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Abstract In an application, where a client wants to obtain many symbols from a
large database, it is often desirable to balance the load. Batch codes (introduced by
Ishai et al. in STOC 2004) do exactly that: the large database is divided between
many servers, so that the client has to only make a small number of queries to every
server to obtain sufficient information to reconstruct all desired symbols.

In this work, we formalize the study oflinear batch codes. These codes, in par-
ticular, are of potential use in distributed storage systems. We show that a generator
matrix of a binary linear batch code is also a generator matrix of classical binary
linear error-correcting code. This immediately yields that a variety of upper bounds,
which were developed for error-correcting codes, are applicable also to binary linear
batch codes. We also propose new methods for constructing large linear batch codes
from the smaller ones.

Key words: Batch codes, error-correcting codes, computationally-private informa-
tion retrieval, load balancing, distributed storage.

1 Introduction

Consider the scenario where a client wants to retrievem symbols from ann symbol
database. Accessing a single server by all clients simultaneously can create serious
performance problems. A simple solution is to replicate thewhole database between
M servers, so that the client can query approximatelym/M symbols from every
server. However, that solution require to storeN = Mn database symbols.

In an m-out-of-n CPIR (computationally-private information retrieval [8]), the
client wants to retrievem symbols from ann symbol database without the storage
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provider getting to know which symbols were retrieved. An additional problem in
this case is the storage provider’s computational complexity that isΘ(n) per query
in almost all known 1-out-of-n CPIR protocols. (The only exception is [9], where
the per-query computational complexity isO(n/ logn).) Just performingm instances
of an 1-out-of-n CPIR protocol would result in a highly prohibitive computational
complexity.

To tackle both mentioned problems, Ishaiet al. [7] proposed to usebatch codes.
More precisely, letΣ be a finite alphabet. In an(n,N,m,M,T)Σ batch code, a
databasef of n strings inΣ is divided intoM buckets where each bucket contains
N/M strings inΣ . If a client is to obtainm symbols of the original database, he
query (no more than)T symbols from each of theM buckets.

Batch codes have been recently studied very actively in the combinatorial setting.
Namely, acombinatorial batch code(CBC) satisfies the additional requirement that
every symbol of every bucket is equal to some symbol of the original database. (See
for example [3, 2, 4].) New constructions of combinatorial batch codes, based on
affine planes and transversal designs, were recently presented in [15].

We stress that linear batch codes are also well suitable for the use in thedis-
tributed data storage[6]. The buckets can be viewed as servers. The reading of the
requested data can be done “locally” from a small number of servers. If a small
number of buckets stopped functioning, the data can be reproduced by reading data
from (a small number) of other buckets.

In this paper, we formalize a framework for analysis of linear batch codes, which
resembles that of the classical error-correcting codes (ECCs). As we show, genera-
tor matrices of good binary linear batch codes are also generator matrices of good
classical ECCs. This immediately gives us a set of tools and bounds from the clas-
sical coding theory for analyzing binary linear batch codes. The converse, however,
is not true: not every good binary linear ECC is a good linear batch code. Finally,
we present a number of simple constructions of larger linearbatch codes from the
smaller ones. The preliminary version of this paper is available as [10].

2 Preliminaries

Let [n], {1,2, · · · ,n}. We denote by〈vi〉i∈[n] the linear span of the vectorsvi , i ∈ [n],
over some finite fieldFq. We use notationdH(x,y) to denote the Hamming distance
between the vectorsx andy, and notationwH(x) to denote the Hamming weight
of x. We also denote by 0 the row vector consisting of all zeros, and by ei the row
vector having one at positioni and zeros elsewhere (the length of vectors will be
clear from the context).

We start with the definition of a batch code. In this work, we focus on so-called
multisetbatch codes, as they were defined in [7].

Definition 1 ([7]). Let Σ be a finite alphabet. We say thatC is an(n,N,m,M, t)Σ
batch code over a finite alphabetΣ if it encodes any stringx= (x1,x2, · · · ,xn) ∈ Σn

into M strings (buckets) of total lengthN over Σ , namelyy1,y2, · · · ,yM, such that
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for eachm-tuple (batch) of (not neccessarily distinct) indicesi1, i2, · · · , im ∈ [n], the
symbolsxi1,xi2, · · · ,xim can be retrieved bymusers, respectively, by reading at most
t symbols from each bucket, such that each symbolxiℓ is recovered from the symbols
read by theℓ-th user alone.

