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Abstract—The Gallager ensembles of binary regular LDPC
codes and binary images of nonbinary regular LDPC codes are
studied. Recurrent procedure for computing average spectra for
these two ensembles is presented. By using the existing bounding
techniques, estimates on the error probability of the maximum-
likelihood (ML) decoding over an AWGN channel with BPSK
signaling for short codes from different ensembles of LDPC codes
are obtained. The numerical results show performance of the
ML decoding for different code ensembles. Conclusions drawn
based on the average code spectra are then verified by near-ML
decoding simulations for both randomly selected and the best
known short codes. The asymptotic ML decoding thresholds for
AWGN and BSC channels are calculated.

As expected, codes with the ML decoding performance su-
perior to that of the average code in the ensemble, are easy
to find. However, comparison of the the presented results with
simulation results for belief propagation (BP) decoding shows that
the ML decoding performance should not be used as a target for
searching for good iteratively decodable codes.

I. INTRODUCTION

Nowadays, LDPC codes are widely used in communication
systems and they are among the most probable candidates for
the future communication standards. In some scenarios, e.g.
wireless communications, relatively short codes (hundreds of
bits or a few thousands of bits long) are used. It is important
to understand which code ensembles are the most promising
in terms of their performance, and how far the currently used
codes are from the theoretical limits.

In this paper, we study the maximum-likelihood (ML)
decoding performance of the binary LDPC codes and of the
binary images of nonbinary (NB) LDPC codes in the finite
length regime. The additive white Gaussian noise (AWGN)
channel model with BPSK signaling is assumed throughout
this paper.

For general linear codes, the detailed overviews of the finite
length lower and upper bounds on the error probability of the
ML decoding over AWGN channel are presented by Sason and
Shamai in [1] and by Polyansky et al. in [2]. As it follows
from these references, the lower Shannon bound [3] and the
Poltyrev tangential sphere (TS) bound [4] are still the best
benchmarks for the linear code ML decoding performance.

This work is supported in part by the Norwegian-Estonian Research Co-
operation Programme under the grant EMP133 and by the Estonian Research
Council under the grant PUT405.

Note that the bound in [4] requires knowledge of the weight
spectrum of the code.

A straightforward way to evaluate the code ensemble per-
formance under the ML decoding is to substitute the estimates
on the average code weight spectra for these ensembles into
the TS bound [5]. For the ensembles of binary regular LDPC
codes and LDPC codes over arbitrary nonbinary fields, the
average weight spectra are derived in [6]. Estimates on the
average spectrum of the binary regular LDPC codes are used
in [7] in order to demonstrate very good performance of this
ensemble. For a detailed analysis of the asymptotic weight
spectrum of the ensemble of nonbinary (NB) protograph-based
LDPC codes, as well as of binary images of NB protograph-
based LDPC codes, see [8]. Binary images of irregular NB
LDPC codes were analyzed in [9]. Estimates on the thresholds
of the ML decoding over an AWGN channel for the binary
images of NB LDPC codes are also presented in [8].

In this work, we derive new estimates on the ML decoding
error probability for the AWGN channel by using precise
average weight enumerators for both binary random LDPC
codes and for binary images of random nonbinary LDPC
codes. In [10], this technique was used for analysis of distance
properties of LDPC codes including stopping distance and
stopping redundancy. In this work, by substituting the new
exact average spectra into the TS bound [4], new bounds for
binary codes, which are tighter than their counterparts in [7]
are obtained. Moreover, new bounds for nonbinary codes are
found.

The new asymptotic analysis of the Gallager ensemble of
nonbinary LDPC codes leads us to conclusions, which are
different from the conclusions drawn in [8], [9] for distinct
ensembles of nonbinary LDPC codes. Unlike BP decoding
thresholds for the ensembles studied in [8], [9], the ML de-
coding thresholds for the Gallager ensemble are monotonically
improving with the increasing code alphabet size q.

