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Abstract In an application, where a client wants to obtain many symffi@dm a
large database, it is often desirable to balance the loadhBades (introduced by
Ishaiet al.in STOC 2004) do exactly that: the large database is dividgd/den
many servers, so that the client has to only make a small nuafiloggieries to every
server to obtain sufficient information to reconstruct a&lsiled symbols.

In this work, we formalize the study dihear batch codes. These codes, in par-
ticular, are of potential use in distributed storage systéie show that a generator
matrix of a binary linear batch code is also a generator mafriclassical binary
linear error-correcting code. This immediately yields thaariety of upper bounds,
which were developed for error-correcting codes, are agple also to binary linear
batch codes. We also propose new methods for constructig liaear batch codes
from the smaller ones.

Key words: Batch codes, error-correcting codes, computationallyape informa-
tion retrieval, load balancing, distributed storage.

1 Introduction

Consider the scenario where a client wants to retmegymbols from am symbol
database. Accessing a single server by all clients sinettasly can create serious
performance problems. A simple solution is to replicatethele database between
M servers, so that the client can query approximate§yl symbols from every
server. However, that solution require to stbre- Mn database symbols.

In an mrout-of-n CPIR (computationally-private information retrieval J8the
client wants to retrieven symbols from am symbol database without the storage
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provider getting to know which symbols were retrieved. Anliidnal problem in
this case is the storage provider's computational comiyl¢at is©(n) per query
in almost all known 1-out-oft CPIR protocols. (The only exception is [9], where
the per-query computational complexityd$n/logn).) Just performingninstances
of an 1-out-ofn CPIR protocol would result in a highly prohibitive compudeial
complexity.

To tackle both mentioned problems, Iskeail.[7] proposed to usbatch codes
More precisely, let> be a finite alphabet. In atn,N,m M T)s batch code, a
databasd of n strings inX is divided intoM buckets where each bucket contains
N/M strings inX. If a client is to obtainm symbols of the original database, he
query (no more than) symbols from each of th®l buckets.

Batch codes have been recently studied very actively inaghebinatorial setting.
Namely, acombinatorial batch codéCBC) satisfies the additional requirement that
every symbol of every bucket is equal to some symbol of thgirmai database. (See
for example [3, 2, 4].) New constructions of combinatoriatdh codes, based on
affine planes and transversal designs, were recently gessen[15].

We stress that linear batch codes are also well suitablehtouse in thelis-
tributed data storag¢6]. The buckets can be viewed as servers. The reading of the
requested data can be done “locally” from a small number ofess. If a small
number of buckets stopped functioning, the data can be depedl by reading data
from (a small number) of other buckets.

In this paper, we formalize a framework for analysis of linleatch codes, which
resembles that of the classical error-correcting code€C&CAs we show, genera-
tor matrices of good binary linear batch codes are also gémrematrices of good
classical ECCs. This immediately gives us a set of tools anohtts from the clas-
sical coding theory for analyzing binary linear batch coddg converse, however,
is not true: not every good binary linear ECC is a good linesch code. Finally,
we present a number of simple constructions of larger libeéch codes from the
smaller ones. The preliminary version of this paper is aléd as [10].

2 Preliminaries

Let[n] = {1,2,--- ,n}. We denote byVi)ic|n the linear span of the vectovs i € [n],
over some finite fieldy. We use notatiody (x,y) to denote the Hamming distance
between the vectors andy, and notationwy (X) to denote the Hamming weight
of x. We also denote by 0 the row vector consisting of all zerod,tang the row
vector having one at positionand zeros elsewhere (the length of vectors will be
clear from the context).

We start with the definition of a batch code. In this work, weus on so-called
multisetbatch codes, as they were defined in [7].

Definition 1 ([7]). Let X be a finite alphabet. We say thatis an(n,N,m M,t)s
batch code over a finite alphab®if it encodes any string = (x1,%o,- - , %) € 2"
into M strings (buckets) of total lengtN over >, namelyy;,y,,- -+, ¥y, such that
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for eachm-tuple (batch) of (not neccessarily distinct) indiégsz, - - - ,im € [n], the
symbolsx;,, %, - - , X, can be retrieved bsnusers, respectively, by reading at most
t symbols from each bucket, such that each symip@ recovered from the symbols
read by the/-th user alone.

The ratioR 2 n/N is called the rate of the code.

If for the code? it holds thatt = 1, then we use notatiofn,N,m,M)s for it.
This corresponds to an important special case when only yméd is read from
each bucket. Note that the buckets in this definition cowrdpo the devices in the
above example, the encoding lendgdhto the total storage, and the parametép
the maximal load. |2 = Fq is a finite field, we also use notatign,N,m,M,t)q (or
(n,N,m,M)g) to denote(n,N,m,M,t)s (or (n,N,m,M)s, respectively).

Definition 2. We say that arin,N,m, M, t)q batch code isinear, if every symbol in
every bucket is a linear combination of original databaselsyls.

3 Linear batch codes

In what follows, we consider the case of a linear batch ¢gaetht = 1. Moreover,
we limit ourselves to the case whidh= M, which means that each encoded bucket
contains just one symbol ify.

