
Subspace Synchronization: A Network-Coding
Approach to Object Reconciliation
Vitaly Skachek

Institute of Computer Science
University of Tartu, Estonia

vitaly.skachek@ut.ee

Michael G. Rabbat
Department of Electrical and Computer Engineering

McGill University, Montréal, Canada
michael.rabbat@mcgill.ca

Abstract—Assume that two users possess two different sub-
spaces of an ambient linear space. We show that the problem
of synchronization of such vector spaces can be easily solved
by an efficient algorithm. By building on this observation, we
propose an algorithm for synchronization of two collections of
binary files of length n each, stored in the cloud in a distributed
manner. By further employing techniques akin to network coding,
we propose a more efficient file synchronization algorithm that
has communication complexity O(d · n) bits and computational
complexity O(k2 · n) operations, where k is the total number
of files and d is the number of files that differ. The algorithm
successfully reconciles two sets of files in 3 communication rounds
with high probability.

Index Terms—Distributed storage, cloud storage, file reconcil-
iation, network coding, subspace codes.

I. INTRODUCTION

As cloud storage gradually becomes more and more pop-
ular, there is a need for efficient supporting algorithms. One
particular problem arises when multiple copies of a collection
of files are stored on several devices, in a distributed manner.
Each file may be stored on only some of the servers, and it
might be necessary to reconcile the data stored in different
servers such that, at the end of the process, each server has
all the files in the collection.

A simple approach to this problem is to have tables or
lists of files stored at each server. In some cases, however,
this approach might not work well, as the tables can be
outdated. For example, in applications such as Dropbox, the
user may access the same distributed storage system from
several devices, while each individual device may only be
intermittently connected to the internet.

Let A be a reconciliation algorithm. In the analysis
of A, we follow the framework that was defined in [8].
Important parameters in reconciliation are communication
cost COMMUNICATION(A) (the worst case number of
bits sent between the devices), computational complexity
COMPUTATION(A) (the worst case number of operations
performed at each device) and time TIME(A) (the length of

1The work of V. Skachek is supported in part by the research grants PUT405
and IUT2-1 from the Estonian Research Council, by the EU COST Action
IC1104 on random network coding and designs over Fq , and by the European
Regional Development Fund through the Estonian Center of Excellence in
Computer Science, EXCS.

2The work of M. Rabbat is supported in part by the Natural Science and
Engineering Research Council of Canada.

the largest chain of messages in the communication protocol).
Here, following [8], a chain of messages m1,m2, · · · ,m`

has length `, if the reception of the message mi necessarily
precedes the sending of mi+1.

A number of algorithms for efficient reconciliation of
files have been proposed. These algorithms typically consider
only two devices A and B, which are connected through
an error-free channel. An approach in [6] uses interpolation
of characteristic polynomials akin to Reed-Solomon codes.
The algorithm proposed in [6] has COMMUNICATION(A) =
O(d log u), COMPUTATION(A) = O(d3) and TIME(A) =
O(log k) with high probability. Here k is the total number of
objects in possession of A and B, d is the number of objects
possessed by only one user, and u is the size of the space
where the objects are taken from.

Another reconciliation algorithm, based on invertible Bloom
filters, was recently proposed in [2], [3]. That algo-
rithm has parameters COMMUNICATION(A) = O(d log u),
COMPUTATION(A) = O(d) and TIME(A) = 3 (with
high probability). Another recent algorithm performing set
reconciliation with high probability by using Biff codes
was proposed in [7]. That algorithm has parameters
COMMUNICATION(A) = O(d log u), COMPUTATION(A) =
O(k log u) and TIME(A) = 3.

In this work, we build on the ideas from the area of network
coding [1], [5]. In particular, we use the idea that information
can be represented by vector spaces instead of vectors [4],
[9]. For the case of two users, we first show in Section III
that the problem of subspace syncronization can be easily
solved by an efficient algorithm. Then, in Section IV, we
extend that approach and propose a new, yet not practical,
algorithm for synchronization of two collections of files by
using a mapping based on error-correcting codes. In Section V,
we further employ ideas from network coding to propose a new
file synchronization algorithm. That algorithm has communi-
cation complexity COMMUNICATION(A) = O(d · log u) bits,
computational complexity COMPUTATION(A) = O(k2 · log u)
and number of rounds TIME(A) = 3. Finally, we discuss
existence of suitable hash functions for the use in the above
algorithm in Section VI.