This paper is organized as follows. In Section II, we present
our technique for computing the code spectra. In Section III,
the formulas for computing the decoding error probability
bounds are given. In Section IV, we present numerical results
for moderately long (length about 1000 bits) codes and com-
pare the new bounds with the BP decoding simulation results
for known LDPC codes. Then, we compare the theoretical
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bounds with the ML decoding performance of the newly found
short codes. As expected, codes with performance superior to
that of the average code in the ensemble are easy to find.
However, short LDPC codes with near-optimum minimum
distance and low ML decoding frame error rate (FER) do not
necessarily demonstrate the best performance under the BP
decoding. In Section V, we analyze the asymptotic behavior of
the average weight distribution for the average binary image
of the ensemble of regular NB LDPC codes. The obtained
results are used to compute the AWGN and BSC ML decoding
thresholds for this ensemble.

II. COMPUTING EXACT COEFFICIENTS OF THE AVERAGE
WEIGHT DISTRIBUTION FOR ENSEMBLES OF REGULAR

LDPC CODES

In this section, we consider the Gallager ensemble of binary
regular (J,K)-LDPC codes and the average binary image
of the Gallager ensemble of nonbinary regular (J,K)-LDPC
codes over a finite field of characteristic two [6]. In the sequel,
we refer to the binary images of nonbinary LDPC codes as
nonbinary LDPC codes. Let n and k denote the code length
and dimension, respectively, and let H be an r × n parity-
check matrix, r = n − k. We compute the average spectrum
coefficients E{An,w}, where An,w is the random variable
representing the number of binary codewords of weight w
and length n and E{·} is the expected value over the code
ensemble.

In order to compute the coefficients of the average weight
distribution for binary and nonbinary random LDPC codes,
we use their generating functions derived in [6] and [10],
respectively. In general, even if an analytical expression of
the weight generating function is known, computing the co-
efficients An,w is a rather difficult task. However, if a weight
generating function can be expressed as a degree of another
weight generating function, then the spectrum coefficients can
be computed by using a recurrent procedure with complexity
linear in n.

For the Gallager ensemble of (J,K)-regular codes,
the parity-check matrix consists of J strips HT =(
HT

1 |HT
2 | . . . |HT

J

)T
, where each strip Hi of width M =

r/J is a random permutation of the first strip.
The generating function of the number of binary sequences

x of weight w and length n satisfying the equality xHT
i = 0,

i ∈ {1, 2, . . . , J}, is given by

G(s) =
n∑

w=0

Gn,ws
w =

(
g(s)

)M
, (1)

where g(s) =
∑K
i=0 gis

i =
(
(1 + s)K + (1− s)K

)
/2, gi =(

K
i

)
if i is even, and is equal to 0 otherwise.

From (1), we obtain the recurrent relation

G1,i = gi, i = 0, 1, ...,K , (2)

Gj,w =
K∑
i=0

giGj−1,w−i, j = 2, ...,M, w = 0, ..., jK . (3)

For the ensemble of NB LDPC codes over GF(q), q = 2m,
m ≥ 2, the generating function G(s) of the binary image

weight distribution is expressed via the generating function
F (ρ) of the nonbinary weight distribution as

G(s) = F (ρ)
∣∣
ρ=φ(s) , (4)

F (ρ) =
KM∑
w=0

Fwρ
w = (f(ρ))

M
, (5)

where f(ρ) =
(
(1 + (q − 1)ρ)K + (q − 1)(1− ρ)K

)
/q (see

[6, Chapter 5]) and

φ(s) =
m∑
i=1

φis
i =

(1 + s)m − 1

q − 1
, (6)

φi =
1

q − 1

(
m

i

)
. (7)

In order to simplify the computation of the coefficients fi in
the series expansion f(ρ) =

∑K
i=0 fiρ

i, we use the following
recursion

α0 = 1, αi = (q − 1)i−1 − αi−1 , (8)

fi =

(
K

i

)
αi . (9)

The procedure for computing the average spectrum consists of
the following steps:

1) For w = 0, 1, ...,Km, compute the coefficients of the
average binary weight distribution for the blocks of
j consecutive nonzero symbols from GF(q) using the
recurrent relation

Φ1,w = φw, w = 0, . . . ,m , (10)

Φj,w =
m∑
i=0

φiΦj−1,w−i, j = 2, ...,K , (11)

where φw is determined by (7).
2) Apply equations (8)–(9) to compute the weight distribu-

tion of the nonbinary symbols satisfying one (nonbinary)
parity check.

