for an instance (m,n,X , f) of the ICSI problem, referred to
as an (m,n,X , f)-IC over Fq , is an encoding function E :
Fnq → FNq , such that for each receiver Ri, i ∈ [m], there
exists a decoding function Di : FNq × F|Xi|

q → Fq , satisfying

∀x ∈ Fnq : Di(E(x),xXi) = xf(i) .

The parameter N is called the length of the IC. When the IC
E is used, S broadcasts a vector E(x) of length N over Fq .

Definition 3.2: An IC of the shortest possible length is
called optimal. An IC is said to be linear if its encoding
function E is a linear transformation over Fq . In other words,
E(x) = xL, for all x ∈ Fnq , where L is an n×N matrix over
Fq . The matrix L is called the matrix corresponding to the IC
E. We also refer to E as the IC based on L. Notice that the
length of E is the number of columns of L.

Hereafter, we assume that the sets Xi, for all i ∈ [m], are
known to S. Moreover, we also assume that E is known to
each receiver Ri, i ∈ [m]. In practice this can be achieved by
a preliminary communication session, when the knowledge of
the sets Xi, for all i ∈ [m], and of the code E are disseminated
between the participants of the scheme.

Let C(L) = spanq({L[j]T }j∈[N ]), the subspace spanned
by the (transposed) columns of L. The following lemma was
implicitly formulated in [3] for the case where m = n, f(i) =
i for all i ∈ [m], and q = 2. However, it can be formulated in
a more general form as follows.

Lemma 3.1: Let L be an n × N matrix over Fq . Assume
that S broadcasts xL. Then, for each i ∈ [m], the receiver Ri
can reconstruct xf(i) if there exists a vector u ∈ Fnq satisfying
uC Xi and u+ ef(i) ∈ C(L).

Proof: Assume that uCXi and u+ ef(i) ∈ C(L). Since
u+ ef(i) ∈ C(L), there exist β ∈ FNq such that u+ ef(i) =

βLT . By taking the transpose and pre-multiplying by x, we
obtain that x(u + ef(i))

T = (xL)βT . Therefore, xf(i) =

xeTf(i) = (xL)βT − xuT . Observe that Ri is able to find u
and β from the knowledge of L. Moreover, Ri is also able
to compute xuT since u C Xi. Additionally, Ri knows xL,
which is transmitted by S. Therefore, Ri is able to compute
xf(i).

Remark 3.2: It follows from Lemma 3.1 that L corresponds
to a linear (m,n,X , f)-IC over Fq if C(L) ⊇ spanq({u(i) +

ef(i)}i∈[m]), for some u(i) C Xi, i ∈ [m]. We show later in
Corollary 4.3 that this condition is also necessary. Finding such
an L with minimal number of columns by careful selection of
u(i)’s is a difficult task (in fact it is NP-hard to do so, see [3],
[16]), which, however, yields a linear coding scheme with the
minimal number of transmissions.

IV. BLOCK SECURE LINEAR INDEX CODES

A. Block Security and Weak Security

In this section, we assume presence of an adversary A which
can listen to all the transmissions. In other words, A knows
xL. The adversary is assumed to possess side information
{xj}j∈XA

, where XA ( [n] (A knows xXA
). The strength of

an adversary is defined to be |XA|. Denote X̂A
4
= ([n]\XA).

Definition 4.1: Suppose that S possesses a vector of mes-
sages x ∈ Fnq , which is a realized value of X . Suppose also
that A possesses xXA

. Consider a linear (m,n,X , f)-IC over
Fq based on L.

1) For B ⊆ X̂A, A is said to have no information about xB
if H(XB |XL,XXA

) = H(XB), where H(·) is a binary
entropy function.

2) The IC is said to be b-block secure against XA if for
every b-subset B ⊆ X̂A, A has no information about xB .
It is said to be b-block secure against all adversaries of
strength t (t ≤ n− 1) if it is b-block secure against XA
for every XA ⊂ [n], |XA| = t.

3) The IC is said to be weakly secure against XA if it is
1-block secure against XA. It is said to be weakly secure



against all adversaries of strength t (t ≤ n − 1) if it is
weakly secure against XA for every t-subset XA of [n].

