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Abstract—In previous work, we demonstrated how decoding  Given anyc € R", parity checkj € J is satisfiedby c if
of a non-binary linear code could be formulated as a linear- and only if the following equality holds oveR:
programming problem. In this paper, we study different poly-
topes for use with linear-programming decoding, and show that Z ci-Hji=0. (1)
for many classes of codes these polytopes yield a complexity ad-
vantage for decoding. These representations lead to polynomial-
time decoders for a wide variety of classical non-binary linear For j € 7, define the single parity check code by

codes.
|. INTRODUCTION Cj ={(bi)iez, + > bi-Hji=0}
=

i€Z;

In [1] and [2], the decoding obinary LDPC codes using . ] )
linear-programming decoding was proposed, and the cdiote that while the symbols of the codeword.sfnare indexed
nections between linear-programming decoding and claissifY Z the symbols of the codewords i) are indexed by;.
belief propagation decoding were established. In [3], tifePServe that e C if and only if all parity checks < J are
approach of [2] was extended to coded modulation, in partisfied byc.
ticular to codes over rings mapped to non-binary modulationASSume that the codeword = (¢,,¢,,---,¢,) € C has
signals. In both cases, the principal advantage of the ineQ€€n transmitted over @ary input memoryless channel, and
programming framework is its mathematical tractability, [2@ corrupted wordy = (y1,y2,---,y) € X" has been
[3]. received. Here: denotes the set of channel output symbols.

For the binary coding framework, alternative polytope red—” addition, assume that all codewords are transmitted with
resentations were studied which gave a complexity advantggiual probability. _
in certain scenarios [1], [2], [4], [5]. Analagous to the wor FOF Vectorsf € R{~1", the notation
of [1], [2], [4], [5] for binary codes, we define two polytope F=(f 1 fsl | ),
representations alternative to that proposed in [3] whitér @
smaller number of variables and constraints for many ctas3#ill be used, where
of nonbinary codes. We compare these representations with VieT, f. = (f(a)) -
the polytope in [3]. These representations are also shown to Co i M JaeRe
have equal error-correcting performance to the polytog8lin We also define a functioi : ¥ — (RU {£00})?~! by

II. LINEAR-PROGRAMMING DECODING A= (A(a))aem, ,

Consider codes over finite quasi-Frobenius rings (this ishere, for eachy € &, o € R,
cludes codes over finite fields, but may be more general).
Denote by%R such a ring withg elements, by its additive A (y) = log (p(y|0)> 7
identity, and letR~ = R\{0}. Let C be a linear code of p(yla)
lengthn over R with m x n parity-check matrixH. and p(y|c) denotes the channel output probability (density)
Denote the set of column indices and the set of rowonditioned on the channel input. ExteAdto a map onx"
indices of 4 by T = {1,2,--- ,n} andJ = {12, ,m}, by A(y) = (A1) | A®2) | - | Alyn))-
respectively. The notatiofi; will be used for thej-th row  The LP decoder in [3] performs the following cost function
of H. Denote by supfz) the support of a vectoe. For minimization:
eachj € J, let Z; = supd¥,) and d; = |Z;|, and let N
b= e} PRTG) and s = 15 (F,@) =arg_min_A(y)fT, )

(frw)eQ

1These authors are also affiliated with the Claude Shannditultes for Where_ the polytopeQ is a relaxation of the convex hull Of
Discrete Mathematics, Coding and Cryptography. all points f € Rle—1" which correspond to codewords; this



polytope is defined as the set gfe R(e—D" together with
the auxiliary variables

Wj. b for jEj,bECj,

which satisfy the following constraints:

Vi eJ, VbECj, ’IU]"bZO, (3)
Vied, Y wip=1 4)
bGCj
and
VieJ, Viel;, Yac R,
1 = Yhee, vma (5)

The minimization of the objective function (2) ovéyforms

Also define a mappinger : Cr — N9~1 by

(kr(a)), =

and define, foik € T,

{i el : a; =a},

Cék) ={a€Cr : kr(a)

