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Abstract—A novel method of low-complexity near-maximum-
likelihood (ML) decoding of quasi-cyclic (QC) low-density parity-
check (LDPC) codes over the binary erasure channel is presented.
The idea is similar to wrap-around decoding of tail-biting
convolutional codes. ML decoding is applied to a relatively short
window which is cyclically shifted along the received sequence.
The procedure is repeated until either all erasures have been
corrected, or no new erasures are corrected at a certain round.
A new upper bound on the ensemble-average ML decoding
error probability for a finite-length row-regular LDPC code
family is derived and presented. Furthermore, a few examples of
regular and irregular QC LDPC codes are studied by simulations
and their performance is compared with the ensemble-average
performance. Finally, the impact of the codeword weight and
stopping set size spectra on the ML and belief-propagation
decoding performance is discussed.

I. INTRODUCTION

Although asymptotic ensembles of low-density parity-check
(LDPC) codes are provably capacity-achieving under iterative
decoding (see [1] for a recent overview of asymptotic results),
there is a lack of both code constructions and low-complexity
decoding schemes for practical communication scenarios.

It is well-known that maximum-likelihood (ML) decoding
of an [n, k] LDPC code (where n is the code length and k is the
number of information symbols) with ν erasures is equivalent
to solving a system of linear equations of order ν. Thus, it can
be performed by Gaussian elimination with time complexity at
most O(ν3). Exploiting the sparsity of the parity-check matrix
of the codes can lower the complexity to approximately O(ν2)
(see overview and analysis in [2] and references therein).
Practically feasible algorithms with a thorough complexity
analysis can be found in [3]. However, ML decoding of long
LDPC codes of lengths of a few thousand bits over the binary
erasure channel (BEC) is still considered completely imprac-
tical. A class of low-complexity decoding algorithms for the
BEC, based on the concept of guessing bits when conventional
belief-propagation (BP) decoding stops, was proposed in [4],
[5]. Applying these algorithms to the decoding of LDPC
codes improves the performance of BP decoding, but does
not provide near-ML performance. A similar method applied
to turbo codes does, however, provide near-ML performance,
sometimes at low complexity cost (see [6, Fig. 3]).
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In this paper, we propose a decoding algorithm which
provides near-ML decoding of long quasi-cyclic (QC) LDPC
block codes. The decoding complexity is polynomial in the
window length, but only linear in the code length.

The new algorithm is based on a combination of BP decod-
ing of the QC LDPC code followed by so-called “QC sliding-
window” ML (WML) decoding. The latter technique is applied
“quasi-cyclically” to a relatively short sliding window, where
the decoder performs ML decoding of a zero-tail terminated
(ZT) LDPC convolutional code. Notice that unlike sliding-
window near-ML decoding of convolutional codes considered
in [7], the suggested algorithm working on the parent LDPC
convolutional code has significantly lower computational com-
plexity due to the sparsity of the code’s parity-check matrix
[8]. Also, it preserves almost all advantages of the convolu-
tional structure in the sense of erasure correcting capability.

The proposed algorithm resembles a wrap-around subop-
timal decoding of tail-biting (TB) convolutional codes [9],
[10]. Decoding of a TB code requires identification of the
correct starting state, and thus ML decoding must apply the
Viterbi algorithm once for each possible starting state. In
contrast, wrap-around decoding applies the Viterbi algorithm
once to the wrapped-around trellis diagram with all starting
state metrics initialized to zero. This decoding approach with
typically a few passes over the wrapped-around trellis diagram
yields near-ML performance at a complexity of a few times
the complexity of the Viterbi algorithm.

In order to estimate the achievable finite-length performance
of ML decoding of LDPC codes, we first derive an ensemble-
average decoding error probability for a specific ensemble E
(E in [11]). The ensemble E is wider than Gallager’s ensemble
[12] but easier to analyze, while codes from E are almost as
good as Gallager’s codes in terms of distance properties. As
expected, the finite-length frame error rate (FER) performance
of LDPC codes is close to known bounds on the achievable
error probability for general linear codes (see [13] for an
overview of bounds and a collection of recent results).

This paper is organized as follows. In Section II, we intro-
duce notations and code descriptions. Next, in Section III, the
new decoding algorithm is presented. The ensemble-average
finite-length performance of regular LDPC codes is studied
in Section IV, while, in Section V, we present simulation
results of the new decoding algorithm for QC LDPC codes.
Conclusions and a discussion are given in Section VI.