II. NOTATION AND PROBLEM SETUP

Let ` be a positive integer, and let v1,v2, · · · ,v` be vectors
over the finite field F. Denote their span by 〈v1,v2, · · · ,v`〉.
Denote by 0 the vector of zeros, whose length will be clear
from the context, and by Is the s× s identity matrix.

Let W be an ambient space, and let U, V ⊆W . Denote by
U + V the subspace sum of the subspaces U and V ,

U + V = {u+ v : u ∈ U, v ∈ V } .

If U ∩ V = {0}, then U + V is a direct sum, which we
denote by U ⊕ V . The definition of the vector sum naturally
generalizes to the sum of more than two subspaces.

Denote by dist(U, V) the subspace distance metric between
subspaces, defined as

dist(U, V) = dim(U) + dim(V)− 2 dim(U ∩ V)

= 2 dim(U ∪ V)− dim(U)− dim(V) .

(See [4] for details.) The distance between the subspaces
being synchronized plays a key role in the complexity of the
algorithm described below.

Let G = (D, E) be a directed graph, E ⊆ D × D, and
assume that the nodes are allowed to communicate only along
the directed edges in E . Assume that each node v ∈ D owns
a set of objects Ov ⊆ U , where U is a “universe” of size
u. In practice, Ov can be a collection (set) of files, which
can be viewed as binary vectors of maximum length n, or as
vectors over some extension field of F2. The synchronization
problem is defined as computing ∪v∈DOv at all nodes v ∈
D, while trying to minimize communication, computation and
time complexities. We will refer to an algorithm that achieves
such a synchronization as a set reconciliation algorithm.

A related problem is a subspace synchronization problem.
Let Vv be a vector space associated with every node v ∈ D,
Vv ⊆W , and W is an ambient space. Given initial subspaces
Vv at each node v ∈ D, the subspace synchronization problem
entails computing the subspace O =

∑
v∈D Vv at every vertex

v ∈ D.

III. TWO-PARTY SUBSPACE SYNCHRONIZATION

Let F be a finite field with q elements. Let G2 = (D, E)
denote the graph that has exactly two nodes, D = {w, v}, con-
nected with two anti-parallel edges; i.e., E = {(w, v), (v, w)}.
Assume also that the nodes w and v initially possess vector
spaces U and V , respectively, which are subspaces of an
ambient space W over the finite field F; i.e., U, V ⊆W ⊆ Fn
with n being a positive integer. Let u be the size of the universe
of the vectors, i.e., u = qn.

The proposed synchronization algorithm A works in
the following way. Let d = dist(U, V) and k =
max{dim(U),dim(V)}. The algorithm proceeds in rounds. At
each iteration of the algorithm A, the node w draws a nonzero
vector x randomly and uniformly in U . It communicates this
vector to v. The node v checks if the vector x is in V . If not,
v expands V by this vector; namely it performs

V ← V ⊕ 〈x〉 .

After this operation is repeated for Θ(d) rounds, the roles of
w and v are switched: now it is v that sends random vectors
to w for Θ(d) rounds.

Lemma 1. Let ∆ = dim(U)− dim(U ∩ V). If ∆ ≥ 1, then
for a random nonzero vector x drawn uniformly from U , the
probability Prob(x /∈ V) ≥ q−1

q .

Proof. The selected vector x is in U . The number of
nonzero vectors in U is qdim(U)−1, and the number of vectors
in U ∩ V is qdim(U∩V) − 1. The probability that x is not in
V is

Prob(x /∈ V) = 1− Prob(x ∈ V)

= 1− qdim(U∩V) − 1

qdim(U) − 1

≥ 1− qdim(U∩V)−dim(U)

≥ 1− 1

q
.

It follows from Lemma 1, that at each iteration, the dimen-
sion of V grows by one with probability at least q−1

q ≥ 1
2 .

Therefore, after c · d steps, where c is a sufficiently large
constant, dim(U ∩ V) = dim(U) with high probability, and
so U ⊆ V . By a similar argument, after an additional O(d)
steps, V ⊆ U and U ⊆ V with high probability. This leads us
to the following conclusion.