The ratioR
△
= n/N is called the rate of the code.

If for the codeC it holds thatt = 1, then we use notation(n,N,m,M)Σ for it.
This corresponds to an important special case when only one symbol is read from
each bucket. Note that the buckets in this definition correspond to the devices in the
above example, the encoding lengthN to the total storage, and the parametert to
the maximal load. IfΣ = Fq is a finite field, we also use notation(n,N,m,M, t)q (or
(n,N,m,M)q) to denote(n,N,m,M, t)Σ (or (n,N,m,M)Σ , respectively).

Definition 2. We say that an(n,N,m,M, t)q batch code islinear, if every symbol in
every bucket is a linear combination of original database symbols.

3 Linear batch codes

In what follows, we consider the case of a linear batch codeC with t = 1. Moreover,
we limit ourselves to the case whenN = M, which means that each encoded bucket
contains just one symbol inFq.

Definition 3. For simplicity we refer to a linear(n,N = M,m,M)q batch code as
[M,n,m]q batch code.

As before, letx=(x1,x2, · · · ,xn) be an information string, and lety=(y1,y2, · · · ,yM)
be an encoding ofx. Due to linearity of the code, each encoded symbolyi , i ∈ [M],
can be written asyi = ∑n

j=1g j,ix j for some symbolsg j,i ∈ Fq, j ∈ [n], i ∈ [M]. Then
we can form the matrixG as follows:

G=
(

g j,i

)

j∈[n],i∈[M]
,

and thus the encoding isy= xG.
Then×M binary matrixG play a role similar to a generator matrix for a classical

linear ECC. In the sequel, we callG a generator matrixof the batch codeC . We
denote byGi the i-th row ofG and byG[ℓ] theℓ-th column ofG.

Theorem 1.LetC be an[M,n,m]q batch code. It is possible to retrieve xi1,xi2, · · · ,xim
simultaneously if and only if there exist m non-intersecting sets T1,T2, · · · ,Tm of in-
dices of columns in G, and for Tr there exists a linear combination of columns of G
indexed by that set, which equals to the column vector eT

ir , for all r ∈ [m].

Proof. 1. For eachr ∈ [m]

eT
ir = ∑

ℓ∈Tr

αℓ ·G
[ℓ] ,
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where allαℓ ∈ Fq. Due to linearity, the encoding ofx = (x1,x2, · · · ,xn) can be
written asy= (y1,y2, · · · ,yM) = x ·G. Then,

xir = x ·eT
ir = x ·

(

∑
ℓ∈Tr

αℓ ·G
[ℓ]

)

= ∑
ℓ∈Tr

αℓ(x ·G
[ℓ]) = ∑

ℓ∈Tr

αℓ ·yℓ ,

and therefore the value ofxir can be obtained by querying only the values ofyℓ
for ℓ ∈ Tr . The conclusion follows from the fact that allTr do not intersect.

2. To show the opposite direction of Theorem 1, we follow the idea of the proof of
Theorem 1 in [1]. LetTr , for r ∈ [m], be a set of indices of entries iny, which are
used to retrievexir . We show thateT

ir ∈ 〈G[ℓ]〉ℓ∈Tr .

Denote the vector spaceWr , 〈G[ℓ]〉ℓ∈Tr . Assume by contradiction thateir /∈Wr .
Recall that the dual space ofWr , denoted byW⊥

r , consists of all the vectors or-
thogonal to any vector inWr . Sinceeir /∈Wr , there exists a vectorz∈W⊥

r , which
is not orthogonal toeir , i.e. z· eir 6= 0, and sozir 6= 0. On the other hand, this
vectorz is orthogonal to any vectorG[ℓ] for ℓ ∈ Tr .
Consider the encoding of the vectorszand 0,z·G and 0·G, respectively. In both
cases, all the coordinates ofy indexed byTr are all zeros. Therefore, the result of
the retrieval of their -th encoded symbol in both cases is the same, yetzir 6= 0.
We obtain a contradiction.

