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Abstract — A construction of graph codes is pre-
sented that approaches the Singleton bound as the
alphabet size goes to infinity. These codes can be
decoded by a combined error-erasure decoder whose
time complexity grows linearly with the code length.

I. Introduction
We consider the following family of expander graph codes,

which were studied in [1], [2]. Let G = (V,E) be a bipartite
∆-regular undirected connected graph with the vertex set V
partitioned into two subsets, A and B, of size n, and edge set
E ⊆ A×B. For every u ∈ V , denote by E(u) the set of edges
incident with u and assume some ordering on E(u). Let F be
the finite field GF(q). For a word x = (xe)e∈E over an alpha-
bet (such as F ), denote by (x)E(u) the sub-word of x that is in-
dexed by E(u). Take CA and CB to be linear [∆, k=rA∆, δA∆]
and [∆, rB∆, δB∆] codes over F , respectively, and define the
code C as the following linear code of length |E| = n∆ over
F :

C =

{
c ∈ F |E| :

(c)E(u) ∈ CA for all u ∈ A and

(c)E(u) ∈ CB for all u ∈ B

}
.

Let Φ denote the alphabet F k, fix some linear one-to-one
mapping EA : Φ → CA over F , and let the mapping ψ : C →
Φn be given by

ψ(c) =
(
E−1

A ((c)E(u))
)

u∈A
, c ∈ C .

We now define the code CΦ of length n over Φ by

CΦ = {ψ(c) : c ∈ C} ,

and denote its rate and relative minimum distance by RΦ and
δΦ, respectively. The code C, which was studied in [1], can
be represented as a concatenated code with an inner code CA

over F and an outer code CΦ over Φ. Similarly, the codes
studied in [2] can be represented as concatenated codes with
CΦ as an outer code, whereas the inner codes is taken over a
sub-field of F .

II. Lower bound on the minimum distance
Let λG be the second largest eigenvalue of the adjacency

matrix of G and denote by γG the value λG/∆. We show that

δΦ ≥
δB − γG

√
δB/δA

1− γG
;

in particular, δΦ → δB whenever γG → 0. Using this bound,
we obtain for every designed rate R < 1 and (small) ε > 0
arbitrarily long codes CΦ such that RΦ > R and δΦ ≥ 1−R−ε,
thus attaining the Singleton bound when ε→ 0. The alphabet
size of CΦ is exp

{
O

(
(log(1/ε))/ε3

)}
, namely, the exponent

here is smaller compared to [3] (yet the code in [3] is also
linear-time encodable).
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III. Decoding algorithm
Figure 1 presents an adaptation of the iterative decoder

of [4] to the code CΦ, with the additional feature of handling
erasures (as well as errors over Φ).

Input: Received word y = (yu)u∈A in (Φ ∪ {?})n.

For u ∈ A do (z)E(u) ←
{
EA(yu) if yu ∈ Φ
?? · · ·? if yu =?

.

For i← 1, 2, . . . ,m do {

If i is even then X ≡ A, D ≡ DA, else X ≡ B, D ≡ DB .

For u ∈ X do (z)E(u) ← D((z)E(u)).

}
Output: ψ(z) if z ∈ C (and declare ‘error’ otherwise).

Figure 1: Decoder for CΦ.

We use the notation ‘?’ to stand for an erasure. The algo-
rithm makes use of a word z = (ze)e∈E over F ∪ {?} that is
initialized by the contents of the received word y. Iterations
i = 2, 4, 6, . . . use a decoder DA : F∆ → CA that recovers
correctly any pattern of less than δA∆/2 errors (over F ), and
iterations i = 1, 3, 5, . . . use a decoder DB : (F ∪ {?})∆ → CB

that recovers correctly any pattern of θ errors and ν erasures,
provided that 2θ + ν < δB∆.

We show that the algorithm in Figure 1 corrects any pat-
tern of µ errors and ρ erasures, provided that µ + 1

2
ρ < βn,

where

β =
(δB/2)− γG

√
δB/δA

1− γG
;

in particular, β → δB/2 when γG → 0. The value of m can be
taken to be logarithmic in n, and the overall time complexity
of the algorithm is linear in n.

IV. Applications
Using GMD decoding, CΦ can replace the MDS outer code

in asymptotic concatenated code constructions that attain the
Zyablov bound or the capacity of the memoryless symmetric
channel. The decoding complexity of the algorithm in Figure 1
translates into a linear-time complexity of the resulting GMD
decoder.
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