Theorem 1. The randomized algorithm A performs subspace
synchronization over the graph G2 with communication cost
COMMUNICATION(A) = O(d · n log q) = O(d · log u) ,
computation complexity COMPUTATION(A) = O(k2 ·n), and
time TIME(A) = 2, with high probability.

Proof. We have already shown that the expected number
of communicated vectors is O(d) with high probability. Each
vector consists of n symbols in F, and each of the symbols
has O(log q) bits in its representation.

The next parameter in question is computation time. The
receiving node can first write all its vectors as rows in a matrix,
and to bring it into the row-echelon form, which takes O(k2·n)
operations. Next, testing whether a new vector lies in the row
space of the given matrix takes O(k ·n) operations. Since there
are only O(d) such vectors, and d ≤ 2k, the total complexity
is O(k2 · n).

Due to Lemma 1, if the new received vector lies in the row
space of the vectors that the node already holds, then with high
probability all the required vectors are already in the posses-
sion of the node. This probability can be further improved
by repeating this check with another (independent) vector(s).
At that point, the node has all the required vectors with high
probability, and the synchronization round is complete. This
yields that TIME(A) = 2.

Clearly, if d = dist(U, V) then, in the absence of additional
assumptions, any synchronization protocol requires at least
Ω(d ·n log q) communication, and so the algorithm A is order
optimal.

IV. RECONCILIATION USING ERROR-CORRECTING CODES

In this section, we describe a method for constructing sub-
spaces for the synchronization problem using error-correcting
codes. The main idea of this approach is to introduce a
mapping of arbitrary vectors onto linearly-independent vectors
(which are taken as columns of the parity-check matrix of a
Reed-Solomon code). In that case, these linearly independent
vectors can serve as a basis of the vector subspace. This
approach is suitable if the number of objects is relatively small
when compared to their size.

Consider a classical [n, k, d]-linear code C over the finite
field F = Fq , such that n ≥ 2m for some integer m > 0. For
example, we can use a Reed-Solomon code with n+1 = k+d.
Let the (n− k)× n parity-check matrix of C be

H = [h1 | h2 | · · · | hn] ,

where hi’s are the columns of H .
With every vector x ∈ {0, 1}m we associate a unique

integer index φ(x) ∈ [n]. Thus if x1 6= x2, we have
φ(x1) 6= φ(x2). Assume that O = {xi}i∈S is a collection
of objects for some S ⊆ [n]. We represent the collection O by
the vector space

Φ(O) ,
〈
hφ(x)

〉
x∈O , (1)

i.e., the vector space that is obtained by taking a linear span
of the columns in H corresponding to the objects (vectors) in
O.

In order to perform reconciliation of two sets of objects,
O1 and O2, the corresponding vector spaces V1 and V2 are
constructed, such that Vi = Φ(Oi) for i = 1, 2. Then the
synchronization algorithm A is applied to V1 and V2.

Theorem 2. Let O1 6= O2 be two nonempty sets of objects
to be reconciled. If d is chosen such that

d ≥ 4 ·max{|O1|, |O2|}+ 1 , (2)

then the following three statements hold:
1) Φ(O1) 6= Φ(O2);
2) The pre-image of the subspace Φ(O1)+Φ(O2) is unique;

and
3) Φ(O1) + Φ(O2) = Φ(O1 ∪O2).

Proof. 1) Based on the choice of d in (2), any set of less
than d columns in H is linearly independent. Let S1

and S2 be sets of indices of objects in O1 and O2,
respectively, and O1 6= O2. Then, for any combination
of α’s and β’s from F, not all zeros,∑

x∈O1

αφ(x)hφ(x) +
∑
x∈O2

βφ(x)hφ(x) 6= 0 .

This is due to the fact that there exists x ∈ O1\O2

(or x ∈ O2\O1), and the number of such elements x
is less than d. Therefore, the sum of the correspond-
ing linearly independent columns is non-zero, and so
Φ(O1) 6= Φ(O2) for any O1 6= O2.

2) Let V = V1 + V2. Then, from (2), dim(V) < d/2.
Suppose that there exists a set Ŝ of |Ŝ| < d/2 columns
in H , such that V = 〈hi〉i∈Ŝ . Take any nonzero vector
v ∈ V . We can write

v =
∑
i∈Ŝ

βihi =
∑

x∈O1∪O2

αφ(x)hφ(x) .