4) The IC is said to be completely insecure against XA if
A is able to determine xi for all i ∈ X̂A. It is said to be
completely insecure against any adversary of strength t
(t ≤ n − 1) if it is completely insecure against XA for
every t-subset XA of [n].

B. Necessary and Sufficient Conditions for Block Security

We introduce the following new lemma, which is a general-
ization of Lemma 3.1. It provides both necessary and sufficient
conditions for successful reconstruction of the information by
A. Note that A in Lemma 4.1 (and similarly in Theorem 4.7)
can be viewed as a legitimate receiver. Thus, Lemma 4.1 also
provides necessary and sufficient conditions for a receiver to
be able (or not) to recover certain messages.

Lemma 4.1: Let L be an n×N matrix over Fq and let S
broadcast xL. For a subset B ⊆ X̂A = [n]\XA, the adversary
A (or any participant who owns xXA

), after listening to all
transmissions, has no information about xB if and only if

∀uC XA, ∀αi ∈ Fq with αi, i ∈ B, not all zero:

u+
∑
i∈B

αiei /∈ C(L).

In particular, for each i ∈ X̂A, A has no information about xi
if and only if u+ ei /∈ C(L) for all uC XA.

Corollary 4.2: Let L be an n × N matrix over Fq and
assume that S broadcasts xL. Then for each i ∈ [m], the
receiver Ri can reconstruct xf(i) if and only if there exists
u(i) ∈ Fnq such that u(i) C Xi and u(i) + ef(i) ∈ C(L).

Corollary 4.3: The matrix L corresponds to a linear
(m,n,X , f)-IC over Fq if and only if for all i ∈ [m], there
exists u(i) ∈ Fnq satisfying u(i)CXi and u(i)+ef(i) ∈ C(L).

Remark 4.4: It follows from Corollary 4.3 that L corre-
sponds to a linear (m,n,X , f)-IC over Fq if and only if
C(L) ⊇ spanq({u(i) + ef(i)}i∈[m]), for some u(i) C Xi,
i ∈ [m]. Define

κq = κq(m,n,X , f)
4
= min{rankq({u(i) + ef(i)}i∈[m]) : u

(i) ∈ Fnq ,u(i) C Xi},

then κq is the shortest possible length of a linear (m,n,X , f)-
IC over Fq . This is precisely the min-rank over Fq of the side
information graph of an ICSI instance in the case m = n and
f(i) = i for all i ∈ [n], which was introduced in [3], [17].

Corollary 4.5: The length of an optimal linear
(m,n,X , f)-IC over Fq is κq = κq(m,n,X , f).

Theorem 4.6: Consider a linear (m,n,X , f)-IC over Fq
based on L. Let d be the minimum distance of C(L).

1) This IC is (d−1− t)-block secure against all adversaries
of strength t ≤ d − 2. In particular, it is weakly secure
against all adversaries of strength t = d− 2.

2) This IC is not weakly secure against at least one adversary
of strength t = d−1. Generally, if there exists a codeword

of C(L) of weight w, then this IC is not weakly secure
against at least one adversary of strength t = w − 1.

3) Every adversary of strength t ≤ d − 1 can determine a
list of qn−t−N vectors in Fnq which includes x.
Proof: We only prove part 1) here. Assume that t ≤ d−2.

By Lemma 4.1, it suffices to show that for every t-subset XA
of [n] and for every (d− 1− t)-subset B of X̂A,

∀uC XA, ∀αi ∈ Fq with αi, i ∈ B, not all zero :

u+
∑
i∈B

αiei /∈ C(L).

For such u and αi’s, we have wt(u+
∑
i∈B αiei) = wt(u)+

wt(
∑
i∈B αiei) ≤ t+ (d− 1− t) = d− 1 < d. Moreover, as

supp(u)∩B = ∅ and αi’s, i ∈ B, are not all zero, we deduce
that u+

∑
i∈B αiei 6= 0. Hence u+

∑
i∈B αiei /∈ C(L).

C. Block Security and Complete Insecurity

In general, the IC based on L might still be block secure
against some adversaries of strength t for t ≥ d. However, as
the next theorem shows, if the size of XA is sufficiently large,
then A is able to determine all the messages in {xj}j∈X̂A

.