3) Find the average weight distribution of the average
binary image satisfying one nonbinary parity check as

Fw =
K∑
j=0

fjΦj,w, w = 0, ...,Km , (12)

where fj and Φj,w are determined by (9) and (11),
respectively.

4) Compute one-strip binary weight distribution by using
the recursion

G1,0 = 1, G1,w = Fw, w = 1, . . . ,Km , (13)

Gj,w =
Km∑
i=0

FiGj−1,w−i, j = 2, ...,M . (14)

The average spectrum coefficients are obtained as

E{An,w} =

(
n

w

)
p(w)J =

(
n

w

)1−J

GJn,w , (15)

2017 IEEE International Symposium on Information Theory (ISIT)

795



where p(w) =
(
n
w

)−1
Gn,w, n = mKM , and for Gn,w we can

either use (13)–(14) in the general case, or a simpler recursion
(2)–(3) for the binary codes. The computational complexity is
determined by the main step in the recursion (14), and it is
proportional to M ·Km = n.

III. BOUNDS ON ERROR PROBABILITY OF ML DECODING

1) Lower bound: Let n, R, and σ denote the code length,
code rate and standard noise deviation for an AWGN channel,
respectively. We use the notations and formulas in [3] for the
cone half-angle θ ∈ [0, π], which corresponds to the solid
angle of an n-dimensional circular cone, and for the solid
angle of the whole space

Ωn(θ) =
2π

n−1
2

Γ(n−12 )

∫ θ

0

(sinφ)n−2dφ, Ωn(π) =
2πn/2

Γ(n/2)
.

respectively. For a given code of length n and cardinality 2nR

the parameter θ0 is selected as a solution of the equation

Ωn(θ0)

Ωn(π)
= 2−nR.

Then, for the FER Psh(n,R, σ), we use approximation [11]
for the Shannon lower bound [3]

Psh(n,R, σ) ≈ 1√
nπ
· 1√

1 +G2 sin θ0

×
[
G sin θ0 exp

(
− 1

2σ2 + G
2σ cos θ0

)]n
G
σ sin2 θ0 − cos θ0

, (16)

where G = 1
2σ

(
cos θ +

√
cos2 θ + 4σ2

)
.

2) Upper bound: We present here the Poltyrev bound [4]
for completeness,

Pe ≤
∫ √n
−∞

f
(x
σ

) ∑
w≤w0

SwΘw(x) +

+ 1− χ2
n−1

(
r2x
σ2

)}
dx+Q

(√
n

σ

)
. (17)

Here f(x) = (1/
√

2π) exp−x2/2 is the Gaussian probability
density function, Q(x) =

∫∞
x
f(x)dx,

Θw(x) =

∫ rx

βw(x)

f
( y
σ

)
χ2
n−2

(
r2x − y2

σ2

)
dy ,

w0 =

⌊
r20n

r20 + n

⌋
, rx = r0

(
1− x√

n

)
,

µw(r) =
1

r

√
w

1− w/n
, βw(x) =

(
1− x√

n

)√
w

1− w/n
,

Sw is the w-th spectrum coefficient, and χ2
n denotes the

probability density function of chi-squared distribution with
n degrees of freedom.

Parameter r0 is a solution with respect to r of the equation∑
w:µw(r)<1

Sw

∫ arccosµw(r)

0

sinn−3 φ dφ =
√
π

Γ
(
n−2
2

)
Γ
(
n−1
2

) .
(18)
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Fig. 1. Bounds and BP decoding simulation results for binary LDPC codes
n = 1000, R = 1/2

IV. NUMERICAL RESULTS AND SIMULATIONS

We assume that the BPSK signaling is used for transmitting
over the AWGN channel with signal-to-noise ratio per bit
SNRb = −10 log10 2Rσ2, where R = k/n.