Definition 3. For simplicity we refer to a lineafn,N = M,m,M)q batch code as
[M, n,m|q batch code.

As before, le= (x1,X2, - - - ,Xn) be an information string, and lgt= (y1,¥2,- -+ ,Ym)
be an encoding of. Due to linearity of the code, each encoded symbgdl e [M],
can be written ag; = z?:lgj,ixj for some symbolgji € Fq, j € [n], i € [M]. Then
we can form the matri% as follows:

G=<%OEWMW7

and thus the encoding ys= xG.

Thenx M binary matrixG play a role similar to a generator matrix for a classical
linear ECC. In the sequel, we cdl a generator matrixof the batch cod&’. We
denote byG; thei-th row of G and byG!! the ¢-th column ofG.

Theorem 1.Let% be an[M,n, m|q batch code. Itis possible to retrievg Xi,, - - - , X,
simultaneously if and only if there exist m non-interseggets T, T, - -, Ty, of in-
dices of columns in G, and fog There exists a linear combination of columns of G
indexed by that set, which equals to the column vecﬁrofcaf allr € [m.

Proof. 1. For eaclr € [m|
e =73 a-Gl,
LeTy
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where alla, € Fq. Due to linearity, the encoding of= (x1,Xo,---,X,) can be
written asy = (y1,Y2,---,¥m) = X- G. Then,

C—=x-e — 1) = [y —
Xip =X-g =X ap-GY ) =% ay(x-GY) = ar-ye,
(5] &

and therefore the value a&f can be obtained by querying only the valueg/of
for £ € T;. The conclusion follows from the fact that d|l do not intersect.

2. To show the opposite direction of Theorem 1, we follow theai of the proof of
Theorem 1in [1]. Lefl,, forr € [m], be a set of indices of entries ynwhich are
used to retrieve;, . We show thag € (Gl) 1.

Denote the vector spaté £ (Gl) 1. Assume by contradiction thef ¢ W.
Recall that the dual space ¥4, denoted by\/-, consists of all the vectors or-
thogonal to any vector i. Sinces;, ¢ W, there exists a vectare W, which

is not orthogonal tas,, i.e. z- g, # 0, and soz, # 0. On the other hand, this
vectorzis orthogonal to any vectds!’ for ¢ € T,.

Consider the encoding of the vectarand 0,z- G and 0 G, respectively. In both
cases, all the coordinatesyindexed byT, are all zeros. Therefore, the result of
the retrieval of the,-th encoded symbol in both cases is the samezyet 0.
We obtain a contradiction.

Example 1 Consider the following linear binary batch codewhose 4x 9 genera-
tor matrix is given by

10100010

011000011

000101101

00001101

G=

Letx = (X1,X2,X3,Xa), Yy = XG.
Assume that we want to retrieve the values(®f, x1,X2,X2). We can retrieve
(x1,X1,X2,%2) from the following set of equations:

X1=¥1
X1=Y2+Y3
X2 =Y5+Ys

X2 =Y4+Ys+Y7+Yo

Moreover, it is straightforward to verify that any 4-tupl®,,xi,,Xi5,X,), where
i1,i2,i3,i4 € [4], can be retrieved by using columns indexed by some four non-
intersecting sets of indices i8]. Therefore, the cod® is a[9,4,4], batch code.

As a matter of fact, this code is the two-layer constructibtsabcube code” in [7,
Section 3.2].

Lemma 1. Let % be an[M,n,m|q batch code. Then, each row of G has Hamming
weight at least m.
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Proof. Consider rowj, for an arbitraryj € [n]. We can retrieve the combination
(Xj,Xj,---,Xj) if there arem non-intersecting sets of columns, such that sum of the
symbols in each set is equaﬂ Therefore, there are at leamtcolumns inG with a
nonzero symbol in positiof. O

Lemma 2. Let ¢ be an[M,n, m|q batch code. Then, the matrix G is full rank.

Proof. We are able to recover any combination of siaef {x,xz,--- ,%}. Then,
the column vectors

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

are all in the column space @&. Therefore, the column space Gfhas dimension
n, and so the matrix is full rank. O

The following theorem is the main result of this section. Phhesented proof of
this theorem works only fdbinary batch codes.

Theorem 2.Let ¢ be an[M,n,m|, batch code#” overF,. Then, G is a generator
matrix of the classical error-correctinfM, n, > m|, code.

Proof. LetC be a classical ECC, whose generating matriX.it is obvious that the
length ofC is M. Moreover, since the matri® is a full rank matrix due to Lemma 2,
we obtain that the dimension @f is n. Thus, the only parameter in question is the
minimum distance of.

In order to show that the minimum distance®fs at leasin, it will be sufficient
to show that any non-zero linear combination of the rons bfas Hamming weight
at leastm. Consider an arbitrary linear combination of the row&pfvhose indices

are given by a sef # &,
Z= Gi.