Theorem 4.7: The linear IC based on L is completely
insecure against any adversary of strength t ≥ n − d⊥ + 1,
where d⊥ denotes the dual distance of C(L).

Proof: Suppose that |XA| = t ≥ n − d⊥ + 1. By
Corollary 4.2, it suffices to show that for each j ∈ X̂A, there
exists u ∈ Fnq satisfying uC XA and u+ ej ∈ C(L).

Indeed, take any j ∈ X̂A, and let ρ = n − t ≤ d⊥ − 1.
Consider the ρ indices which are not in XA. By Theorem 2.1,
there exists a codeword c ∈ C(L) with cj = 1 and c` = 0 if
` /∈ XA ∪ {j}. Then supp(c) ⊆ XA ∪ {j}. We define u ∈ Fnq
such that u C XA, as follows. For ` ∈ XA, we set u` = c`,
and for ` /∈ XA, we set u` = 0. Then c = u+ ej . Hence by
Corollary 4.2, the adversary can reconstruct xj .

When C(L) is an MDS code, we have n− d⊥+1 = d− 1,
and hence the two bounds established in Theorems 4.6 and 4.7
are actually tight. The following example further illustrates the
results stated in these theorems.

Example 4.1: Let n = m = 7, q = 2, and f(i) = i for all
i ∈ [m].

Receiver Demand {xj}i∈Xi

R1 x1 {x6, x7}
R2 x2 {x5, x7}
R3 x3 {x5, x6}
R4 x4 {x5, x6, x7}
R5 x5 {x1, x2, x6}
R6 x6 {x1, x3, x4}
R7 x7 {x2, x3, x6}

For i ∈ [7], let u(i) ∈ F7
2 such that supp(u(i)) = Xi. Con-

sider an IC based on L with C(L) = spanq({u(i) + ei}i∈[7]).
We can take L to be the matrix whose set of columns is
{L[i] 4

= u(i) + ei}i∈[4]. Then C(L) is a [7, 4, 3]2 Hamming
code with d = 3 and d⊥ = 4. Following the coding scheme,



S broadcasts the following four bits: si = x(u(i) + ei)
T ,

i ∈ [4]. Each Ri, i ∈ [7], can compute x(u(i) + ei)
T by

using a linear combination of s1, s2, s3, s4. Then, each Ri can
subtract xu(i)T (his side information) from x(u(i) + ei)

T to
retrieve xi = xeTi . Since d = 3, if one message is leaked,
the adversary has no information about any other particular
message. If none of the messages are leaked, then the adver-
sary has no information about any group of 2 messages. On
the other hand, if t ≥ 4 messages are leaked, the adversary is
able to determine the remaining 7− t messages.

D. Application: Index Coding with Side and Restricted Infor-
mation

In this section, we consider an extension of the ICSI
problem, which we call the Index Coding with Side and
Restricted Information (ICSRI) problem. This problem arises
in applications such as audio and video-on-demand. Consider
a client who has subscribed to certain media content, and has
not subscribed to some other content. The content provider
wants to restrict this client from obtaining a content which he
is not eligible for, even though he might be able to obtain it
“for free” from the transmissions provided by the server.

The arguments of an instance (m,n,X ,Z, f) of the ICSRI
problem are similar to their counterparts for the ICSI problem.
The new additional parameter, Z = (Z1,Z2, . . . ,Zm), repre-
sents the sets Zi ⊆ [n] of message indices that the respective
receivers Ri, i ∈ [m], are not allowed to obtain. The goal is
that at the end of the communication round, the receiver Ri
has the message xf(i) in its possession, for all i ∈ [m], and
it has no information about xj for all j ∈ Zi. The notion of
a linear (m,n,X , f)-IC over Fq is naturally extended to that
of a linear (m,n,X ,Z, f)-IC over Fq . Let

F(m,n,X ,Z, f) 4
= ∪mi=1 {u+ ej : uC Xi, j ∈ Zi} .

The following proposition provides a necessary and sufficient
condition for a linear IC to be also a solution to an instance
of the ICSRI problem.