Below, we define a new polytope for decoding. Recall that
y=(y1,y2, - ,yn) € X" stands for the received (corrupted)
word. In the sequel, we make use of the following variables:

o Foralli e 7 and alla € ;3~, we have a variablgci(”).
This variable is an indicator of the evept = «.

o Forallj € J andk ¢ 7;, we have a variabler; x.
Similarly to its counterpart in [2], this variable indicate
the contribution to parity check of k-constrained local

— k).

the relaxed LP decoding problem. The number of variables and codewords ovec;.

constraints for this LP are upper-boundeditfy —1) +mq?~!
andm(q~" +d(q — 1) + 1) respectively.
It is shown in [3] that if f is integral, the decoder out-

. Foralljej i €Zj, k€T, ac R, Wehavea
vanablez J . This variable indicates the portion ¢f”
assigned tde-constrained local codewords ovéy.

put corresponds to the maximum-likelihood (ML) codeword. \jotivated by these variable definitions, for glle J we

Otherwise, the decoder outputs an ‘error’.
[1l. NEw LP DESCRIPTION

The results in this section are a generalization of the high-

density polytope representation [2, Appendix Il]. Recalhtt

the ringfR containsg — 1 non-zero elements. Correspondingly,

for vectorsk € N?—1, we adopt the notation

k= (ka)aem-
Now, for any;j € 7, we define the mapping
Kj : Cj — N¢! :
b — kKb
defined by
(kj(0)a =i €Z; : bi-Hji =}l

for all & € R~. We may then characterize the imagerof,
which we denote by}, as

Tj:{kequ © Y akg=0and > kagdj} :
for eachj € J, where, for anyk € N, a € R,

Tk 0 if k=0
CEEY ag if k>0 (k terms in sum) °

aER~ acR™
The set7; is equal to the set of all possible vectacs(d) for
be Cj.

+ «

impose the following set of constraints:

VieZ;VaeR,  f7 =320 @)
kET;
Y oje=1. (8)
kET;
Vk € T;,Va € R™,
Z zfg)k =ko-0jk. (9)
iEIj, BER—, ﬁHJJ:Ot
Vie I VkeT,Yae R, 2% >0. (10)
Vi € Ij,Vk € 7;‘,
3 S A0 <o (A1)
a€ER~ BER™, fH; i=a
We note that the further constraints
VieIVae®, 0<f®<1 (12)
vjejaVke,]}7 Ogo—j,kglv (13)
and
VieJ Vi€l Vke T, Yae R, 2% <o, (14)

follow from constraints (7)-(11). We denote biythe polytope

Note thatk; is not a bijection, in general. We say that dormed by constraints (7)-(11).

local codewordb € C; is k-constrained ove€; if «;(b) = k.
Next, for any index sef’ C Z, we introduce the following

definitions. LetN =

code, over vectors indexed [y by

CF: {a_(az ZGFG% (6)

ZaZ—O

el

}

IT'|. We define the single-parity-check-

Let T = max;c s |7;|. Then, upper bounds on the number
of variables and constraints in this LP are givenrfy —1) +
m(d(g—1)+1)T andm(d(¢—1)+1)+m((d+1)(¢—1)+d)T
respectively. Sincd’ < (“*¢71), the number of variables and
constraints ar@(mgq-d?), which, for many families of codes,
is significantly lower than the corresponding complexity fo
polytope O.



For notational simplicity in proofs in this paper, it is

convenient to define a new set of variables as follows:

VjeJ,Viel;Vk € T;,Va € R,

Ti(,_c;,)k = Z

BER—, ﬁ’ij,;:Oz

)
ik -

(15)

Then constraints (9) and (11) may be rewritten as
VieJ ke VaeR, > 7% =ka 0jx, (16)
i€,
VieJNieL VkeT, 0< Y n% <o
a€ER~

7

Note that the variables- do not form part of the LP de-
scription, and therefore do not contribute to its compiexit
However these variables will provide a convenient notation

shorthand for proving results in this paper.