Take an arbitrary indeiy € T. Due to the properties of the batch codes we should
be able to recovefx,, Xi,, - - - ,X,) fromy. Therefore, there exish disjoint sets of
indicesS;, S, -+ ,Sn, § C [M], such that for all € [m:

% Gl =gl . (1)

Now, consider the sub-matrM; of G which is formed by the rows db indexed
by T and the columns db indexed byS. Due to (1), the row oM; that corresponds
to the rowig in G, has an odd number of ones in it. All other rows\if contain an
even number of ones. Therefore, the malfixcontains an odd number of ones. This
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means that the vector afwill also contain an odd number of ones in the positions
given by the se§. This odd number is at least one.
We conclude that contains at least one ‘1’ in positions given by the Sefor
alli € [m]. The sets§ are disjoint, and therefore the Hamming weight &f at least
m. O

Example 2The converse of Theorem 2 is generally not true. In other safds
is a generator matrix of a classical error-correctilign, m|, code, then the corre-
sponding cod& is not necessarily aiM, n,m|, batch code. For example, taketo
be a generator matrix of the classi¢&l3, 2], ECC as follows:

1111
G=|(0101
0011

Letx = (X1,X2,X3), Y = (Y1,¥2,Y3,Y4) = XG.
It is impossible to retrievéxy, X3). This can be verified by the fact that

X2=Y1+Y2=Y3+Ys and X3=yi+ys3=Y2+Va,
and so one of thg's is always needed to compute eachpandxs.

Corollary. The topic of linear ECCs was very intensively studied over th
years. Various well-studied properties of linear ECCshsag MacWilliams iden-
tities [11], apply also to linear batch codes due to Theoreffot =1, M = N
and q = 2). A variety of bounds on the parameters of ECCs, such asrephe
packing bound, Plotkin bound, Griesmer bound, Elias-Bggeebound, McEliece-
Rodemich-Rumsey-Welch bound [13] (see also [14, Chaptgd.2]) apply to the
parameters of linear binafi!l, n,m| batch codes.

4 Constructions of New Codes

In this section we present several simple methods to caststrew linear batch
codes from the existing ones.

Theorem 3.Let 61 be an[M1,n,my]q batch code and> be an[My,n,nmp]q batch
code. Then, there exists &, + M, n,m + mp|q batch code.

Proof. Let G; andG; ben x M; andn x M, generator matrices correspondingstp
and®, respectively. Consider the followingx (M1 + M2) matrix

G=[G|Gy] .

This matrix corresponds to a batch code of lenigth+ M, with n variables. It is
sufficient to show that any combinationmof +m, variables can be retrieved. By the
assumption, the first (any variables can be retrieved from the fikét coordinates
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of yand the lasin, variables can be retrieved from the |84t coordinates of. This
completes the proof. O

Theorem 4.Let %1 be an[Mz,n;,my]q batch code ané? be an[M;, ny, mp]q batch
code. Then, there exists @1 + Mz, n1 + np, min{my, my }]q batch code.

Proof. As before, denote b§; andG, then; x My andn, x M, generator matrices
corresponding t&7 and%>, respectively. Consider the followir(@s + ny) x (M1 +

M) matrix
~ |G| 0
6| Sis]-

The matrixG corresponds to a batch code of leniyth+ M, with n; + n; variables.
Moreover, any combination of m{my,mp} variables can be retrieved. If all un-
knowns are from{x1, %2, -- - ,Xn, }, then they can be retrieved by using only the first
M; columns ofG. If all unknowns are from{Xn, +1, Xn;+2, - -+ , Xy 40, }, then they
can be retrieved by using only the &8 columns ofG. Generally, some unknowns
can be retrieved by using combinations of the filstcolumns, while the other un-
knowns are retrieved using combinations of the Msttolumns. Since the number
of unknowns is at most m{mm;, m, }, we can always retrieve all of them simultane-
ously. a

Theorem 5.Let ¢ be an[M,n,mq batch code, and let G be the corresponding
nx M matrix. Then, the cod®, defined by thén+ 1) x (M + m) matrix

G- G Dt
oo 0 - o|1 1---1
———— N — —

M m

is an[M +m,n+ 1, m| batch code, where stands for an arbitrary symbol if.

Proof. As before, letx = (X1,X2, -, Xn, Xn1) @Ndy = (Y1,¥2, - , Ymim) = XG. As-
sume that we want to retrieve the vectee (Xi;,Xi,, -, Xim)-

Take a particulax;; in z, j € [m]. Consider two cases. if # n+ 1 then, sinc&’
is a batch code, we have

Xij = W + E 'Xn+1 3
le ij

where‘l’ij C [M] andé € Fq. Inthat case, i€ =0, then>qj = zge'rij ye. If & #£0, then
Xi; = z[gij Yo+ § -ym+j. Observe that allj; are disjoint due to the properties of a

batch code.

In the second casg, = n+1, and we simply set; = Xa1 = Ym+j-

In both cases, we used s¢ig : £ € Ti, U{M + j}} to retrievex;, . These sets are
all disjoint for j € [m|.
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We conclude that alihunknowns;;, j € [m], can be retrieved simultaneously.

O
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