II. PRELIMINARIES

A binary QC LDPC block code can be considered as a TB
parent convolutional code determined by a polynomial parity-
check matrix whose entries are monomials or zeros.

A rate R = b/c parent LDPC convolutional code can be
determined by its polynomial parity-check matrix

H(D) =


h11(D) h12(D) . . . h1c(D)
h21(D) h22(D) . . . h2c(D)

...
...

. . .
...

h(c−b)1(D) h(c−b)2(D) . . . h(c−b)c(D)

 (1)

where D is a formal variable, hij(D) is either zero or a
monomial entry, that is, hij(D) ∈ {0, Dwij} with wij being
a nonnegative integer, and µ = maxi,j{wij} is the syndrome
memory.

The polynomial matrix (1) determines an [Mc,Mb] QC
LDPC block code C using a set of polynomials modulo
DM − 1, M being a positive integer. If M → ∞, then we
obtain an LDPC convolutional code which is considered as a
parent convolutional code with respect to the QC LDPC block
code for any finite M . By TB the parent convolutional code
to length M > µ, we obtain the binary parity-check matrix

HTB =



H0 H1 . . . Hµ−1 Hµ 0 . . . 0

0 H0 H1 . . . Hµ−1 Hµ . . . 0
...

. . .
...

...
...

. . .
Hµ 0 . . . 0 H0 H1 . . . Hµ−1

...
. . .

...
...

...
...

...
...

H1 . . . Hµ 0 . . . 0 . . . HT
0


of an equivalent (in the sense of column permutation) TB
code (all matrices Hi including HTB should have a trans-
pose operator to get the exact TB code [14]), where Hi,
i = 0, 1, . . . , µ, are binary (c − b) × c matrices in the series
expansion H(D) = H0 +H1D + · · ·+HµD

µ.
If every column and row of H(D) contain J and K nonzero

entries, respectively, we call C a (J,K)-regular QC LDPC
code and irregular otherwise.

Notice that by zero-tail termination [14] of (1) at length
W > µ, we can obtain a parity-check matrix of a [Wc, (W −
µ)b] ZT QC LDPC code.

III. QUASI-CYCLIC SLIDING-WINDOW DECODING OVER
THE BINARY ERASURE CHANNEL

Consider a BEC with erasure probability ε. Let H be an
M(c−b)×Mc parity-check matrix of a binary [n =Mc, k =
Mb, dmin] QC LDPC block code, where dmin is the minimum
Hamming distance of the code. An ML decoder corrects any
pattern of ν erasures if ν ≤ dmin−1. If dmin ≤ ν ≤ n−k, then
a unique correct decision can be obtained for some erasure
patterns. The number of such correctable patterns depends on
the code structure.

Let y = (y0, y1, . . . , yn−1), n =Mc, be a received vector,
where yi ∈ {0, 1, φ}, i = 0, 1, . . . , n − 1, and the symbol φ
represents an erasure. We denote by e = (e0, e1, . . . , en−1)
a binary vector, such that for all i = 0, 1, . . . , n − 1, ei = 1
if yi = φ, and ei = 0 if yi ∈ {0, 1}. Let I(e) be the set

of nonzero coordinates of e, |I(e)| = ν(e), and let z(y) =
(z0, z1, . . . , zν−1) be a vector of unknowns located in positions
of I(e). Consider the system of linear equations

z(y)HT
I(e) = s(e) (2)

where (·)T denotes the transpose of its matrix argument,
s(e) = yIc(e)H

T
Ic(e) is computed using the nonerased posi-

tions of y, Ic(e) = {0, 1, . . . , n− 1} \ I(e), and HI(e) is the
submatix of H corresponding to I(e). ML decoding over the
BEC is reduced to solving (2); its complexity for sparse parity-
check matrices is of order ν2, which is still computationally
intractable for LDPC codes of large lengths.