Proposition 4.8: The linear (m,n,X , f)-IC over Fq based
on L is also a linear (m,n,X ,Z, f)-IC if and only if C(L)∩
F(m,n,X ,Z, f) = ∅.

Example 4.2: Consider an instance (m,n,X ,Z, f) of the
ICSRI problem where m, n, X , and f are defined as
in Example 4.1. Moreover, Z = (Z1,Z2, . . . ,Z7), where
Z1 = {2, 3, 4, 5}, Z2 = {1, 3, 4, 6}, Z3 = {1, 2, 4, 7}, and
Z4 = Z5 = Z6 = Z7 = ∅. Consider the IC based
on L constructed in Example 4.1. It can be verify that
C(L)∩F(m,n,X ,Z, f) = ∅. Hence by Proposition 4.8, this
IC provides a solution to this instance of the ICSRI problem.

Let

κ∗q = κ∗q(m,n,X ,Z, f)
4
= min{rankq({u(i) + ef(i)}i∈[m])},

where the minimum is taken over all choices of u(i) C Xi,
i ∈ [m], which satisfy

spanq

(
{u(i) + ef(i)}i∈[m]

)
∩ F(m,n,X ,Z, f) = ∅. (1)

Let κ∗q = +∞ if there are no choices of u(i)’s, i ∈ [m], which
satisfy (1). The following proposition follows immediately.

Proposition 4.9: The length of an optimal linear
(m,n,X ,Z, f)-IC over Fq is κ∗q . If κ∗q = +∞ then
there exist no linear (m,n,X ,Z, f)-ICs over Fq .

V. STRONGLY SECURE INDEX CODES WITH SIDE
INFORMATION

In this section, we consider an adversary with an additional
ability to corrupt some transmissions of S.

A. A Lower Bound on the Length

We first generalize the definition of ICs to randomized ICs.
Let G = (G1, G2, . . . , Gη) be a vector of η random variables
which are distributed independently and uniformly over Fq .
Let g = (g1, g2, . . . , gη) be a realization of G.

Definition 5.1: An η-randomized (m,n,X , f)-IC over Fq
for an instance (m,n,X , f) is an encoding function E : Fnq ×
Fηq → FNq , such that for each receiver Ri, i ∈ [m], there exists
a decoding function Di : FNq × F|Xi|

q → Fq satisfying

∀x ∈ Fnq , ∀g ∈ Fηq : Di(E(x, g),xXi
) = xf(i) .

An η-randomized IC is linear over Fq if its encoding function
is linear, i.e. E(x, g) = (x|g)L, where L is an (n+ η)×N
matrix over Fq . Observe that by simply treating xi’s and gi’s
as messages, the results from previous sections still apply to
linear randomized ICs.

Definition 5.2: The linear η-randomized (m,n,X , f)-IC
over Fq based on L is said to be (µ, t, δ)-strongly secure if it
has the following two properties:

1) This code is δ-error-correcting, i.e., upon receiving
(x|g)L with at most δ coordinates in error, the receiver
Ri can still recover xf(i), for all i ∈ [m].

2) This code is (µ, t)-strongly secure, i.e., an adversary A
who possesses xXA

(|XA| = t), and listens to at most µ
transmissions (µ ≤ N ) gains no information about other
messages. Equivalently, for any W ⊆ [N ], |W | ≤ µ,

H(XX̂A
| (X|G)L[W ],XXA

) = H(XX̂A
). (2)

Lemma 5.1: If L corresponds to a (µ, t)-strongly secure
linear η-randomized (m,n,X , f)-IC over Fq , then η ≥ µ.

Sketch of the proof: By contradiction, suppose that
L corresponds to a (µ, t)-strongly secure η-randomized
(m,n,X , f)-IC over Fq , and that η < µ. Let E = {n +
1, n+ 2, . . . , n+ η}.

For W ⊆ [N ] let C(L[W ]) be the space spanned by columns
of L indexed by elements of W . Then, for all W ⊆ [N ] with
|W | ≤ µ, the equality (2) holds. From Lemma 4.1 with C(L)
being replaced by C(L[W ]), we conclude that C(L[W ]) does
not contain a vector c which satisfies cX̂A

6= 0 and cE = 0
(we denote this as Property A).