We will prove that optimizing the cost function (2) over

this new polytope is equivalent to optimizing ové:. First,

we state the following proposition, which will be necesstry

prove this result.
Proposition 3.1:Let M € N andk € N¢~1. Also let

I' C Z. Assume that for eaclx € 23—, we have a set of
: 4 € T'} and that together

nonnegative integerd’ (@) = {z{*
these satisfy the constraints

Sl — ko (8
iel’
for all « € R~ and
S oaW <M (19)
a€ER—
foralli eT.
Then, there exist nonnegative integers, : a € Cﬁk)}
such that
1) > we=M. (20)
aeclﬁk)
2) Foralla e R, i e,
o= Y wa. (21)

aECl(ﬂk), a; =«

A sketch of the proof of this proposition will follow at the

end of this section. We now prove the main result.
Theorem 3.2.The set/ = {f : 3o,z s.t.(f,0,2) €
U} is equal to the se@ = {f : 3 w st (f,w) € Q}.
Therefore, optimizing the linear cost function (2) ovéris
equivalent to optimizing oveg.
Proof:

1) Suppose(f,w) € Q. For allj € J,k € 7;, we define

)y

beCj, kj(b)=k

Ojk = Wj.b »

and forallj € J, i € Z;, k € T;, a € 3™, we define

beCj, kj(b)=k, bi=a

Wy,b

2)

It is straightforward to check that constraints (10)
and (11) are satisfied by these definitions.
For everyj € J, i € Z;, « € R~, we have by (5)

=3

bECj, bl =«

Wj.b

Wip = z(a)
J,b = i,k

kG'J}‘ bECj} Kj (b):k, bi=a kGT,-
and thus constraint (7) is satisfied.
Next, for everyj € 7, we have by (4)
D ILUTED DI DI

bec; ke€T; beCj,kj(b)=k
= D ik
keT;
and thus constraint (8) is satisfied.
Finally, for everyj € J, k€ T;, o € R,
)
Z Zijok
i€T;, BER—, BH; i=a
= > > wie

’I:GIJ', BER—, /8Hj,i:(¥

2.

beC;, k;(b)=k

- ¥

beC;, k; (b)=k

beCj, Kj (b):k, b, =0

>

€L, biHj =«

Wj,b
k‘a Wib = k‘a 05k -

Thus, constraint (9) is also satisfied. This completes the
proof of the first part of the theorem.

Now assume(f, o, z) is a vertex of the polytopé/,

and so all variables are rational, as are the variables
Next, fix somej € 7,k € 7;, and consider the sets

()
T
28 = {3’“ : z‘ezj} :

T4k
for a € R~. By constraint (17), for each € R, all
the values in the sel’o(a) are rational numbers between
0 and 1. Letu be the lowest common denominator of
all the numbers in all the set§\®, o € R~ Let

(@
X(a){,u.m’k . iEIj} 7

for eacha € 9R~. The setsX'(®) consist of integers
between 0 angk. By constraint (16), we must have that
for everya € R, the sum of the elements i'(®) is
equal tok, u. By constraint (17), we have

(a)
> o

Ti,jk
P
aER— gk

<u

for all i € Z;.
We now apply the result of Proposition 3.1 with= Z,
M = u and with the setst(®) defined as above (here



N = d;). Set the variablegw,
to Proposition 3.1.

fac Cﬁk)} according

Next, for k € 7;, we show how to define the variables

{wp, = beCj, kj(b) = k}. Initially, we setw, =0

for all b € C;, kj(b) = k. Observe that the values

e zf’?k /o, are non-negative integers for everye
Z,j€J, keT;, BeR.

For every a € Cﬁk), we define w, words
bW bW ... pwa) ¢ ¢, Assume some ordering on

the elements? € R~ satisfying BH;i = a;, namely
b1, 02, -+, B, for some positive integef,. Fori €
7, b (¢ = 1,2,--- ,wa) is defined as follows:
bl@) is equal tog; for the first u - zggj,l/aj,k words
b b2 ... pwa): bl is equal to, for the next
I zfgg,)c/ajk words, and so on. For evelly € C; we

)

define
wg:‘{ie{l,z--. wa} b(”zb}’ .