In order to reduce decoding complexity, we apply a sliding-
window decoding algorithm which is modified for QC LDPC
block codes. This decoder is determined by a binary parity-
check matrix HW given by

HW =


H0 . . . Hµ 0 0 . . . 0
0 H0 . . . Hµ 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 H0 . . . Hµ 0
0 0 . . . 0 H0 . . . Hµ

 (3)

of size (W − µ)(c − b) ×Wc, where W ≥ 2µ + 1 denotes
the size of the decoding window. The matrix (3) determines
a ZT LDPC parent convolutional code. We start decoding
with BP decoding applied to the original QC LDPC block
code of length n = Mc, and then apply ML decoding to
the ZT LDPC parent convolutional code determined by the
parity-check matrix (3). It implies solving a system of linear
equations

z(yi+Wc−1
i )HT

I(e),W = sW(e)

where yi+Wc−1
i = (yi, yi+1 mod n, . . . , yi+Wc−1 mod n), i =

0, s, 2s, . . . mod n, is a subvector of y corresponding to the
chosen window, s (assumed to be a divisor of n) denotes
the size of the window shift, and sW(e) and HI(e),W are
the corresponding subvector of s(e) and submatrix of HI(e),
respectively. The final decision is made after αn/s steps,
where α denotes the number of passes of sliding-window
decoding. The formal description of the decoding procedure
is given below as Algorithms 1 and 2.

Notice that the choice of s affects both the performance and
the complexity. By increasing s we can speed up the decoding
procedure at the cost of some performance loss. In the sequel,
we use s = c bits that corresponds to the lowest possible FER.

Algorithm 1 BP-BEC
while there exist parity checks with only one erased symbol
do
Assign to the erased symbol the modulo-2 sum of all
nonerased symbols participating in the same parity check.
end while

IV. ENSEMBLE-AVERAGE DECODING ERROR
PROBABILITY

In this section, we derive the ensemble-average ML de-
coding block error probability EE{Perr(E , ε)}, where EE{·}



Algorithm 2 Wrap-around algorithm for near-ML decoding
of QC LDPC codes over the BEC

Input: y = (y0, . . . , yn−1) ∈ {0, 1, φ}n.
Perform BP decoding on y (using Algorithm 1);
wstart← 0; wend←Wc− 1; corrected← 1;
while corrected > 0 do

corrected← 0;
Apply ML decoding to the window (ywstart, . . . , ywend);
wstart← wstart + s mod n;
wend← wend + s mod n;
if wstart = 0 then

corrected ← number of corrected erasures after
a full round;

end if
end while
return y

denotes the ensemble average of its argument, over the BEC
with erasure probability ε for the ensemble E(n, r,K) (the
ensemble E in [11]) of LDPC codes determined by parity-
check matrices chosen with uniform probability from the
ensemble of binary r × n matrices whose row weights are
equal to K. This average decoding error probability can
be interpreted as an upper bound on the achievable error
probability for regular LDPC codes.

For any ensemble G(n, r) of random [n, n−r] binary linear
codes [13]

EG{Perr(G, ε)} =

n∑
ν=r+1

(
n

ν

)
εν(1− ε)n−ν

+

r∑
ν=1

(
n

ν

)
εν(1− ε)n−νEG{Perr (G, ε|ν)} (4)

where [15]
EG{Perr(G, ε|ν)} ≤ 2ν−r. (5)

Theorem 1. For the ensemble E of row-regular LDPC codes
with row weight K

EE{Perr(E , ε|ν)} = 2ν−r
(
1 +

(
n−ν
K

)(
n
K

) )r − 1. (6)

Proof: Our goal is to determine the average error prob-
ability EE{Perr(E , ε|ν)} for the ensemble of sparse parity-
check matrices described above. This probability is equal to
the probability that a solution of (2) is not unique, i.e.,

Perr(E , ε|ν)=
∑

zi,zj 6=zi

Pr
(
ziH

T
I(e) = zjH

T
I(e) = s(e)|ν

)
where Pr

(
ziH

T
I(e) = zjH

T
I(e) = s(e)|ν

)
is the conditional

probability that two different subvectors zi and zj are solu-
tions of (2), or equivalently

Perr(E , ε|ν) =
∑
z 6=0

Pr
(
zHT

I(e) = 0|ν
)

=
∑
z

Pr
(
zHT

I(e) = 0|ν
)
− 1. (7)

Interpreting solutions z as equiprobable random vectors
with probability p(z) = 1/2ν , (7) can be rewritten as

Perr(E , ε|ν) = 2ν
(
Ez{Pr (s(e) = 0|ν)} − 1

2ν

)
.