The second equality, which holds for all v ∈ V , implies
that O1∪O2 = Ŝ since any collection of d−1 or fewer
distinct vectors are linearly independent. We conclude
that V has a unique pre-image under Φ, which is the set
O1 ∪O2.

3) The consistency Φ(O1)+Φ(O2) = Φ(O1∪O2) follows
directly from the definition of the mapping Φ in (1).

Next, we analyze the selection of the parameters. If a Reed-
Solomon code is used and the size of the underlying field F
is large enough, then there exists a code C with n = k+d−1.
For such code, the columns in H have length d− 1, i.e., the
parameters n and k can always be chosen as in (2).

Note, that the expected number of communicated vectors is
bounded by O(d). Thus, the proposed reconciliation algorithm
has communication complexity O(d·(n−k)) = O(d2) symbols
over F, or equivalently, O(d2 log q) bits.

In order for an appropriate Reed-Solomon code to exist, we
should have that q ≥ n. Therefore, the size of the alphabet
should be proportional to n. Thus, the number of bits needed
to represent one symbol from F is logarithmic in n. The
overall communication complexity of the proposed approach
is COMMUNICATION(A) = O(d2 log2 n).

We note that the number of various binary vectors of length
m is u = 2m ≈ n. Therefore, COMMUNICATION(A) =
O(d2m) = O(d2 log u). This communication complexity is
higher than its counterpart in [3], [6], [7].

Next, we analyze COMPUTATION(A). Essentially, the user
should find the columns of H that serve as a basis of the
received space. This can be done in O(d2 · n) time by solving
a system of O(d) linear equations with O(n) unknowns.
Then, the user should be able to efficiently map between
a subset of the set of columns of H and the information
vector. One way to achieve that is by enumerative encoding.
Another way is to use a large look-up table, in which case the
computational complexity is log2 n by using binary search.
The total computational complexity in that case is O(d2 · u).

As for the time, TIME(A) = 2, similarly to the analysis of
the protocol described in Section III.

V. RECONCILIATION ALGORITHM USING NETWORK
CODING AND HASH FUNCTIONS

In this section, building on the ideas from Section III, we
present a new method for reconciliation of sets of large files.
The method uses ideas from network coding — in particular,
from non-coherent network coding [4].

We assume a scenario with two users, A and B, connected
by antiparallel links. Let F be a finite field as before, and let

n be a large integer (the length of files). Here we make the
simplifying assumption that all files are of the same length.
The results can be easily extended to the case when n is an
upper bound on the length of a file.

Let k be the total number of objects (files) in joint posses-
sion of A and B. We index them by the elements of the set
X = [k]. Denote by OA = {xi ∈ Fn}i∈XA

and OB = {xi ∈
Fn}i∈XB

the set of objects, which are unique to A and to B,
respectively. Also denote by OC = {xi ∈ Fn}i∈XO

the set of
objects which are possessed by both A and B. Here, XA,XB
and XO are subsets of X . Let s = |XA| and τ = |XA ∪ XO|.
As before, let d = |XA ∪XB | be the number of different files
for A and B. We assume that s, or a tight upper bound on it,
is known to both A and B. Towards the end of the section,
we discuss a modification for the case when s is not known
to A and B.

User A performs the following operations. First, it creates
s arbitrary linear combinations of the form

yj =
∑

i∈XA∪XO

αj,ixi , j ∈ [s] ,

where the coefficient vectors αj = (αj,i)i∈XA∪XO
(for each

j ∈ [s]) are selected uniformly at random in Fτ . User A checks
that all vectors αj , j ∈ [s], are linearly independent. (If they
are not, A replaces linearly dependant vectors, and repeats the
process again.)

The protocol uses a hash function H : Fn → K, where
K is the finite set of possible keys. (We will discuss hash
functions in more detail in the sequel.) User A applies H to
xi for all i ∈ XA ∪ XO to produce hash values H(xi) for all
i. These values are transmitted to B. Their goal is to impose
an order on the vectors in XA ∪ XO, so that the transmitted
coefficients can be matched to the objects by B with high
probability of success.