Finally, for everyb € C;, k;(b) = k, we define

U',k
wip = == - w
W
Using Proposition 3.1,

(@) 20
7, 55

Wq = LD

2 “ Tik . 2 T
aEClgk), a;=a B:fH;i=a

and so allb™, b ... e (for all a € ) are
well-defined. It is also straightforward to see thdt <

Cjfort=1,2,--- ,we. Next, we check that the newly-

definedw; ; satisfy (3)-(5) for everyj € 7, b € ;.

thus satisfying (4).
Finally, by constraint (7) we obtain, for afl € J,i €

Ij,ﬁei)‘{_,
B _ ®
£7 =3 2
kET;
=PRI SRR DR
kE€ET; beCj, k;(b)=k, bi=0 beC,, b;=p3

thus satisfying (5).
Sketch of the Proof of Proposition 3.1

In this proof, we use a network flow approach (see [6] for
background material).

The proof will be by induction od/. We setw, = 0 for all
ac Cﬁk). We show that there exists a vect@r= (a;);. €
Cﬁk) such that

(i) Foreveryi eI’ anda € R,

a=a = acl(-a)>0.

@)

(i) If forsomei €T, > .x- ;

somea € R™.

Then, we ‘update’ the values oj‘ﬁ"‘)’s and M as follows.
For everyi ¢ I' anda € R~ with a; = o we setxz(.a) —
xE“) — 1. In addition, we sef\/ «— M — 1. We also setv,, «—
weq + 1.

It is easy to see that the ‘updated’ valueSaaé?)’s and M

satisfy
S = ko
i€l

= M, thena; = « for

It is easy to see thab;, > 0; therefore (3) holds. BY ¢4, a1 o € R, and Y, p 2% < MforalieTl
’ ach— — )

Proposition 3.1 we obtain

Ok = Z Wj,b
beC;, k;(b)=k
forall j € 7,k € 7;, and
() _
ijk = Z Wib 5

bECj, K,j(b):k, brL'Hjﬂ':(X

forallje J,ieZ;, keT, a € R.LetfH;,; = a.
By the definition ofw;, 4 it follows that

D

beCj, k(b)=k, b;=p

@)
igk

Wjb

zZ

Z Wib = Zz(é)k’

7_(04)
i,,k  beC;, k(b)=k, biH; =

where the first equality is due to the definition of the

wordsb¥, £ =1,2,- -, w,.
By constraint (8) we have, for ajl € 7,

E : 935,k

keT;

> X

k€T, beC;, r;(b)=k

1 =

Wjp = § Wj,b

beC;

Therefore, the inductive step can be applied with respect to
these new values. The induction ends when the valu/ a§
equal to zero.

It is straightforward to see that when the induction termi-
nates, (20) and (21) hold with respect to the original values
of the z\*) and M.

Existence o that satisfies (i):We construct a flow network
G = (V,E) as follows:V = {s,t} UU; UUs, whereU; = R~
andU, =T'. Also set

E= {(Saa)}aei)%* Uy {(i7t)}i€1“ U {(a’i>}z§a)>0 .

We define an integral capacity functien E — N U {400}
as follows:

ko ife=(s,a), aeR™
cle) = 1 if e=(i,t), i€l (22)
+oo ife=(a,i),a€eR, 1€l

Next, apply the Ford-Fulkerson algorithm on the network
(G(E,V),c) to produce a maximal flow,,.,. Since all the
values ofc(e) are integral for alle € E, so the values of
fmax(e) must all be integral for every € E (see [6]).

It can be shown that the minimum cut in this graph has

CapaCitycmin = Zaem_ ko{



The flowf,,.x in G has a value o}
fmax((@, 7)) € {0,1} for all « € B~ andi € I". Then, for all
1 €I, we define

o (0%
a; = 0

For this selection ot = (a1, asz,-- - ,
anda; = « only if x§“> >0
Existence ot that satisfies (i) and (ii) simultaneouslyVe
start with the following definition.
Definition 3.1: The vertexi € U, is called acritical
vertex, if Y- con- 2 = M.

if fnax((a,i)) =1 for somea € U,
otherwise

ay), we havea € Cﬁk)

In order to have (19) satisfied after the next inductive step,

have to decrease the value ¥f - x§a> by (exactly) 1 for
every critical vertex. This is equivalent to havifig.. ((i,t)) =
1.