Let L′ = (LX̂A∪E)
T be the matrix obtained from L by

first deleting rows of L indexed by XA, and then taking its
transpose. It is possible to show that rankq(L′) ≤ µ−1. Now



let r 4
= rankq(L

′), and let {L′j1 ,L
′
j2 , . . . ,L

′
jr} be a basis of

the space spanned by the rows of L′.
• On one hand, by Corollary 4.3, C(L) contains a vector
c = u(i) + ef(i) where u(i) C Xi and f(i) ∈ X̂A.
Therefore, cE = 0 and cX̂A

6= 0.
• On the other hand, there exist β1, β2, . . . , βr such that

(cX̂A
|cE) =

∑r
`=1 β`L

′
j`

. Since r < µ and cE = 0, by
Property A we have cX̂A

= 0.
We obtain a contradiction.

Remark 5.2: From Lemma 5.1, a (µ, t, δ)-strongly secure
linear randomized IC requires at least µ random symbols. We
show in Section V-B that there exists a (µ, t, δ)-strongly secure
IC that uses precisely µ random symbols.

Lemma 5.3: Suppose that L corresponds to a linear µ-
randomized (m,n,X , f)-IC over Fq . If this randomized IC is
(µ, t)-strongly secure, then for all i ∈ [µ], there exists a vector
v(i) ∈ Fn+µq satisfying v(i) C [n] and v(i) + en+i ∈ C(L).

Sketch of the proof: Assume, by contradiction, that for
some i ∈ [µ], we have v(i) + en+i /∈ C(L) for all v(i) C [n].
Consider a virtual receiver who owns {xj}j∈[n] and requests
the symbol gi. By Corollary 4.2, this virtual receiver has no
information about gi after listening to all transmissions. It can
be shown that discarding Gi from the scheme does not affect
its strong security. However, this contradicts Lemma 5.1, since
the resulting code has less than µ random symbols.

Theorem 5.4: The length of a (µ, t)-strongly secure linear
η-randomized (m,n,X , f)-IC over Fq is at least κq + µ.

Sketch of the proof: If η = µ then by Corollary 4.3 and
Lemma 5.3, the length of the code is at least

dim(C(L)) ≥ rankq({u(i) + ef(i)}i∈[m])

+ rankq({v(i) + en+i}i∈[µ]) ≥ κq + µ .

Similar argument applies to the case when η > µ and for all
i ∈ [η] there exists some v(i) C [n] such that v(i) + en+i ∈
C(L). For the remaining case, we keep discarding some
random variable Gi from the code, until we reach a code which
falls into the first two cases.

The next theorem establishes a lower bound on the length
of a (µ, t, δ)-strongly secure linear randomized IC.

Theorem 5.5: The length of a (µ, t, δ)-strongly secure lin-
ear η-randomized (m,n,X , f)-IC over Fq is at least κq+µ+
2δ.

B. A Construction of Optimal Strongly Secure Index Codes

In this section, we present a construction of an optimal
(µ, t, δ)-strongly secure µ-randomized linear (m,n,X , f)-IC
over Fq whose length attaining the lower bound established
in Theorem 5.5. The proposed construction is based on the
coset coding technique, originally introduced by Ozarow and
Wyner [18].

Construction A: Let L(0) correspond to a linear
(m,n,X , f)-IC over Fq of optimal length κq . Let M be a
generator matrix of an [N = κq + µ + 2δ, κq + µ, 2δ + 1]q

MDS code, so that the last µ rows of M form a generator
matrix of another MDS code (for instance, M can be chosen
to be a generator matrix of a Reed-Solomon code). Let P be
the sub-matrix of M formed by the first κq rows, and Q the
sub-matrix formed by the last µ rows of M . Take

L =

(
L(0)P
Q

)
.

Theorem 5.6: The length of an optimal (µ, t, δ)-strongly
secure linear η-randomized (m,n,X , f)-IC over Fq (q ≥
κq + µ + 2δ + 1) is κq + µ + 2δ. Moreover, the code in
Construction A achieves this optimal length.
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