Then,

EE{Perr(E , ε|ν)} = 2ν
(
EE{Ez{Pr (s(e) = 0|ν)}} − 1

2ν

)

= 2ν

(
r−1∏
i=0

EE{Ez{Pr(si = 0|ν)}} − 1

2ν

)
(8)

where the average probability of a zero syndrome component
given ν erasures can be represented as

Ez{Pr(si = 0|ν)} = Ez{Pr(si = 0|wi = 0, ν)p(wi = 0|ν)
+ Pr(si = 0|wi 6= 0, ν)p(wi 6= 0|ν)}

where p(wi = 0|ν) denotes the probability of an all-zero row
in HI(e). Taking into account that z is a random vector with a
uniform distribution we can conclude that its product by any
nonzero column of HT

I(e) is equal to zero with probability 1/2.
Then, we obtain

Ez{Pr(si = 0|ν)} = 1 + p(wi = 0|ν)
2

. (9)

The ensemble-average probability of an all-zero row in HI(e)

can be estimated as follows

EE{p(wi = 0|ν)} =
(
n−ν
K

)(
n
K

) ≤ (n− ν
n

)K
. (10)

Inserting equality from (10) into (9) and (8) yields (6).
From the inequality in (10) we can also obtain the simple

upper bound

EE{Perr (E , ε|ν)} ≤ 2ν−r
(
1 +

(
1− ν

n

)K)r
− 1.

A generalization of the bound in (4)–(5) to an ensemble of
LDPC codes over the q-ary BEC is presented in [16]. Notice
that the upper bound in [16] for q = 2 is derived for an LDPC
code ensemble with column and row weights growing with
the code length (see [16, Thm. 1]).

We do not present here any lower bounds on the ensemble-
average error probability in (5), since for rate R = 1/2 and
code length above 1000, the known lower bound is very close
to the upper bound in (5) [13].

V. NUMERICAL RESULTS

We consider three classes of QC LDPC codes parametrized
by the integer M (see Section II) and determined by three
monomial parity-check matrices of their parent convolutional
LDPC codes. Class A contains irregular rate R = 12/24
QC LDPC codes of length 1200 − 12000 (M ∈ [50, 500])
determined by the parity-check matrix

H(D) =
(
Hbd(D) Ha(D)

)
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Fig. 1. Channel erasure probability achievable at a FER of 10−3 for codes
from class A (irregular QC LDPC codes) as a function of code length. Window
size is Wc = 1224 bits. The blue horizontal line indicates the BP decoding
threshold.

where Hbd is a bidiagonal matrix of size 12 × 11 with ones
on the diagonals and zeros elsewhere, and Ha is a 12 × 13
matrix whose degree matrix is

0 −1 −1 −1 0 −1 0 −1 −1 0 −1 0 0
−1 −1 0 −1 −1 0 −1 −1 −1 16 0 5 −1
−1 0 −1 −1 −1 −1 −1 −1 0 12 1 −1 7
−1 −1 −1 −1 6 −1 −1 0 −1 15 7 11 −1
13 −1 −1 −1 −1 −1 −1 11 22 −1 1 21 4
−1 −1 8 −1 −1 −1 21 −1 −1 12 14 −1 19
−1 −1 −1 0 −1 10 −1 −1 15 21 −1 12 3
−1 10 −1 −1 −1 −1 −1 18 −1 5 14 21 23
−1 −1 −1 3 −1 −1 8 −1 −1 18 23 16 11
−1 −1 14 −1 23 −1 −1 −1 20 −1 11 22 7
0 −1 −1 −1 −1 19 −1 −1 −1 18 6 5 22
−1 20 −1 1 −1 −1 −1 −1 −1 5 11 23 19


.

The polynomial parity-check matrix H(D) is obtained from
this degree matrix by replacing each negative entry with a zero,
and replacing each nonnegative entry e with De. This parity-
check matrix was found using the optimization technique
described in [17].

Class B contains (3, 6)-regular rate R = 3/6 QC LDPC
codes of length 1026− 12000 (M ∈ [171, 2000]) determined
by the parity-check matrix of [18, Table IV].