We aim to show that there exists a fléivof the same value,
which hasf*((i,t)) = 1 for every critical vertex;. Suppose

acn- Ka. Observe that We also define a linear cod®X) of lengthn+Y" . ,(d;

-3)
defined by (3_,c 7(d; — 2)) x (n+ > c 5(d; — 3)) parity-
check matrix 7 associated with all the sets of parity-check
equations (23)-(25) (for alf € 7).

Theorem 4.1:The vector(b;);cz, € R is a codeword
of C; if and only if there exists some vectg? € /%3 such
that ((b;)iez, | x7) € €.

We denote byS the polytope corresponding to the LP

relaxation problem (3)-(5) for the cod&X) with the parity-
check matrixF. Let (b, x) be a word inC”X), whereb ¢ C.
It is natural to represent points i§ as ((f,h),z), where
f= (fi(a))iez, acni- and h = (hﬁ))jej, i€L;, acy— are
vectors of indicators corresponding to the entggi € 7)
inbandx! (j € J, i€ L;)in x, respectively.

Theorem 4.2:The setS = {f : 3h,z s.t. ((f,h),2) €
S} is equal to the se@ = {f : 3 w s.t. (f,w) € Q}, and
therefore, optimizing the linear cost function (2) ow8ris
equivalent to optimizing it ovep.

that there is no such flow. Then, consider the maximum flow It follows from Theorem 4.2 that the polytop& equiv-

', which has’((i,t)) = 1 for themaximal possible numbef

alently describes the cod@. This description has at most

the critical vertices € U,. We assume that there is a criticalhh+m- (d—3) variables andn - (d —2) parity-check equations.

vertex ig € Uy, which hasf’((ig,t)) = 0. It is possible to
show that the flowf’ can be modified towards the floft/ of

the same value, such that fgf the number of critical vertices variables and of equations in the respective LP problem will

i € Uy havingf”((i,t)) = 1 is strictly larger than forf’.

It follows that there exists an integral floW in (G(V, E), c)
of value " .- ka, such that for every critical vertexc Us,
f*((i,t)) = 1. We define

o — { a if *((a,i)) = 1 for somea € U,
710

otherwise
anda = (a;);er. For this selection oz, we havea € C§k)
and the properties (i) and (ii) are satisfied.

IV. CASCADED POLYTOPE REPRESENTATION

In this section we show that the “cascaded polytopejiscussions. This work was supported by the Claude Shannon

However, the number of variables participating in evenyjtpar
check equation is at most Therefore, the total number of

be bounded from above by
(n+m(d—3))(g—1)+m(d—

m(d—2)(¢°

2) - ¢?

and _~_3q_2).

The polytope representation in this section, when used with

the LP problem in [3], leads to a polynomial-time decoder for
a wide variety of classical non-binary codes. Its perforogan
under LP decoding is yet to be studied.
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on the details.
For j € J, consider thej-th row H; of the parity-check
matrix 7 over fR, and recall that

¢; = {®idiez, : 3 bi-Hii =0}

1€Z;

Assume thatZ; = {i1,ig, - ,iq;} and denote.l;

{1,2,---,d;—3}. We introduce new variableg’ = (x/)icc,
and denotex = (x?)je7-

We define a new linear codéJ(X) of length 2d; — 3 by
(d;j —2) x (2d; — 3) parity-check matrix associated with the
following set of parity-check equations ovgt.

1) biy Hjiy + biHjin +x1 =0 (23)

2) Foreveryl=1,2,---,d; — 4,

7X% + bié+2 H]ﬂuz + X%-H =0. (24)

3) _ngfg + bidj—lHj,idj—l + b’idj Hj,idj =0. (25)
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