We start this section with comparison of the Shannon
lower bound (16) and upper bound (17) computed for random
linear codes and random binary and nonbinary regular LDPC
codes of lengths about 1000 and 100 bits. As it is shown in
Figures 1–5, for J > 3 the upper bound for the random binary
(J,K)-regular LDPC codes of length 1000 is rather close to
the upper bound for the random linear codes. However, for
binary codes of length 100 even for J > 3, there is a rather
large gap between the upper bound for the random linear codes
and the upper bound for the binary LDPC code ensemble.
Moreover, it is easy to see that J = 4 is the optimum value in
this case. As for the random nonbinary regular LDPC codes of
length 1000, already for J = 2 and m > 4, the upper bound is
close to the bound for the random linear codes. If J = 3, then
it suffices to have m > 2 to be close to the upper bound for
the random linear codes. For nonbinary regular LDPC codes of
length 100 the gap between the bounds is much more narrow
than in the binary case already for m = 2.

A. Moderate length codes

Next, we compare the aforementioned bounds with the
simulated FER performance of the BP decoding for the rate
R = 1/2 LDPC codes of length n = 1000. In Figure 1,
we compare randomly generated binary (J,K)-regular LDPC
codes selected according to their FER performance of the BP
decoding and a nonrandom binary irregular quasi-cyclic (QC)
LDPC code constructed by using the optimization technique
in [12]. In Figure 2, the comparison is performed for randomly
generated and selected nonbinary (2, 4)-regular LDPC codes
over GF(2m), m = 6, 8, and a nonrandom nonbinary (2, 4)-
regular code over GF(28) constructed by using the optimiza-
tion technique in [12]. In Figure 3, the FER performance of the
BP decoding for randomly generated and selected according to
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Fig. 2. Bounds and BP decoding simulation results for non-binary LDPC
codes n = 1000, R = 1/2, J = 2
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Fig. 3. Bounds and BP decoding simulation results for non-binary LDPC
codes n = 1000, R = 1/2, J = 3

their FER performance nonbinary (3, 6)-regular LDPC codes
over GF(2m), m = 2, 4, 6, are presented.

We observe that unlike the corresponding bounds on the ML
decoding performance, the FER performance of BP decoding
does not improve with increasing J . The optimized irregular
LDPC code demonstrates the best FER performance among
all the binary LDPC codes under consideration.

Among nonbinary LDPC codes with J = 2, the nonrandom
LDPC code over GF(28) optimized according to [12] has the
best FER performance. The gap between the FER performance
of the BP decoding for nonbinary LDPC codes with J = 3
and the corresponding bounds is larger than for J = 2. The
best FER performance was obtained for m = 8.

B. Short codes

In this section, we compare the bounds (16) and (17)
computed for random linear codes and for both binary and
nonbinary (J,K)-regular random LDPC codes of length n =
96 with the actual FER performance of both BP and near-ML
decoding [13] of short randomly generated codes.
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Fig. 4. Bounds and BP and near-ML decoding [13] simulation results for
binary LDPC codes n = 96, R = 1/2
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Fig. 5. Bounds and BP and near-ML [13] decoding simulation results for
non-binary LDPC codes n = 96, R = 1/2

In Figure 4, we present the FER performance of the ML-
decoding of the binary tail-biting (TB) (92, 46) code with
dmin = 16, which appears in [14] and the FER performance
of both BP and ML-decoding for randomly generated and
selected according to their minimum distance binary (6, 12)-
regular LDPC code with dmin = 10, and with the double-
Hamming (4, 8)-regular LDPC code with dmin = 12 con-
structed in [15].

In Figure 5, we compare the FER performance of both
BP and ML decoding for randomly generated and selected
according to their minimum distance nonbinary (4, 8)-regular
LDPC codes with dmin = 12 and dmin = 13, m = 3 and
m = 4, respectively. The FER performance of BP and ML
decoding for the nonbinary graph-based (2, 4)-regular LDPC
code with dmin = 12 and m = 8 constructed by technique in
[12] is presented in the same figure.