Class C contains (4, 8)-regular rate R = 8/16 double-
Hamming QC LDPC codes [19] of length 1296 − 12000
(M ∈ [81, 750]) determined by the degree matrix

11 −1 4 −1 −1 −1 −1 5 6 5 −1 −1 15 −1 3 11
13 −1 −1 11 −1 −1 1 −1 13 2 −1 2 −1 13 −1 7
3 −1 −1 −1 5 −1 10 9 −1 3 8 −1 −1 10 8 −1

12 −1 −1 −1 −1 1 8 15 9 −1 8 4 3 −1 −1 −1
−1 13 −1 1 10 12 2 −1 −1 −1 −1 0 −1 6 6 −1
−1 11 6 −1 2 6 −1 14 −1 −1 14 −1 0 −1 2 −1
−1 13 3 5 −1 5 −1 −1 10 −1 −1 −1 10 12 −1 7
−1 3 4 10 4 −1 −1 −1 −1 3 14 11 −1 −1 −1 4

 .

We have used the algorithm in [20], [21] to compute the
initial codeword weight and stopping set size spectra of the
codes for one particular value of M for each class. The results
are tabulated in Table I, where smin denotes the stopping
distance.

In Figs. 1, 2, and 3, the channel erasure probability ε
achievable at a FER of 10−3 by applying standard BP de-
coding (blue curves) and the new decoding algorithm (red
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Fig. 2. Channel erasure probability achievable at a FER of 10−3 for codes
from class B ((3, 6)-regular QC LDPC codes) as a function of code length.
Window size is Wc = 1026 bits. The blue horizontal lines indicate the ML
and BP decoding thresholds.

2000 4000 6000 8000 10000 12000

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

BP threshold for (4,8) LDPC code

ML threshold for (4,8) LDPC code

Code length

C
h
an

n
el

er
as
u
re

p
ro
b
ab

il
it
y
fo
r
F
E
R
=

10
−
3

General bound

(4, 8)-LDPC bound

WML decoding

BP decoding

1

Fig. 3. Channel erasure probability achievable at a FER of 10−3 for codes
from class C ((4, 8)-regular QC LDPC codes) as a function of code length.
Window size is Wc = 1296 bits. The blue horizontal lines indicate the ML
and BP decoding thresholds.

curves) to QC LDPC codes from code classes A, B, and
C, respectively, as a function of code length, is presented.
For comparison, the upper bounds on the ensemble-average
decoding error probability for random linear codes (black
dashed curve) and for random regular LDPC codes (ensemble
E ; black solid curve) are presented in the same figures. BP
decoding thresholds, computed using density evolution [22],
as well as ML decoding thresholds from [23] (blue horizontal
lines) are plotted in the same figures for comparison.

In Fig. 4, we present the FER performance of BP and near-
ML decoding of three QC LDPC codes of the same length
4800 (one code from each of the code classes A, B, and C) as
a function of the channel erasure probability. For comparison,
in the same figure, the bit error rate (BER) performance of
WML decoding with window size Wc = 792 bits of the
length-1200 and rate-12/24 QC LDPC code from class A, and
the performance of contraction-based message-passing (CMP)
decoding of two random codes of length 1000 from [4], are
presented. Although the window size of the WML decoder is



TABLE I
THE INITIAL CODEWORD WEIGHT AND STOPPING SET SIZE SPECTRA OF CODES FROM THE CODE CLASSES A, B, AND C.

Code class M dmin Codeword weight smin Stopping set size
spectrum spectrum

A [17] 51 18 (51, 0, 51, 0, 102, 102, 255) 18 (51, 51, 51, 51, 153, 153, 510)
B [18] 171 24 (2565, 0, 0) 24 (2565, 0, 0)
C [19] 81 > 26 26 (81)
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Fig. 4. Comparison of the FER performance of BP and near-ML decoding
of QC LDPC codes of length 4800 (one code from each of the three classes).

close to the code length of the CMP decoder, the difference
in performance is noticeable.

VI. DISCUSSION AND CONCLUSION

The largest gain of WML decoding with respect to BP
decoding is achieved for the (4, 8)-regular LDPC codes from
class C for which both the difference between ML and BP
decoding thresholds and the minimum distance are the largest
among all three code classes.

Surprisingly, unlike for regular codes, the BP decoding
threshold for irregular codes computed by density evolution is
lower than the simulated achievable performance (see Fig. 1).
Moreover, WML decoding performance for class A codes is
better than that of the (3, 6)-regular codes, despite that the
minimum distance for the class B codes is larger (see Table I).

For the considered QC LDPC codes, WML decoding out-
performs BP decoding. However, due to memory restrictions,
WML decoding does not achieve the performance of ML de-
coding of ensemble-average LDPC codes of the same length,
especially if the code length is much larger than the decoding
window size.
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