Example 1.Consider the following linear binary batch codeC whose 4×9 genera-
tor matrix is given by

G=







1 0 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1







.

Let x= (x1,x2,x3,x4), y= xG.
Assume that we want to retrieve the values of(x1,x1,x2,x2). We can retrieve

(x1,x1,x2,x2) from the following set of equations:






x1 = y1

x1 = y2+y3

x2 = y5+y8

x2 = y4+y6+y7+y9

.

Moreover, it is straightforward to verify that any 4-tuple(xi1,xi2,xi3,xi4), where
i1, i2, i3, i4 ∈ [4], can be retrieved by using columns indexed by some four non-
intersecting sets of indices in[9]. Therefore, the codeC is a [9,4,4]2 batch code.
As a matter of fact, this code is the two-layer construction of “subcube code” in [7,
Section 3.2].

Lemma 1. Let C be an[M,n,m]q batch code. Then, each row of G has Hamming
weight at least m.
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Proof. Consider rowj, for an arbitrary j ∈ [n]. We can retrieve the combination
(x j ,x j , · · · ,x j) if there arem non-intersecting sets of columns, such that sum of the
symbols in each set is equaleT

j . Therefore, there are at leastm columns inG with a
nonzero symbol in positionj. ⊓⊔

Lemma 2. LetC be an[M,n,m]q batch code. Then, the matrix G is full rank.

Proof. We are able to recover any combination of sizem of {x1,x2, · · · ,xn}. Then,
the column vectors










1
0
0
...
0










,










0
1
0
...
0










,










0
0
1
...
0










, · · ·










0
0
0
...
1










are all in the column space ofG. Therefore, the column space ofG has dimension
n, and so the matrix is full rank. ⊓⊔

The following theorem is the main result of this section. Thepresented proof of
this theorem works only forbinarybatch codes.

Theorem 2.Let C be an[M,n,m]2 batch codeC overF2. Then, G is a generator
matrix of the classical error-correcting[M,n,≥ m]2 code.

Proof. LetC be a classical ECC, whose generating matrix isG. It is obvious that the
length ofC is M. Moreover, since the matrixG is a full rank matrix due to Lemma 2,
we obtain that the dimension ofC is n. Thus, the only parameter in question is the
minimum distance ofC.

In order to show that the minimum distance ofC is at leastm, it will be sufficient
to show that any non-zero linear combination of the rows ofG has Hamming weight
at leastm. Consider an arbitrary linear combination of the rows ofG, whose indices
are given by a setT 6=∅,

z= ∑
i∈T

Gi .

Take an arbitrary indexi0 ∈ T. Due to the properties of the batch codes we should
be able to recover(xi0,xi0, · · · ,xi0) from y. Therefore, there existm disjoint sets of
indicesS1,S2, · · · ,Sm, Si ⊆ [M], such that for alli ∈ [m]:

∑
j∈Si

G[ j] = eT
i0 . (1)

Now, consider the sub-matrixMi of G which is formed by the rows ofG indexed
by T and the columns ofG indexed bySi . Due to (1), the row ofMi that corresponds
to the rowi0 in G, has an odd number of ones in it. All other rows ofMi contain an
even number of ones. Therefore, the matrixMi contains an odd number of ones. This
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means that the vector ofz will also contain an odd number of ones in the positions
given by the setSi . This odd number is at least one.

We conclude thatz contains at least one ‘1’ in positions given by the setSi , for
all i ∈ [m]. The setsSi are disjoint, and therefore the Hamming weight ofz is at least
m. ⊓⊔

Example 2.The converse of Theorem 2 is generally not true. In other words, if G
is a generator matrix of a classical error-correcting[M,n,m]2 code, then the corre-
sponding codeC is not necessarily an[M,n,m]2 batch code. For example, takeG to
be a generator matrix of the classical[4,3,2]2 ECC as follows:

G=





1 1 1 1
0 1 0 1
0 0 1 1



 .

Let x= (x1,x2,x3), y= (y1,y2,y3,y4) = xG.
It is impossible to retrieve(x2,x3). This can be verified by the fact that

x2 = y1+y2 = y3+y4 and x3 = y1+y3 = y2+y4 ,

and so one of theyi ’s is always needed to compute each ofx2 andx3.