The TB linear code simulation shows that the FER of the
ML decoding is lower than the upper bound (17) for the
random linear codes. We conclude that in the binary case,
randomly selected codes with the optimum value J = 6 have
the FER performance close to that of the upper bound (17)
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TABLE I
ASYMPTOTIC ML DECODING THRESHOLDS FOR BINARY AND NONBINARY

LDPC RATE R = 1/2 CODES ON AWGN CHANNEL

m
J

2 3 4 5 10
1 3.418 0.794 0.426 0.341 0.308
2 2.138 0.546 0.353 0.318 0.308
3 1.397 0.421 0.324 0.311 0.308
4 0.975 0.360 0.313 0.309 0.308
8 0.421 0.310 0.308 0.308 0.308

16 0.313 0.308 0.308 0.308 0.308

for the binary (6, 12)-LDPC codes, which is inferior to the
corresponding upper bound for the binary linear codes. The
same holds true for the constructed (4, 8)-regular LDPC code.
However, the FER performance of the BP decoding for more
dense (6, 12)-regular LDPC code is inferior to that of the
double-Hamming LDPC code.

In the nonbinary case, we observe that LDPC codes with
J > 2 and with larger values of dmin have the FER perfor-
mance of the ML decoding close to that of the upper bound
(17) for (4, 8)-LDPC codes, which is, in turn, close to the
upper bound for the random linear codes. However, their ML
decoding performance is inferior to that of the LDPC code
with J = 2 under the BP decoding. The FER performance of
the LDPC code with J = 2 under the ML and BP decoding
are very close to each other.

V. THRESHOLDS

From [16], we have the following formula for the upper
bound on the minimum SNR per bit (the decoding threshold
for the ML decoding over the binary input AWGN channel)

SNRb ≤ max
0<δ<1

1− δ
2δR

(
1− e−2a(δ)

)
, (19)

where a(δ) is the asymptotic exponent of the average spectrum
as a function of normalized codeword weight δ = w/n,

a(δ) = lim
n→∞

An,δn
n

. (20)

The asymptotic exponent of the average binary spectrum of
the NB LDPC code [10] is

aNB(δ) = min
ρ

{
(1− J)h(δ) +

J

Km
ln (g(φ(eρ)))− ρδJ

}
,

where h(δ) = −δ ln δ− (1− δ) ln(1− δ) is the binary entropy
function in nats.

For the BSC, the threshold crossover probability pthr is
equal to the solution of the following equation with respect
to p [17, Theorem 4.1])

max
δ∈(0,2p)

a(δ) + δ ln 2 + (1− δ)h
(
p− δ/2
1− δ

)
= h(p) . (21)

For m = 1 (binary codes) thresholds in Table I coincide
with thresholds found in [18]. For m = 2, ..., 8 and J = 2 the
thresholds in Table I are close to those in [8, Fig.25].

VI. CONCLUSIONS

The new upper bounds on the ML decoding performance of
the ensembles of regular LDPC codes when communicating

TABLE II
ASYMPTOTIC DECODING THRESHOLDS FOR BINARY AND NONBINARY

LDPC RATE R = 1/2 CODES ON BSC

m
J

2 3 4 5 10
1 0.0396 0.0915 0.1045 0.1082 0.1100
2 0.0566 0.0998 0.1076 0.1094 0.1100
3. 0.0725 0.1045 0.1090 0.1098 0.1100
4. 0.0848 0.1071 0.1096 0.1100 0.1100
8 0.1037 0.1098 0.1100 0.1100 0.1100

16 0.1093 0.1100 0.1100 0.1100 0.1100

over AWGN channels are obtained. They are based on the
precise coefficients of the average weight spectra computed
by the low-complexity recurrent procedure. The new values
of the ML decoding thresholds for nonbinary random LDPC
codes are computed.
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