To this end, A transmits to B the following data:
• the header h, which contains the sorted list of values
H(xi), i ∈ XA ∪ XO;

• for all j ∈ [s], the vector pairs (αj ,yj).
Let X be a τ×n matrix over F, whose rows are all vectors

xi indexed by [τ]. Similarly, let Y be a s× n matrix, whose
rows are vectors yi for all i ∈ [s]. Denote

A =

α1,1 α1,2 · · · α1,τ

α2,1 α2,2 · · · α2,τ

...
...

. . .
...

αs,1 αs,2 · · · αs,τ

 .

The transmitted vector pairs can be viewed as the rows of the
matrix

A · [Iτ |X] = [A | Y] ,

where

X =

x1

x2

...
xτ

and

Y = AX =

y1

y2
...
ys

 .

After receiving this message, user B performs the following
operations to recover the missing objects.

1) Compute values of the function H applied to the vectors
in its possession. By comparing these values to the
values in the header h, it finds the indices corresponding
to elements in XO.

2) For each j ∈ [s], subtract vectors
∑
i∈XO

αj,ixi from
yj . Compute the resulting matrix with s rows:[

Ã | Ỹ
]
,

where rows of Ỹ are the vectors

ỹj = yj −
∑
i∈XO

αj,ixi ,

and Ã is an invertible s × s matrix obtained from A
by removing the columns corresponding to the vectors
indexed by XO. The matrix Ã is invertible due to linear
independence of the columns in A.

3) Compute the matrix[
I | Ã−1Ỹ

]
=
[
I | X̃

]
,

where, if there are no hashing collisions, X̃ is exactly the
matrix X having rows corresponding to the vectors indexed
by XA.

The algorithm can fail at Step 1 if the hash function H
maps more than one vector in X to the same key value.
Therefore, the hash function needs to be selected from a set
of sufficiently large number of hash functions, uniformly at
random. If the image of H is sufficiently large, and H’s are
sufficiently independent, then the collision probability can be
made small.

To estimate the communication complexity of the proposed
algorithm, observe that A sends s vectors to B. Each vector
consists of the data (n entries from F) and the header (τ
entries from F). Typically, τ � n. Therefore, the total
communication complexity is O(d · n) symbols from F, or
equivalently COMMUNICATION(A) = O(d · n log q) (when
measured in bits).

User A needs to verify that the vectors αj are linearly inde-
pendent. This can be done by Gaussian elimination, requiring
O(s3) operations. User B has to subtract linear combinations
of vectors of length n. This requires O(τ2 ·n) operations. Ad-
ditionally, inverting the matrix Ã requires O(s3) operations,
and computation of X̃ requires additional O(s2 ·n) operations.
Recall that τ = O(k) and s = O(k). We conclude that the total
computational complexity is COMPUTATION(A) = O(k2 · n).

Finally, if s is known, then TIME(A) = 2 since A sends
linear combinations to B and vice versa. If s is not known,
then before the execution of the protocol, B sends to A the list

of hash values of each of its files. In this way A can determine
the value of s. In that case, the number of rounds becomes
TIME(A) = 3.

We note that the proposed algorithm has essentially optimal
communication complexity. Its number of communication
rounds is better than that of its counterpart in [6], and similar
to that of [2], [3], [7]. The computational complexity, however
is inferior to the algorithms [2], [3], [7].

VI. AVOIDING COLLISIONS

As it was pointed out earlier, the proposed reconciliation
algorithm can fail if two or more different files are mapped
to the same value by the hash function. This problem can be
resolved in various ways. For example, if the hash function is
selected well, then the expected number of such collisions is
small. Then, the two-stage algorithm can be used. In the first
stage, the servers exchange the lists of hash values of the files
in their possession and then A sends to B the files, which
have the same values of hash function. In the second stage,
the algorithm proceeds as described in the previous section.
However, this solution is not very elegant.

Another solution is based on the use of a large number of
different hash functions. For each round of the algorithm, the
hash function is selected randomly from a pre-determined pool
of hash functions. The pool is known to both users. Before the
beginning of the execution of the protocol, the user A sends
to B also the ID number of the selected hash function he is
using.