Corollary. The topic of linear ECCs was very intensively studied over the
years. Various well-studied properties of linear ECCs, such as MacWilliams iden-
tities [11], apply also to linear batch codes due to Theorem 2(for t = 1, M = N
and q = 2). A variety of bounds on the parameters of ECCs, such as sphere-
packing bound, Plotkin bound, Griesmer bound, Elias-Bassalygo bound, McEliece-
Rodemich-Rumsey-Welch bound [13] (see also [14, Chapter 4], [12]) apply to the
parameters of linear binary[M,n,m] batch codes.

4 Constructions of New Codes

In this section we present several simple methods to construct new linear batch
codes from the existing ones.

Theorem 3.Let C1 be an[M1,n,m1]q batch code andC2 be an[M2,n,m2]q batch
code. Then, there exists an[M1+M2,n,m1+m2]q batch code.

Proof. Let G1 andG2 ben×M1 andn×M2 generator matrices corresponding toC1

andC2, respectively. Consider the followingn× (M1+M2) matrix

Ĝ= [ G1 | G2 ] .

This matrix corresponds to a batch code of lengthM1+M2 with n variables. It is
sufficient to show that any combination ofm1+m2 variables can be retrieved. By the
assumption, the first (any)m1 variables can be retrieved from the firstM1 coordinates
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of y and the lastm2 variables can be retrieved from the lastM2 coordinates ofy. This
completes the proof. ⊓⊔

Theorem 4.LetC1 be an[M1,n1,m1]q batch code andC2 be an[M2,n2,m2]q batch
code. Then, there exists an[M1+M2,n1+n2,min{m1,m2}]q batch code.

Proof. As before, denote byG1 andG2 then1×M1 andn2×M2 generator matrices
corresponding toC1 andC2, respectively. Consider the following(n1+n2)× (M1+
M2) matrix

Ĝ=

[
G1 0
0 G2

]

.

The matrixĜ corresponds to a batch code of lengthM1+M2 with n1+n2 variables.
Moreover, any combination of min{m1,m2} variables can be retrieved. If all un-
knowns are from{x1,x2, · · · ,xn1}, then they can be retrieved by using only the first
M1 columns ofĜ. If all unknowns are from{xn1+1,xn1+2, · · · ,xn1+n2}, then they
can be retrieved by using only the lastM2 columns ofĜ. Generally, some unknowns
can be retrieved by using combinations of the firstM1 columns, while the other un-
knowns are retrieved using combinations of the lastM2 columns. Since the number
of unknowns is at most min{m1,m2}, we can always retrieve all of them simultane-
ously. ⊓⊔

Theorem 5.Let C be an [M,n,m]q batch code, and let G be the corresponding
n×M matrix. Then, the codêC , defined by the(n+1)× (M+m) matrix

Ĝ=








0 0 · · · 0

G
...

...
...

...
0 0 · · · 0

• • • · · · • 1 1 · · · 1








︸ ︷︷ ︸

M
︸ ︷︷ ︸

m

is an [M+m,n+1,m] batch code, where• stands for an arbitrary symbol inFq.

Proof. As before, letx= (x1,x2, · · · ,xn,xn+1) andy= (y1,y2, · · · ,yM+m) = xĜ. As-
sume that we want to retrieve the vectorz= (xi1,xi2, · · · ,xim).

Take a particularxi j in z, j ∈ [m]. Consider two cases. Ifi j 6= n+1 then, sinceC
is a batch code, we have

xi j = ∑
ℓ∈Ti j

yℓ + ξ ·xn+1 ,

whereTi j ⊆ [M] andξ ∈ Fq. In that case, ifξ = 0, thenxi j = ∑ℓ∈Ti j
yℓ. If ξ 6= 0, then

xi j = ∑ℓ∈Ti j
yℓ+ ξ ·yM+ j . Observe that allTi j are disjoint due to the properties of a

batch code.
In the second case,i j = n+1, and we simply setxi j = xn+1 = yM+ j .
In both cases, we used sets{yℓ : ℓ ∈ Ti j ∪{M+ j}} to retrievexi j . These sets are

all disjoint for j ∈ [m].
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We conclude that allm unknownsxi j , j ∈ [m], can be retrieved simultaneously.
⊓⊔
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