In this section, we discuss the existence of suitable random
hash functions (which are not necessarily computationally
efficient) that can potentially be used in such an algorithm.
More specifically, we analyze the size of the key space of such
hash functions required to have a desired level of performance.

Assume that we have a collection S of k different files in
{0, 1}n. Let H be a set of all functions H : {0, 1}n → K,
where K is the set of all possible keys. We assume hereafter
that k � |K| � 2n.

Now, denote by P the probability that for any pair of
distinct files xi,xj ∈ S, H(xi) 6= H(xj). Since the values
of the function H are uniformly random, the probability that
its values on the k given files are all different is

P =
|K|(|K| − 1) · · · (|K| − k + 1)

|K|k

=

(
1− 1

|K|

)(
1− 2

|K|

)
· · ·
(

1− k − 1

|K|

)
≥

(
1− k − 1

|K|

)k−1
=

((
1− 1

|K|/(k − 1)

)|K|/(k−1))(k−1)2/|K|

≈ e−
(k−1)2

|K| ,

where the last transition holds for sufficiently large values of
|K|. We conclude that if K is selected such that |K| > c ·
(k − 1)2 for some large constant c > 0, then the probability

of success is at least e−1/c. It can be made as close to one
as desired by taking sufficiently large c. Of course, working
with the set H of all possible hash functions is not feasible, as
we need too many bits to encode their indices. However, this
suggests that working with a relatively small subset of hash
functions will do well in most of the cases.

VII. DISCUSSION

In this work, we first show that subspace synchronization
can be performed efficiently. Next, we propose new file
reconciliation algorithms, which mimic the idea of subspace
synchronization and use ideas from the area network coding.

One advantage of the proposed algorithm is that it can also
be used in one-directional reconciliation. For example, if only
a one-directional channel from A to B is available, and there
is no channel in the opposite direction, the general algorithm
still can be used for B to obtain a reconciled set of files using
just one communications round (i.e., TIME(A) = 1). This is
generally not the case in more straight-forward algorithms,
which are based on tables or lists and assume exchange of the
information in two directions.

We note that the new algorithm has essentially optimal com-
munication complexity. Its number of communication rounds
is better than that of its counterpart in [6], and similar to
that of [2], [3], [7]. The computational complexity, however
is inferior to the algorithms [2], [3], [7]. Although the pro-
posed methods are less computationally efficient, the approach
proposed in this paper offers a different perspective on file
reconciliation which may lead to improved algorithms in the
future. It is interesting to compare the proposed algorithm to
its counterpart in [6]. If the size of the files, n, is large, then
the latter requires performing multiplications in the field with
2n elements, which can be very time-consuming. By contrast,
the proposed algorithm requires only additions of vectors of
length n and multiplications in the ground field.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li and R.W. Yeung, “Network information
flow”, IEEE Trans. on Inform. Theory, no. 46, vol. 4, Jul. 2000.

[2] D. Eppstein, M. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference? Efficient set reconciliation without prior context”, in Proc.
ACM SIGCOMM, pp. 218—229, 2011.

[3] M. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup tables”,
Proc. 49th Annual Allerton Conference, pp. 792–799, 2011.

[4] R. Koetter and F.R. Kschischang, “Coding for errors and erasures in
random network coding”, IEEE Trans. on Inform. Theory, no. 54, vol.
8, pp. 3579-3591, Aug. 2008.

[5] R. Koetter and M. Médard, “An algebraic approach to network coding”,
IEEE/ACM Trans. Networking, no. 11, vol. 5, pp. 782–795, 2003.

[6] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation withn-
early optimal communication complexity”, IEEE Transactions on Infor-
mation Theory, vol. 49(9):2213–2218, 2003.

[7] M. Mitzenmacher and G. Varghese, “Biff (Bloom filter) codes: fast
error correction for large data sets, Proc. International Symposium on
Information Theory (ISIT), 2012.

[8] M. Mitzenmacher and G. Varghese, “The Complexity of Object Recon-
ciliation, and Open Problems Related to Set Difference and Coding”,
Proc. Allerton Conference, 2012.

[9] D. Silva, F.R. Kschischang and R. Koetter, “A rank-metric approach
to error control in random network coding”, IEEE Trans. on Inform.
Theory, no. 54, vol. 9, pp. 3951-3967, 2008.

